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ABSTRACT Traditional robust principal component analysis (RPCA) is very prone to voids in the process of
background/foreground separation of complex scene videos and easy to misjudge the dynamic background
as a moving target, which makes the separation effect unideal. In order to address this problem, this article
introduces the super-pixel segmentation technique into the RPCAmodel. First, the Linear Spectral Clustering
algorithm (LSC) is used to mark the super-pixel segmentation of the video sequence and a super-pixel
grouping matrix is obtained. Then a new video background/foreground separation model is proposed based
on the non-convex rank approximation RPCA and super-pixel motion detection (SPMD) technique. The Otsu
algorithm is used to obtain the motion mask matrix and the augmented lagrange alternating direction method
is used to solve the improved RPCA model. The results of numerical experiment show that the method
proposed in this article has a higher accuracy in the detection of moving objects in dynamic background.

INDEX TERMS Video background/foreground separation, RPCA, superpixel segmentation, linear spectral
clustering algorithm, Otsu algorithm, motion mask.

I. INTRODUCTION
Video background/foreground separation [1]–[3] is a key
pre-processing step in the surveillance system. It has a wide
range of applications in the fields of intelligent traffic man-
agement, intelligent video surveillance and sports behavior
analysis. It is also one of the most active research topics in
the field of computer vision, image processing and pattern
recognition.

At present, the robust principal component analysis
(RPCA) model based on matrix low rank sparse decompo-
sition by Candès et al. [4] has been widely used in moving
target detection [5]–[8]. In fact, background sequences can
be modeled by a low-rank subspace that can change gradually
over time, while moving foreground objects constitute associ-
ated sparse outliers [9]. The RPCAmodel achieves the detec-
tion ofmoving targets by decomposing the videomatrix into a
low-rank background matrix and a sparse moving foreground
target matrix. This kind of method can estimate the back-
ground and separate the foregroundmoving target at the same
time, effectively overcome the target false detection caused
by the periodic change of the background, and has good
robustness to noise and illumination changes. Specially, when
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the background in the video is relatively static, the RPCA
model can usually achieve more accurate foreground object
detection [10], [11].

However, in most cases, a video sequence is always
captured with a complex background in which the fore-
ground objects may blend into the background [12], such as
wind blowing leaves, waves, swaying vegetation, fountains,
changes in light, ripples on the water, flags flying in the wind
and so on. Because the background is not completely static
(that is, the background also contains dynamic components),
the performance of the foreground detection method will
be affected by the dynamic pixel components in the back-
ground. It is easy to misjudge the dynamic background as
the foreground moving target, resulting in the problems of
incomplete and empty edge of the foreground moving object
detection.

In order to overcome the above problems, scholars intro-
duced different regularization terms and space-time conti-
nuity constraints into the original RPCA model, and used
non-convex functions instead of nuclear norms to approx-
imate the rank function, which greatly improved the fore-
ground object detection results [13]–[16]. Especially in recent
years, with the widespread application of super-pixel tech-
nique in the field of image processing, some scholars have
proposed to use super-pixel segmentation technique to group
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pixels that are adjacent in appearance, space or time to bet-
ter preserve the boundary features of the foreground and
achieved better results [10], [17]–[21].

Considering the success of super-pixel segmentation tech-
nique in image processing and the advantages of non-convex-
rank-approximation-basedRPCAmodel in video foreground/
background separation and moving target detection under
dynamic background, this article proposed a new video
pre-background separation model (LSCNC-RPCA) based on
the non-convex rank approximation RPCA and super-pixel
motion detection technique. The new model is solved
by the augmented lagrange alternating direction method.
The experimental results of eight dynamic videos in the
CDnet2014 database show that the model proposed in this
article can effectively improve the accuracy of moving target
extraction and has better visual effects of foreground target
extraction than existed methods.

The rest of this article is organized as follows. Section 2 is
a brief introduction to the background and some related work.
The proposed model is given in section 3. Section 4 gives the
experimental results and the conclusion is given in section 5.

II. BACKGROUND AND RELATED WORKS
In this section, the background and some related work are
given.

A. BACKGROUND
1) RPCA MODEL
The traditional RPCA can be described as the following
optimization problem

min
L,S

rank(L)+ λ‖S‖0 s.t. X = L + S, (1)

where rank(L) is the rank function of the matrix, ‖ · ‖0 is the
l0 norm of the matrix (that is, the number of non-zero ele-
ments in the matrix), and λ is a regularization parameter.
Because the rank function and l0 norm are non-convex dis-
crete functions, the solution of this model is NP-hard. Note
that the rank of a matrix is equal to the number of its nonzero
singular values, the nuclear function and l1 norm of the
matrix can be used to convexly approximate the rank function
and l0 norm of the matrix, respectively. Hence, the above
RPCA model can be approximated as the following convex
optimization problem

min
L,S
‖L‖∗ + λ‖S‖1 s.t. X = L + S, (2)

where ‖L‖∗ =
r∑
i=1
σi is the nuclear norm of the matrix L;

σi is the non-zero singular value of the matrix L; ‖ · ‖1 is the

l1 norm of the matrix, defined as: ‖S‖1 =
m∑
i=1

n∑
j=1
|sij|.

Under the assumption that the background of the video
sequence is static or quasi-static, and the detection target
in the video moves fast, the RPCA model (2) has a better
detection effect on the foreground target.

2) SUPER-PIXEL SEGMENTATION
Super-pixel segmentation is an image segmentation technique
proposed by Ren Xiaofeng in 2013 [22]. It refers to an image
area with certain visual significance composed of adjacent
pixels with similar physical characteristics such as texture,
color, and brightness, etc [23]. Super-pixels can capture the
redundant information of the image, thereby greatly reduces
the complexity of image subsequent processing, such as tar-
get recognition and image segmentation. Therefore, it has
been widely used in computer vision applications such as
image segmentation, target tracking and target recognition,
and so on.

At present, the main super-pixel segmentation algorithms
include linear spectral clustering (LSC) [24], normalized
cuts [25], meanshift [26], turbo-pixel [27], and SLIC [28],etc.
Among them, the linear spectral clustering algorithm (LSC)
uses an image segmentation method based on normalized cut
sets. It uses the mathematical equivalence between two seem-
ingly different methods to explicitly map the pixel data into
a high-dimensional feature space. Then, through effective
local operation, the global image structure can be successfully
preserved, which effectively solved the problem of global
high complexity. Compared with other existing super-pixel
segmentation method, LSC algorithm not only avoids corre-
lation matrix decomposition, but also avoids the creation of a
large nuclear matrix. It has linear computational complexity
and high storage efficiency, and the resulting super-pixel by
LSC algorithm can well adapt to changes in the structure
and texture of natural images. It can also connect the oper-
ation based on local features with the objective function of
global optimization, and has good shape compactness and
high boundary adhesion.

B. RELATED WORKS
For the traditional RPCAmodels that use the nuclear norm to
approximate the rank function, there are two main problems.
First, the nuclear norm is defined as the sum of all the singular
values of the matrix. When one or several singular values
of the matrix are very large, it will lead to the problem of
excessive rank estimation, which will affect the recovery
results of the low rank matrix. Secondly, in the solution of
RPCA models based on nuclear norm, the singular value
decomposition (SVD) must be performed at each step, which
is time and computation consuming, especially when the
matrix size is large.

To address this problem, scholars proposed different
improved models. For example, in order to overcome the
problem of excessive rank estimation of nuclear norms,
Gu et al. [29] and Hu et al. [30] used weighted nuclear
norms and truncated nuclear norms respectively to replace
the normal nuclear norm and improved the detection effect to
a certain extent. However, the calculation amount is still large.
In order to overcome the problem of large computational
complexity for solving the nuclear norm, scholars proposed
RPCA models based on low-rank matrix decomposition
technique [31], [32], which decomposes the low-rank matrix
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into two or three smaller matrix, reducing the size of the
matrix that requires singular value decomposition and the
amount of calculation as well. In addition, in order to com-
pletely avoid singular value decomposition in the model solu-
tion and overcome the overestimation problem aroused by the
nuclear norm, scholars proposed to use different non-convex
functions to approximate the rank function, such as the
non-convex-γ -norm [14], non-convex Laplace norm [15],
logarithmic determinant function [33], [34],etc. In particular,
Yang and Zou [6] proposed a general optimization model
based on non-convex rank approximation to achieve back-
ground separation before surveillance video. A large number
of experimental results show that the RPCA model based
on non-convex rank approximation can restore a cleaner
background and the operation time is shorter.

However, for the video sequences including complex
dynamic background, such as waves, snowflakes, swinging
leaves and so on, the above non-convex rank approximation-
based RPCA model may misjudge the dynamic background
as the foreground moving target, resulting in the problems of
incomplete and empty edge of the foreground moving object
detection. In order to overcome this problem, scholars con-
sider making use of the spatiotemporal key information con-
tained in video and image, that is, to extend RPCA model by
imposing some additional constraints. Based on this consider-
ation, Ebadi and Izquierdo [17] introduced a new sparse crite-
ria and group structure sparse constraints into the foreground
part, and proposed a sparse RPCAmodel with a dynamic tree
structure. Javed et al. [18] proposed a matrix decomposition
model that combines the maximum norm regularization and
structural sparsity constraints simultaneously. Besides, with
the wide use of super pixel segmentation technique, scholars
began to introduce the super pixel segmentation technique
into the RPCA model to construct the spatial-temporal con-
tinuity between pixels. For example, on the basis of local
and global invariant assumptions, Javed et al. [10] proposed
a super-pixel-based space-time manifold structured sparse
RPCAmodel by using two different manifold regularizations
to characterize the sparse parts and applied the model to
the field of moving target detection. Based on the charac-
teristics of super-pixels, Silva et al. [35]proposed an on-line
swing single-class integration technique for feature selection
in foreground / background separation. Chen et al. [21] pro-
posed a background subtraction algorithm based on hierar-
chical super-pixel segmentation, spanning tree and optical
flow by using multiple Gaussian mixture models (GMS)
to generate super-pixel segmentation trees. Fang et al. [36]
proposed a background subtraction method for video analysis
based on multi-scale random super-pixel by replacing the
custom region segmentation region with the super-pixel seg-
mentation region with similar features, etc. The experimental
results show that the method of super-pixel segmentation can
effectively solve the problem of the lack of edge information
in the extraction of moving objects by traditional models and
improve the effect of foreground extraction and background
restoration.

However, most of the existed video foreground and back-
ground separation models based on super-pixel segmentation
technique use SLIC super-pixel segmentation technique. As a
local feature-based algorithm, the relationship between SLIC
and the global image attributes is not very clear. Hence, it is
hard to connect the local feature-based operation with the
global optimization objective function, which will greatly
affect its boundary dependence and shape compactness and
lead to the result that part of dynamic background information
may be included in the foreground when dealing with videos
with complex dynamic background.

Compared with SLIC, the LSC algorithm not only pro-
duces super pixels with high boundary dependence and good
shape compactness by bridging the local and global meth-
ods, but also captures global image attributes, which effec-
tively solves the high complexity of the global question [24].
Therefore, in this article wewill combine the LSC super-pixel
segmentation technique with the non-convex rank approxi-
mation based RPCA model to establish an improved video
background foreground separation model. The non-convex
rank approximation function used here is the non-convex-
norm proposed in [14], which is defined as follows:

‖L‖γ =
∑
j

(1+ γ )σi(L)
γ + σi(L)

, γ > 0. (3)

III. THE PROPOSED MODEL AND ALGORITHM
The establishment of the video background and foreground
separation model in this article mainly includes three steps.
First, use the LSC algorithm to perform super-pixel seg-
mentation on the video sequence, and obtain the super-pixel
grouping matrix, which contains the hyper-pixel grouping
information of all pixels in each frame of the video sequence.
Then, use the improved RPCA model to perform low-rank
sparse decomposition on the video to obtain a sparse matrix.
In the third step, the motion mask matrix is obtained by
the Otsu algorithm (Otsu method) according to the obtained
sparse matrix, and then the motion mask and super-pixel
grouping matrix is used to further accurately locate the
motion area and achieve effective separation of complex
dynamic backgrounds. This method is referred as LSCNC-
RPCA. Figure 1 shows the flow chart of this method.

A. LSC SUPER PIXEL SEGMENTATION
In the data preprocessing stage of this article, the LSC algo-
rithm is used to segment each frame of the video to form the
same region and record the corresponding grouping matrix.
The homogenous area is an irregular and similar pixel block
with similar texture, color and brightness. It not only has
locality and continuity, but also provides effective boundary
information for subsequent processing.

The LSC algorithm is proposed based on the study of
the relationship between the objective function of the nor-
malized cut set and the weighted K-mean. It first assigns a
5-dimensional feature vector Ci = (Li, ai, bi, xi, yi)T to each
color pixel, where (L, a, b) is the converted CIELab color
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FIGURE 1. The flow chart of LSCNC-RPCA.

space and (x, y) is the spatial coordinates of the pixels. But the
algorithm is not done in a 5-dimensional feature vector space.
It uses the mathematical equivalence between two seemingly
different methods to map data points into a high-dimensional
feature space to improve linear separability.
Theorem 1 [24]: If the following equations (4) and (5)

are satisfied at the same time, then the weighted K-means
clustering and the minimized normalized cut set objective
function are mathematically equivalent.

w(p)φ(p) · w(q)φ(q) = W(p,q),∀p,q ∈ V, (4)

w(p) =
∑
q∈V

W(p,q), ∀p ∈ V, (5)

where w(·) represents the weight value of the data point,
φ(·) is the function of mapping the data point to a
high-dimensional feature space, and W (p, q) represents the
similarity between the two data points.

In other words, the theorem can be expressed as: if the
similarity of two points in the input space is equal to the
weighted inner product between two corresponding vectors
in the carefully constructed high-dimensional feature space,
then the division result of the normalized cut set should be the
same as the optimal clustering result of theweightedK-means
clustering.

Algorithm 1 gives the steps to implement the LSC
super-pixel segmentation algorithm, where Vx/Vy is approx-
imately equal to the aspect ratio of the image, and t > 0.5
is a parameter that balances local compactness and global

Algorithm 1 LSC
Input: Video sequence, t = 0.5, super pixel number k;
Initialize: 1: Map each pixel p =

(
Lp, ap, bp, xp, yp

)T to a
vector φ(p) in the high-dimensional feature space;

2: Uniformly sample k seed points on the image at a
fixed horizontal interval Vx and vertical interval Vy;

3: Initialize the weighted average mk and search center
ck of the corresponding cluster through the seed point;

4: Set label L(p) = 0 and distance D(p) = ∞ for each
pixel p;
Iteration: 1: for pixels in the tVx ∗ tVy field of the search
center p do

2: Calculate the Euclidean distance D between φ(p) and
mk;

3: if D < d(p) do
4: d(p) = D,L(p) = k
5: end if
6: end
7: Update weighted average and search center until

convergence;
8: merge small superpixels into its neighbors;

Output: Superpixel segmentation result.

optimality. In the clustering and merging stage, we have
empirically merged small isolated pixels with a quarter of the
expected super-pixel size with adjacent large pixels.
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After the super-pixel segmentation of each frame of the
video sequence is completed by LSC algorithm, the video
sequence is labeled according to the super-pixel segmenta-
tion result. The pixels belonging to the i-th super-pixel in
each frame are marked as i(i = 1 · · · k), and the grouping
information of each video sequence frame is arranged as
column vector to form a video grouping matrix G ∈ Rm×n

(wherem is the number of pixels in each video frame, n is the
number of video frames). The grouping matrix can not only
cover the entire video sequence, but also effectively locate
the contour boundary of the moving target. Figure 2 shows
the LSC super-pixel segmentation result of a frame image in
the Watersurface sequence. From Figure 2, it can be found
that the area segmented by the LSC algorithm has good
shape compactness and high boundary adhesion. Moreover,
the homogenous regions tend to have the same motion char-
acteristics. Hence, the grouping matrix of the homogenous
regions can be used to extract the sparse foreground.

FIGURE 2. LSC super pixel segmentation effect diagram.

B. IMPROVED RPCA MODEL AND SOLUTION
1) PROPOSED MODEL
In order to better extract foreground objects in complex
scenes with dynamic background, in this section, we intro-
duce the noise analysis and decompose the visual frequency
sequence D into three terms, i.e., D = A+ S+G. Where A is
the low rank static background, S is the sparse foreground,
and G is the dynamic background. At the same time, in order
to more accurately separate the sparse foreground from the
dynamic background and prevent the moving objects from
appearing in both S and G, we introduce an incoherent term
to constrain S and G so as to improve the separability of the
two.

The definition of incoherent terms is as follows:

2(S,G) =
n∑

r=1

STr Gr , (6)

where Sr and Gr represent the rth column of S and G
respectively.

In this article, we use the γ -norm to approximate the rank
function of the matrix, and use the l2,1 norm to describe the
sparse prospects. Besides, note that the dynamically changing
background is usually unstructured and non-sparse, we use
the F-norm to describe the noise matrix. Then we can get the
following improved RPCA model:

min
(
‖L‖γ + λ‖S‖2,1 + β2(S,G)+ α‖G‖2F

)
s.t. D = L + S + G, (7)

where D,L, S,G ∈ Rm×n are the original video data matrix,
low rank background matrix, sparse foreground matrix and
noise matrix, respectively. ‖ · ‖γ is defined by (3), γ > 0;
‖ · ‖2,1represents the l2,1 norm, defined as ‖S‖2,1 =∑n

j=1

√∑m
i=1 S

2
i,j; 2(S,G) is the incoherent term; ‖ · ‖F is

the Frobenius norm of the matrix; λ, α and β are penalty
parameters.

2) SOLVING THE MODEL
In this section, we will use the alternating direction multiplier
method (ADMM) [37] to solve the model (7). The augmented
Lagrangian function of (7) is:

L(L, S,Y , µ)

= ‖L‖γ + λ‖S‖2,1 + α‖G‖2F + β
n∑

r=1

STr Gr

+〈Y ,D− L − S − G〉 +
µ

2
‖D− L − S − G‖2F , (8)

where Y ∈ Rm×n is the Lagrange multiplier and µ is the
penalty parameter.

Assume that the current number of iterations is k , then the
variables and multipliers are updated as follows:

1) Fix S and G to update Lk+1:

Lk+1 = argmin
L
‖L‖γ

+ < Y k ,D− Lk − Sk − Gk >

+
µk

2

∥∥∥D− Lk − Sk − Gk∥∥∥2
F
, (9)

Equation (9) can be simplified as:

Lk+1 = argmin
L
‖L‖γ

+
µk

2

∥∥∥∥L − (D− Sk − Gk + Y t

µt

)∥∥∥∥2
F
. (10)

In order to solve the problem (10), we need the following
Theorem 2.
Theorem 2 [14]: Assume that A = U diag (σA)V T is the

singular value decomposition (SVD) of matrix A ∈ Rm×n,
where σG is the singular value of G. Let F(Z ) = f ◦ σ (Z ) be
an unitary invariant function, and µ > 0. Then the optimal
solution for the problem

min
Z
F(Z )+

µ

2
‖Z − A‖2F , (11)

is A∗ = Udiag(σ ∗)V T , where

σ ∗ = prox
f ,µ

(σA) = argmin
σ≥0

f (σ )+
µ

2
‖σ − σA‖

2
2. (12)

In (10), let F(L) = ‖L‖γ , A = D−Sk−Gk , then according
to Theorem 2 we can obtain

Lk+1 = Udiag(σ ∗)V T , (13)
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where σ ∗ is given by equation (12) and can be iterated by the
following equation [14]:

σ k+1 = max(0, σA −
∂f (σ k )
µk

). (14)

2) Fix A and G to update Sk+1:

Sk+1 = argmin λ‖S‖2,1 + β
n∑

r=1

STr G
k
r

+ < Y k ,D− Lk+1 − Sk − Gk >

+
µk

2

∥∥∥D− Lk+1 − Sk − Gk∥∥∥2
F
, (15)

Simplify the formula (15), we get:

Sk+1 = argmin
L

λ

µk
‖S‖2,1

+
1
2

∥∥∥∥S − (D− Lk+1 − ( λ

µk
+ 1

)
Gk +

Y k

µk

)∥∥∥∥2
F
.

(16)

For (15), we use the following Theorem 3 proposed in [38]
to iteratively update.
Theorem 3 [38]: For a given matrix M ∈ Rm×n and

parameter τ > 0, the following optimization problem

argmin
S
τ‖S‖2,1 +

1
2
‖S −M‖2F , (17)

has a closed form of solution S∗ = (S∗1 , · · · , S
∗
n ), where

S∗j = max(0,
‖Mj‖2 − τ

‖Mj‖2
)Mj, j = 1, · · · , n, (18)

Mj is the jth column of matrix j-th column of matrixM .

In sub-problem (15), letM = D− Lk+1−
(
λ
µk
+ 1

)
Gk +

Y k

µk
, then we can obtain the solution of sub-problem (16)

by (18).
3) Fix A and S to update Gk+1:

Gk+1 = argmin
L

α‖F‖2F + β
n∑

r=1

(
Sk+1r

)T
Gr

+
µk

2

∥∥∥∥G− (D− Lk+1 − Sk+1 + Y k

µk

)∥∥∥∥2
F
. (19)

Derive the objective function of equation (19) with respect
to G, we can get the update formula of Gk+1 as follows

Gk+1 =
µkD− µkLk+1 −

(
µk + β

)
Sk+1 + Y k

2α + µk
. (20)

4) Update parameters Y k+1, µk+1:

Y k+1 = Y + µ
(
D− Lk+1 − Sk+1 − Gk+1

)
, (21)

µk+1
= max

(
ρµk, µmax

)
, ρ > 0. (22)

In conclusion, the algorithm framework for solving
problem (7) is as follows:

Algorithm 2
Input: Original video sequence D, maximum number of
iterations kmax ;
Initialize: L = S = G = 0, Y = 0, related parameter
parameters λ, α, β, µ0, ε, ρ, k=0,µmax;

while not converged do
Update Lk+1 by (13);
Update Sk+1 by (17);
Update Gk+1 by (19);
Update Y k+1 by (20);
Update µk+1 by (21);
Check the convergence condition: k > kmax or
‖D−Lk+1−Sk+1−Gk+1‖2F

‖D‖2F
≤ ε;

end while
Output: L,S,G.

C. SUPER-PIXEL MOTION DETECTION
In this section, the super-pixel motion detection is performed
and the super-pixel segmentation results are combined with
the sparse matrix generated by the RPCA model to analyze
the correlation and obtain the motion mask of the image.
Then the moving object is extracted from the relevant original
video sequence.

Specifically speaking, for the sparse foreground matrix
S ∈ Rm×n(m is the number of pixels per frame of the video
and n is the number of video frames) obtained byAlgorithm 2,
we use the Ostu method [39] to automatically calculate the
motion mask M ∈ Rm×n. The optimal decision threshold τ
can be calculated, using the Ostu method, by minimizing the
intra group variance, namely

τ = argmin
g

(
ω0(g)σ 2

0 (g)+ ω1(g)σ 2
1 (g)

)
. (23)

For each column Sj, j = 1 · · · n of the sparse matrix S,
ω0(g) and ω1(g) are the probability of moving pixels whose
pixel value is smaller than the threshold τ while background
pixels larger than the threshold τ ,respectively, and ω0(g) +
ω1(g) = 1, σ 2

0 (g) and σ
2
1 (g) are the corresponding intra-class

variance. In this way, a motion mask based on the improved
RPCA model can be obtained:

Mj(i, 1) =
{
0, Sj(i, 1) ≥ τ
1 Sj(i, 1) < τ

, (24)

whereMj(i, 1) and Sj(i, 1),i = 1 · · ·m represent the values of
column j of M and S, respectively, where i = 1 · · ·m.

Next, the motion maskM and the super-pixel segmentation
grouping matrix G combined to obtain the final super-pixel
motion detection motion mask N . Count the number of mov-
ing pixels in each homogeneous region in the same group.
If Q > ceil

( m
θk

)
, the whole homogeneous region is classified

as the moving pixels, where ceil(·) stands for the rounding-up
function, m is the number of pixels per frame, k represents
the number of super-pixels, and θ is the constraint parameter.
Then the super-pixel motion detection motion mask N can be
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expressed as follows:

∀(x, y) ∈ SR :

N (x, y) =


1, Q

{(
x, y′

)
∈ SR : M

(
x ′, y′

)
= 1

}
> ceil

( m
θk

)
0, otherwise.

(25)

Algorithm 3 presents the algorithm framework for
super-pixel motion detection(SPMD).

Algorithm 3 SPMD
Input: Sparse foreground matrix S, hyperpixel segmentation
and grouping matrix G,m,k ,θ = 3;
Initialize:1:Formula (22) is used to calculate the optimal
decision threshold τ ;

2:Equation (23) is used to calculate the sparse matrix
motion maskM ;

3:for y=1: n;
4: for j=1:g(y);
5: for x=1: m;
6: Statistic Q(j) according to principle

(x, y) ∈ SR(j) andM (x, y) = 1;
7: for Q(j) > q
8: N (x, y) = 1;
9: else;
10: N (x, y) = 0;
11: end ;
12: end;
13: end;
14:end;

Output: N .

Figure 3 shows an example of super-pixel motion detec-
tion. For the traditional RPCA model, due to the uniformity
of image texture or clustering errors, many holes are left
in the foreground. By grouping adjacent pixels in the same
homogenous region through the super-pixel grouping matrix,
these holes can be correctly classified into motion plates,
thereby reducing unexpected errors caused by static objects
or object clustering.

FIGURE 3. Example of superpixel motion detection.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we will verify the performance of the
model proposed in this article through experiments, using
a combination of quantitative and qualitative methods.
The algorithm in this article was compared with
GoDec [13], NC-RPCA [14], AccAltProj [40], KNN [41],

LRSD-TNNSR [42] and NCSC-RPCA [43]. We mainly
selected eight video sequences in I2R dataset and
CDnet2014 dataset for verification. All numerical experi-
ments are based on the PC Inter Core i5-4210U 2.40Hz
CPU, 4GB RAM environment, and are programmed using
MATLAB R2019b.

A. PARAMETER SELECTION
In the model proposed in this article, we mainly use six
parameters: λ, α, β, µ0, ε, ρ. For the parameters λ, we adopt
an adaptive value to different video sequences and set
λ = 5∗10−3/

√
min(size(D)). For the penalty parameter µ0,

we take µ0 = 10−3. In order to better separate the dynamic
background from the foreground, we take α = 5 × 10−2

and β = 10−3 to perform the relevant constraints. The
parameter ρ is used to control the convergence rate, here we
set ρ = 1.1.
In order to make different models comparable, all the

methods here use the same stopping criterion, that is, when
the number of iterations reaches kmax = 300 or the relative
error is less than ε = 10−6, the iteration stops.

B. NUMBER OF SUPERPIXELS
Fig.4 shows the FM values extracted from the moving trees,
fountain, switchlight and override video sequences for dif-
ferent number of hyper-pixels. Among them, the moving
objects in the moving trees and overpass video sequences
are relatively large, while the moving objects in the fountain
and switchlight video sequences are relatively small. It can
be seen from the figure that the pixel block is not the more
the better since the more the pixel blocks are, the less pixels
are included in the block. On the other hand, the boundary
of super-pixel block segmented by LSC can not completely
coincide with the boundary of the moving object. Hence,
when some of the background texture features are similar
to the moving object, they will be divided into the same
category, such that the moving object will be regarded as the
background in the extraction process when there are toomany
background pixels in the super pixel block. In addition, for

FIGURE 4. Fm value in different number of superpixels.
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FIGURE 5. The detection results of different algorithms in the data set.

video sequences with relatively small moving targets, the set-
ting of super-pixel blocks should be as large as possible,
because the smaller the moving targets are, the less obvious
their texture will be.

Based on the above analysis, we divide the number of super
pixels into two categories for the data set used in this article.
The four types of moving objects, namely, water surface,
waving trees, override and curtain, are relatively large, and
the number of super pixels is set to 500, while Campous,
fountain, boats and switchlight are relatively small, and the
number of super pixels is set at 750.

C. QUANTITATIVE ANALYSIS INDICATORS
In order to evaluate the performance of each model more
accurately and objectively in the quantitative comparative
analysis, we refer to [44] and [45], and uses four indicators
to evaluate the performance. To simplify the representation,
the ground truth and estimated foreground are expressed as
BGT and BE , respectively. The specific evaluation indexes are
as follows:

1. Average gray error (AGE): The average gray error is
the average of the absolute errors of BGT and BE , where
BGT and BE are the values that have been converted to
grayscale.

2. Percentage of error pixels (pEPs): Error pixels (EP)
refers to the pixels whose difference betweenBGT and BE
is non-zero (In the model results, white is used to represent
the extracted target, and black is the background). PEPs is
defined as the ratio of EPs to total pixels.

3. Peak signal-to-noise ratio (PSNR): PSNR is widely used
to measure image quality. It is defined as

PSNR = 10 · log10

(
MAX2

MSE

)
, (26)

where, the MAX value is 255, and MSE is the mean square
error between BGT and BE .

4. F-measure: It is a comprehensive index based on com-
prehensive consideration of the performance of Precision
(foreground segmentation precision) and Recall (previous
spot accuracy), and is often used to evaluate the effect of
dynamic video detection. It is defined as follows:

Precision =
TP

TP+ FP
, (27)

Recall =
TP

TP+ FN
, (28)

F − measure = 2
Precision× Recall
Precision+ Recall

. (29)

Among them, TP indicates the foreground pixel correctly
marked as foreground, FP indicates that the background pixel
is wrongly marked as foreground, and FN indicates that the
foreground pixel is wrongly marked as background.

D. EXPERIMENTAL RESULT AND ANALYSIS
In this article, we mainly selects eight video sequences for
verification, namely WaterSurface, Waving trees, Campous,
Fountain, Overpass, Boats, Curtain sequence and Switch-
Light. Among them, the first six video sequences are outdoor
test sequences and the latter two are indoor video sequences.
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TABLE 1. Comparison of objective results of foreground detection by different methods (Best: bold. Second best: underline).

All the sequences have light changes, and the light changes of
SwitchLight sequence are more complicated than the Curtain
sequence.

Figure 5 shows the detection results of GoDec, NC-RPCA,
AccAltProj, KNN, LRSD-TNNSR, NCSC-RPCA and our
proposed algorithm on the selected eight video sequences,
where (a) represents the original video frame selected from
8 different dynamic background videos, (b) represents the
true foreground of the corresponding video frame, (c) to
(i) represent the foreground of the eight video sequences
extracted by GoDec, NC-RPCA, AccAltProj, KNN, LRSD-
TNNSR, NCSC-RPCA and our proposed algorithm.

The first line in Figure 5 is the WaterSurface dataset.
In this dataset, the foreground is relatively simple, but the
ripples on the sea surface will appear as background motion
during detection, which increases the difficulty of pedes-
trian detection. It can be seen from the figure that although
LRSD-TNNSR and KNN can suppress part of the disturbed
background, some water surface ripples will still be detected

as the foreground, and the foreground area is not smooth
enough. The calf part is missed from the NC-RPCA and
NCSC-RPCA detection results. However, the proposed algo-
rithm in this article can not only effectively extract themoving
target, but also remove the influence of the water surface
ripple disturbance, and the effect is significantly better than
other methods.

Waving trees, Campous datasets and Overpass are all video
sequences with a large number of undulating leaves. The
background motion is relatively complex and can be easily
extracted as foreground. The second, third and seventh lines
show the detection results of these three sequences on these
algorithms respectively. Irregular motion of shaking leaves
in the background is the main obstacle to detecting moving
objects. It can be seen from the figure that AccAltProj, KNN
and LRSD-TNNSR cannot effectively eliminate the effects
of shaking leaves in the background. Although GoDec,
NC-RPCA and NCSC-RPCA can suppress the effects of
shaking leaves, the detection area is very incomplete.
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In contrast, our method can detect more complete moving
targets. The NCSC-RPCA algorithm has a good effect on
the extraction of Overpass data set extraction, but the void
phenomenon is serious in the extracted target. For the algo-
rithm in this article, since the target is close to the lens and
the clothing texture is obvious, the LSC algorithm divides
the target into several small hyper-pixel blocks. When more
pixels are misdivided in the area of the small hyperpixel
block, there will be a cavity in the extracted target. However,
by contrast, our method can detect more complete moving
targets.

The Fountain data set in the fourth row is a video sequence
with a dynamic fountain in the background. It can be
found that among the eight algorithms, LRSD-TNNSR and
our algorithm have better moving target extraction effects.
Besides, our algorithm extracts the most complete moving
target area, and is least affected by the irregular movement
of fountain.

The fifth and sixth lines are video sequences with illumi-
nation changes in the background, which are the Curtain and
SwitchLight data sets. It can be found from the results that for
the Curtain dataset, except for the algorithm in this article,
there are obvious "phantom" phenomenon in the detection
results of the other six algorithms. Meanwhile, the contour
of the motion foreground detected by our algorithm is more
complete and the background is cleaner. In general, for the
SwitchLight dataset, our algorithm is hardly affected by illu-
mination changes, and can effectively detect moving objects
without extracting human shadow from the ground. From
the comparison of the above experimental results, we can
see that our algorithm can effectively eliminate the moving
background and extract more complete foreground targets for
video sequences with complex moving background.

The last line is the Boats data set, a data surface ripple that
occupies a large portion of the image, which greatly affects
the effect of foreground extraction. Although the denoising
effect of the proposed algorithm is better than that of the
previous five algorithms and the target extraction accuracy
is similar to that of the CNSC-RPCA algorithm, due to the
influence of water surface ripples, the LSC algorithm can’t
segment the moving object’s boundary texture accurately,
whichmakes the extractedmoving object not smooth enough.

Table 1 shows the quantitative evaluation results of the pro-
posed algorithm and other six methods on the test sequence.
In this article, we use F-measure, Average Grayscale Error
(AGE), Peak Signal-to-Noise Ratio (PSNR) and Error Pixel
percentage scores (pEPs) for comparative analysis. From the
definition, we know that the larger the values of F-measure
and PSNR, the better the effect, and the smaller the values
of AGE and pEPs, the better. From the comparison of the
relevant evaluation index data, we can find that our algorithm
has a great improvement in terms of F-measure, AGE, PSNR
and pEPs, compared with the other six algorithms, in the
eight data sets with complex dynamic background. Specially,
for the data set with relatively large moving target area,
the promotion effect is more significant. According to the

F-measure values of the eight selected datasets with different
degrees of dynamic background interference, our algorithm
has obvious advantages in target extractionwhen there is huge
dynamic background disturbance in the video background,
which shows that the model proposed in this article has strong
robustness.

V. CONCLUSION
In order to effectively extract the moving target under com-
plex dynamic background, this article proposes a video back-
ground separation model based on improved RPCA and
super pixel motion detection. The new model combines the
improved RPCA model and the super-pixel grouping matrix
to realize the moving object detection, and effectively solves
the problems of incomplete detection boundary and easy
to appear holes in traditional foreground extraction. Exper-
imental results show that when the moving target is large,
the superiority of the algorithm is most obvious, while when
the moving target is relatively small, the detection effect is
slightly poor and prone to missing phenomenon. This will be
the focus of our future research.
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