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ABSTRACT In the Big Data era, there is an increasing need to fully exploit and analyze the huge quantity
of information available about health. Natural Language Processing (NLP) technologies can contribute by
extracting relevant information from unstructured data contained in Electronic Health Records (EHR) such
as clinical notes, patients’ discharge summaries and radiology reports. The extracted information can help
in health-related decision making processes. The Named Entity Recognition (NER) task, which detects
important concepts in texts (e.g., diseases, symptoms, drugs, etc.), is crucial in the information extraction
process yet has received little attention in languages other than English. In this work, we develop a deep
learning-based NLP pipeline for biomedical entity extraction in Spanish clinical narratives. We explore the
use of contextualized word embeddings, which incorporate context variation into word representations,
to enhance named entity recognition in Spanish language clinical text, particularly of pharmacological
substances, compounds, and proteins. Various combinations of word and sense embeddings were tested
on the evaluation corpus of the PharmacoNER 2019 task, the Spanish Clinical Case Corpus (SPACCC).
This data set consists of clinical case sections extracted from open access Spanish-language medical
publications. Our study shows that our deep-learning-based system with domain-specific contextualized
embeddings coupledwith stacking of complementary embeddings yields superior performance over a system
with integrated standard and general-domain word embeddings. With this system, we achieve performance
competitive with the state-of-the-art.

INDEX TERMS Clinical case narratives, contextualized word embeddings, deep learning, language
representations, named entity recognition, natural language processing, spanish language.

I. BACKGROUND
Currently, most research in Natural Language Processing
(NLP) is focused on English language texts, while text written
in different languages is often left unexplored; this has been
particularly true in the domain of biomedicine. Given the
amount of data produced every year by biomedical experts,
doctors, and patients in non-English speaking countries, this
represents a significant missed opportunity.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shahzad Mumtaz .

The PharmacoNER 2019 challenge [1] aimed to close
the gap in named entity recognition (NER) of biomedical
concepts in a corpus of Spanish clinical case narratives. The
corpus includes annotations of clinical terminology, chemical
and protein entities.

Extraction of biomedical entities from these narratives is
relevant to a number of NLP tasks such as adverse drug and
drug-drug interaction extraction [2], [3], biomedical concept
normalization, knowledge base population [4], and question
answering [5].

Recent developments in NLP have shown the advantage
of Neural Network (NN)-based methods, particularly those

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 164717

https://orcid.org/0000-0003-4338-1483
https://orcid.org/0000-0003-2606-2405


L. Akhtyamova et al.: Testing Contextualized Word Embeddings to Improve NER in Spanish Clinical Case Narratives

based on Deep Learning, over traditional Machine Learning
(ML) algorithms. However, beyond the development of new
NN-based methods, researchers have started to explore the
impact of improved strategies for the representation of text
information provided as input to both NN-based and other
ML methods.

Starting from Bag of Words (BoW) representations, word
pre-processing has evolved to include more sophisticated
word representations such as word2vec word embed-
dings [6], Glove [7] and FastText [8] embeddings, with
the latter two able to capture the subword information from
texts. Applied in a range of different NLP tasks, methods
using word embeddings have led to significant breakthroughs
in model performance for biomedical NER tasks where lim-
ited training data is available [9].

Further advances to text preprocessing have been proposed
based on language models, that give a word a different
embedding vector based on its usage context. The embed-
ding function is trained either from a language modeling
perspective [10] or based on recovering masked parts of
tokens [11]. The downstream tasks which incorporate these
embeddings are considered to be learned in a semi-supervised
manner because they benefit from large amounts of unlabeled
data [12], [13].

Language representation models can be further applied
with or without fine-tuning to problems arising in different
domains.1 The approach of learning on one dataset and apply-
ing the model to another dataset is called Transfer Learning.

Among recently introduced contextualized embeddings
are Semi-supervised Sequence Learning [14], ELMo [10],
ULMFiT [13], the OpenAI transformer [15], the Trans-
former [16], BERT [11] and Flair [17].
In our experiments, we explore the use of both Flair and

BERT contextualized embeddings as they have been shown
to outperform other types of embeddings on a variety of
sequence labeling tasks [11], [17].

In addition to pre-trained domain-specific Spanish
FastText embeddings [18], we generate domain-specific
Spanish contextualized embeddings by pre-training language
representation models using the corpus retrieved from the
Scientific Electronic Library Online (SciELO) website.2 The
clinical case narrative data from the publications there was
used to construct the PharmacoNER dataset. To the best of
our knowledge, these are the first contextualized embeddings
for Spanish clinical texts made available to a wide audience.
The large corpus of more than one billion sentences from
SciELO we make available is itself a valuable resource.

This paper extends and deepens a preliminary version of
our experiments, which are described in [19]. In particu-
lar, we add experiments using the Flair framework which
outperform our previous results obtained with the Bert
model. We also experiment with word embedding stacking

1https://ai.googleblog.com/2019/07/advancing-semi-supervised-
learning-with.html

2https://scielo.org/es

approaches, further improving the results we obtained on the
PharmacoNER corpus.

The contributions described in this paper are as follows:
(1) we retrieve task-specific corpora for training; (2) we
construct task-specific contextualizedword embeddings from
scratch based on Flair and BERT architectures; (3) we
compare model performances based on constructed word
embeddings, explore how these may be combined with other
types of embeddings, and compare these with the standard
embeddings, producing new baselines; and (4) we conduct
an extensive error analysis checking the source of errors for
different models.

The pretrained weights for Flair and BERT models,
as well as the SciELO corpora used for their training are made
publicly available in a Google Drive repository.3

A. BIOMEDICAL ENTITY EXTRACTION APPROACHES
Simple approaches to biomedical NER which sometimes
give surprisingly good results have made use of rules or
dictionaries.

For example, Eftimov et al. [20] built a set of regular
expressions to extract evidence-based dietary recommenda-
tions from scientific publications and websites. They first
detected target mentions in textual data and then extracted
them using the rule-based technique.

Various strategies for dictionary lookup have also been
shown to be effective [21]. Such approaches leverage biomed-
ical terminology resources or ontologies, and are particularly
relevant for biomedical NER where named entities often
correspond to fine-grained domain-specific concepts.

However, with the development of automatic NLP meth-
ods, these methods are rarely applied on their own to solve
NER tasks, but rather are used to generate features to feed
ML and deep learning (DL) models. For example, in a
recent Meddocan challenge on Spanish medical document
anonymization [22], rule-based techniques were actively uti-
lized in ML and DL methods to identify patients’ email
addresses, locations, phone numbers, etc. In addition, partic-
ipants in the challenge used domain- and language-specific
gazetteers and Brown clusters derived through unsupervised
ML. For example, Perez et al. [23] concluded that Brown
clusters and gazetteers played a significant role in ML system
performance. Further, Lopez at al. [24] tested both ML and
rule-based approaches and concluded that a hybrid of the two
gives the best result.

Lee et al. [25] solve the problem of biomedical NER
in two steps, firstly by discovering entities’ boundaries
using Support Vector Machines (SVM) techniques and then
further applying an ontology-based hierarchical classifica-
tion method to classify identified entities. Their system got
promising results 66.7 F-score on GENIA corpus [26].

Early work on machine learning-based NER includes such
techniques as reranking relying on kernels [27] as well
as pure feature processing [28]. Kernel-based methods for

3http://dx.doi.org/10.17632/vf6jmvz83b.2
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entity extraction such as SVM utilized in numerous papers
[29]–[31] overall became popular methods for extracting
entities from texts including biomedical texts [32]. In the
latter paper, the authors examined different kernel functions
for the problem of biomedical NER and concluded that tree-
based kernel is more capable of entity extraction.

Current state-of-the-art methods for NER are based on NN
architectures, in particular, DL convolutional NNs (CNN) and
recurrent NNs (RNN). Transfer learning approaches, in par-
ticular the use of pre-trained contextualized word embed-
dings, have augmented performance of these methods, giving
strong results in a number of downstream tasks.

For example, in the Meddocan shared task the best result
was achieved by a system which utilized pretrained contex-
tualized Flair embeddings fed into a simple RNN model.
However, while dealing with more complex biomedical NER
problems including long, discontinuous, overlapping entities,
hybrid approaches show the best results. Li et al. [33] inte-
grated KB embeddings in their tree-structured LSTM frame-
work, achieving approximately 3 point gain in F-score.

Related to this, contextualized word embeddings together
with part-of-speech (PoS) tags were examined for Bulgarian
NER [34] showing sizeable improvements over the state-of-
the-art. In another work, a combination of different types
of contextualized embeddings was explored over English
biomedical literature corpora [35]. The best results were
obtained when combining ELMo and Flair word embed-
dings. Another relevant work includes the extraction of
adverse drug events on 2018 N2C2 shared task corpus [36].
The authors experimented with the off-the-shelf Flair
NER framework and kernel-based methods and concluded
that a neural Flair-based approach outperforms standard
SVM-based methods. In the work of Basaldella et al. [37],
the authors pretrained ELMo and Flair contextualized word
embeddings on health forums within Reddit and applied them
to health social media data for various NER problems. They
concluded that domain-based contextualized word embed-
dings heavily influence the performance on downstream
tasks, outperforming embeddings trained both on general-
purpose data or on scientific papers when applied to user-
generated content. Our experiments are very similar to this
work.

One can find an extensive overview of recent advances in
NLP field in the work of Minaee et al. [38]. While focusing
on document classification, it describes several methods, such
as transformers, which are completely applicable to NER.
Young et al. [39] cover in detail a key element of the current
paper – distributed and contextualized word representation,
among other recent trends introduced in NLP.

B. SPANISH CLINICAL TEXT PROCESSING
Spanish is an inflectional language with a richer morphology
compared to the English language;morphemes denote several
syntactic, semantic and grammatical features of words (such
as gender, number, etc). From a syntactic point of view, Span-
ish texts have more subordinate clauses and long sentences

with a high word order flexibility; for instance, the subject
can be located in any position in a sentence instead of only
before the verb.

There are a number of peculiarities of clinical texts in Span-
ish. Due to translation of English biomedical terms, there are
more variants of anglicisms. Some of them are freely adapted
and others are exact copies of original ones, for instance
‘‘interleukin’’ is translated to ‘‘interleukina’’/‘‘interleucina’’/
‘‘interleuquina’’. Moreover, Spanish language uses accent
marks which do not exist in English and the preference or
not of using these generates lexical variants; for instance,
‘‘period’’ may be transformed into ‘‘period’’ or ‘‘período’’.
Adjectives ending in ‘‘-al’’ sometimes keep their form
when translated and sometimes follow Spanish morpho-
logical rules, for example, ‘‘viral’’ may be transformed
to ‘‘viral’’ or ‘‘vírico’’ and ‘‘bacterial’’ to ‘‘bacterial’’/
‘‘bacteriano’’/‘‘bacteriana’’/‘‘bacterianos’’/‘‘bacterianas’’
(considering gender and number morphological variants).

Greco-latin prefixes show variants like ‘‘psi-’’ (‘‘psicol-
ogo’’ vs ‘‘sicólogo’’) or ‘‘pseudo-’’. The use of hyphens
between words is more systematic in English while in
Spanish many variants occur. For instance, ‘‘beta-carotene’’
is transformed into ‘‘beta-caroteno’’/‘‘beta caroteno’’/
‘‘betacaroteno’’/‘‘caroteno beta’’. The names of pharma-
cological substances sometimes remain the same as in
English and others are adapted, e.g. ‘‘furazosin’’ is adapted
to ‘‘furazosina’’/‘‘furazosín’’/‘‘furazosin’’. Concerning gen-
der (male/female), in some terms there is ambiguity
(‘‘la COVID’’/‘‘el COVID’’) or both are allowed, for
instance, ‘‘el tiroides’’ (male) /‘‘la tiroides’’ (female) for
‘‘thyroid’’ hormone.

Clinical notes have many occurrences of abbreviations
and usually English abbreviations coexist with Spanish ones.
For instance, ‘‘PSA’’ corresponds to ‘‘prostate-specific anti-
gen’’ and it is preferred to ‘‘APE’’ (‘‘antígeno prostático
específico’’). However, polysemic abbreviations are very
common in both languages.

From a syntactic point of view, sentences are very simi-
lar in both languages (short sentences or phrases, with use
of negation particles and non-standard abbreviations, mis-
spellings, speculation and ungrammatical sentences, among
other phenomena).

In summary, there are more lexical variants of medical
terms in Spanish with respect to English due to replication or
partial adaptation of terms. For these reasons, analyzing these
texts is a more resource consuming task, and normalization
tools are required.

C. PharmacoNER 2019 SHARED TASK
PharmacoNER is ‘‘the first task on chemical and drug men-
tion recognition from Spanish medical texts, namely from a
corpus of Spanish clinical case studies’’ [1]. According to the
organizers, ‘‘the main aim was to promote the development
of named entity recognition tools of practical relevance, that
is, chemical and drug mentions in non-English content, deter-
mining the current-state-of-the art, identifying challenges and
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comparing the strategies and results to those published for
English data’’.

The challenge consisted of two subtracks – (1) NER offset
and entity classification and (2) Entity indexing. We focus
on the NER task. In total, 22 teams participated in the
first subtrack. Xiong et al. [40] was placed first with an
overall F-score of 91.05. They used the multi-lingual large
version of the pre-trained BERT model4 with further fine-
tuning to the PharmacoNER NER problem. The key success
of their implementation of the BERT model in comparison
to other participants’ BERT implementations was that they
incorporated more semantic and syntactic features such as
word shape and PoS tags into their model embedding layer.
Moreover, they applied a Spanish biomedical abbreviation
detection tool, however they did not detail how the extracted
abbreviations were further used.

The second-best results of Stoeckel et al. [41] were updated
after the formal challengewith an F-score of 90.52. They used
the Flairmodel and made use of additional corpus derived
from SciELO, however of a smaller size than ours. They
used this corpus to train word2vec and FastText word
embeddings, and for Flair language model (LM)-based
embeddings they used pre-trained Spanish general domain
word embeddings.5

Sun et al. [42] achieved the third-best result with an F-score
of 89.24. Like Xiong et al. [40], they also used the pre-trained
version of BERT with subsequent fine-tuning but without
incorporating any additional features.

Overall, many participants experimented with document
encoding techniques. For example, Rivera Zavala et al. [43]
gathered similar size Spanish biomedical corpora to train
their own FastText embeddings. Moreover, they used
sense2vec [44] pre-trained embeddings. Both of these
embeddings have proven useful in extracting biomedical
concepts.

Later, other research papers appeared addressing NER on
the PharmacoNER corpus. Multi-tasked and stacked model
approaches were offered by [45]. Their best multi-tasking
approach achieved 91.4 F-score. In another paper, a set
of 104 sophisticated context patterns was constructed [46].
With this knowledge-based approach, authors achieved an
impressive result of 91 F-score. We do not compare our
results with the results of these two papers, as the approach
of [45] requiredmore annotated data, and the approach of [46]
required manual rule construction relying on Spanish lan-
guage syntax.

II. METHODS
A. FLAIR
Flair embeddings were developed by the Zalando research
group [17]. They are contextualized string embeddings in
the sense that the contextualized embedding vectors are

4https://storage.googleapis.com/bert_models/2018_11_03/multilingual_
L-12_H-768_A-12.zip

5http://www.github.com/iamyihwa

trained without any notion of words but purely treat texts as
sequences of characters. This is the main difference between
this type of embeddings and others such as word2vec [47],
Glove [7], and ELMo [17].
Flair is trained using an LM objective function aimed

at predicting the next character of a sequence, thus keeping
information on the character ordering in a text sequence.
By learning the character level representations in both direc-
tions it was possible to get the context for each character in
both right and left directions. To generate a word embedding
from characters the first and last character states of each word
are extracted and concatenated.

From the computational and memory point of view, these
embeddings are more efficient to store and train a model for
word embeddings. Moreover, they have proven to be more
effective in terms of rare, out-of-vocabulary (OOV) words
and morphologically rich languages [17].

In our experiments, we use the enhanced version of Flair
embeddings called Pooled Contextualized String Embed-
dings [48]. It is different from the previously developed
Flair LM in that it better handles representation for words
in an underspecified context. By dynamically aggregating the
contextualized embedding of each unique word, this infor-
mation is later used to expand the embedding for the same
word encountered in a poorly, ambiguously specified context.
This situation is often encountered in the Spanish biomedical
NER tasks, when two words with similar suffixes express
different types of substances, as for example, creatinina and
hemoglobinawhere the latter is a protein but the former is not.

B. BERT
Bidirectional Encoder Representations for Transformers
(BERT) is the deep learning language representation model
developed by the Google research team [11]. In contrast to
ELMo and Flair, it can be used not only for contextualized
word embeddings generation, but also for the downstream
tasks itself through a process called fine-tuning.
BERT is trained using the masked word piece representa-

tion and the next sentence objective. Its architecture consists
of stacked multi-layered transformers, each having a self-
attention mechanism with multiple attention heads. Introduc-
ing self-attention in encoder-decoder architecture of BERT
allows better capture of long-distance relationships among
concepts by avoiding no locality bias.
BERT can be further pre-trained for a specific domain or

fine-tuned for a specific task [49]. In particular, fine-tuning
for token level classification tasks is supported by putting a
linear layer, which takes as an input the last hidden state of
the sequence, on top of the BERT model.

C. ADDITIONAL EMBEDDINGS
It has been demonstrated that the concatenation of con-
textualized embeddings with the standard embeddings usu-
ally leads to an improvement in results [10], [17].
Following this, for our experiments we used the con-
catenation of Flair embeddings with Spanish general
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(not domain specific) FastText embeddings [8], domain-
specific Spanish biomedical FastText embeddings [18],
byte-pairwise encoded embeddings (BPE) [50] and character
embeddings [51]. The results of models with and without
these additional embeddings are presented.

General FastText embeddings for Spanish were trained
using the full dump of Spanish-language Wikipedia while
Spanish domain-specific biomedical embeddings utilizing
the architecture of FastText were trained over the Sci-
ELO6 corpus with 100 million tokens and the health section
of Wikipedia with 82 million tokens.

Character embeddings are generated using a RNN model
and further are concatenated with the other types of word
embeddings in a model.

While the BPE model represents subword embeddings
in 275 languages, we used only one language from thismodel.
It produces relatively light-weight embeddings as they consist
of sub-word tokens of words. This method has been shown to
deal well with unknown words and to produce results on a par
with the standard word embeddings.

D. ENTITY EXTRACTION
In the PharmacoNER task, there are 4 relevant types of entity
mentions, although for the official evaluation, only the first
3 types are used:

• Normalizables (Normalizable): mentions of biomedical
concepts which can be normalized to the SNOMED-CT
and ChEBI vocabularies;

• No_Normalizables (Non-normalizable): biomedical
concepts which cannot be normalized to the given
vocabularies;

• Proteínas (Proteins): mentions of genes and proteins;
• Unclear (Unclear): general substance mentions.
The problem of biomedical NER can be framed as a

sequence labeling task where the goal is to extract the cor-
rect spans of entities. We therefore used a BIO schema.
In this schema, each token in a document is classified as
[B]eginning, [I]nside, or [O]utside of an entity mention.

Other than for the BERT experiments, all experiments were
conducted using the Flair framework7 which is built on top
of Theano providing a convenient means of experimenting
with different combinations of word embeddings. It provides
an off-the-shelf neural-based system supporting entity extrac-
tion. We train a Long Short Term Memory (LSTM) network
with a hidden state of 256 dimensions, learning rate 0.1,
mini-batch size of 8, and is optimized with Adam. We train
for 150 epochs, and the model that performs best on the
validation set provided by the organizers of the competition
during training is used to prevent overfitting.

We were unable to conveniently experiment with BERT
embeddings using the Flair framework but preferred
the Google Cloud TensorFlow TPU set up for both train-
ing contextualized word embeddings and the downstream

6SciELO.org
7https://github.com/zalandoresearch/flair

task fine-tuning and predictions as it works much faster.8

However, at the time of writing TPU did not support inference
on downstream tasks, and it was required to switch over to
CPU instances for this step.

We used a Conditional Random Fields loss [52] as it has
been shown to increase the accuracy for the NER tasks.
The training and evaluation batch sizes were set to 32 and
8, respectively, and the learning rate was set to 5e−5. The
maximum sequence length was set to 160.

Despite the common advice to fine-tune the BERT model
for just 3-10 epochs, we fine-tuned it for 30 epochs as we
noticed it improved the predictions.

E. PharmacoNER CORPUS
The PharmacoNER corpus was used for training and testing
our models. It consists of 1000 annotated SPACCC articles
derived from open access Spanish medical publications in
SciELO – an electronic library where complete full-text arti-
cles from scientific journals of Latin America, South Africa,
and Spain are systematically collected and stored.9

TABLE 1. Statistics on PharmacoNER corpus.

Table 1 shows summary statistics of the PharmacoNER
corpus. Results are scored with the scoring tool distributed by
the organizers of the challenge. For concepts, true positives
are strict (the system concept span must match a gold con-
cept spans begin and end exactly). We report micro-averaged
results of the lenient evaluation since that was the metric used
to score the shared task.

For training the model, we combined both training and
development corpora (yielding 11970 sentences for the
merged corpora) and selected by random shuffling 10% of
it for validation purposes.

F. LANGUAGE MODEL TRAINING DATASET
We selected a subset of SciELO text based on some heuristics
to be in line with the corpus used for training and testing the
model. In particular, we chose articles based on the criteria
that the specified area of the document is Health Sciences
and then selected text in particular sections of the articles.
Specifically, text starting with section headings ‘Descrip-
ción del caso’, ‘Presentación de caso’, ‘Descripción de caso
clínico’, or ‘Caso clínico’, and ending with the sections
‘Bibliografía’ or ‘Referencias’ was selected. In this way we
retrieved 1, 368, 080 sentences with 86, 851, 275 tokens.

We also used the same corpora for training the BERT
language representation model with the vocabulary size set
to 128000.

8https://cloud.google.com/ml-engine/docs/tensorflow/using-tpus
9http://www.scielo.org
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TABLE 2. Results of experiments.

Constructed domain-specific Flair embeddings
Flair_Sc are compared with the general pre-trained Flair
embeddings that are a part of the Flair API Flair_G.10

They are trained on a dump of Spanish Wikipedia dated
August 2018.11

G. LANGUAGE MODEL TRAINING
The Flair_Sc LM was trained until the perplexity reached
1.92. The settings used to train word embeddings are: hidden
size 1150, the number of layers 3 with maximum sequence
length 240, mini-batch size 100 and number of epochs equal
to 1000.

The training of Flair_Sc LM was done using 1 GPU
instance.

The BERT language representation was trained using Ten-
sor Processing Units (TPU) instances in Google Colab with
the number of training steps 1B. TPU is designed to effi-
ciently scale operations among different machines thus mak-
ing calculations on tensors faster than doing it usingGPU. For
storing and uploading weights for training Google Cloud per-
sistent storage is required. Moreover, every 8 hours Google
Colab shuts down its server, so it is necessary to be resumed
manually. Overall, it took more than 4 days to train the BERT
language representation, substantially longer than it takes to
train Flair_Sc LM.

III. RESULTS
The comparative results of experiments are presented
in Table 2 where we depict our best Flair-based, and BERT
model results:

• Flair_Sc_ext2: the extended model is trained using
the custom SciELO Flair embeddings Flair_Sc,
SciELO FastText embeddings, BPE embeddings and
character Embeddings;

• BERT_Sc: BERT-based word embeddings are trained
on the SciELO corpus. Subsequently, the BERT model
is fine-tuned for the downstream task.

To compare our results with others, we selected the top
results in the challenge leader board and we omit results for
which no description of the systems were provided.

For the best model, precision for all types of entities is
higher than recall, especially for Normalizables entities. This
means that while the model is good in determining the correct
cases, it is not as strong at identifying positive examples.

Indeed, comparing to the best systems’ results, it can be
observed that we are superior in terms of higher precision but
relatively weaker in terms of recall. Overall, our results are

10https://github.com/zalandoresearch/flair/issues/80
11https://dumps.wikimedia.org/eswiki/20180801/

0.21 points behind the best system of Xiong et al. [40] for
this task.
No_Normalizables entities comprising the minority class

are not captured by our models. Techniques for tackling the
class imbalance should be considered in future experiments
with sequence labeling architectures.

IV. DISCUSSION
A. NUMBER OF TRAINING EPOCHS
Fig. 1 shows an evolution of the loss and F-score over number
of epochs. It can be seen that the loss becomes steady after
around 27 epochs and the test F-score stabilizes at around
the same point. Overall, the test set loss curve resembles the
validation set loss curve which means that the validation set
is a good proxy for measuring the model performance.

FIGURE 1. Training and validation loss and F-score Dependency between
the number of epochs and either loss (top figure) or F1 score (bottom
figure) for Flair_Sc_ext2 model.

B. ABLATION ANALYSIS
For our ablation analysis, we explored the following addi-
tional combinations of word embeddings:

• Flair_G_ext: the model is trained using Spanish
general domainFlair embeddingsFlair_G, Spanish
general FastText embeddings and BPE embeddings;

• Standard_Sc: SciELOFastText embeddings with
subword information property, BPE embeddings and
character Embeddings are used;

• Flair_Sc: based only on custom SciELO Flair
embeddings;

• Flair_Sc_ext: the custom SciELO Flair embed-
dings, general Spanish FastText embeddings and
BPE embeddings are used.
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TABLE 3. Results of ablation analysis.

FIGURE 2. Distribution of errors Distribution of errors for short (less than 3 terms) and long (with length more or equal 3 terms) entities.

The results of different variations of stacking word
embeddings are shown in Table 3.

In general, LM-based embeddings lead to better results
than the standard ones. It can be also seen that the model
enrichedwith different types of word embeddings gives better
results in terms of precision, recall and F-score. Domain
specific word embeddings lead to improvement of results,
however, they are much smaller in size than general domain
ones. Augmentingword embeddings with additional subword
level embeddings such as FastText, BPE and character
embeddings further improves the results.

We also experimented with searching concepts in
SNOMED-CT using the Meaning Cloud tool,12 however it
did not work well, as many concepts for the shared task were
annotated based on their synonyms.

C. ERROR ANALYSIS
For error analysis, we split gold standard entities into
2 groups: short entities with the length less or equal to 2, and
long entities with the length greater than or equal to 3. For the
best model Flair_Sc_ext2, the origin and distribution of
errors are presented in Fig. 2.
It can be seen that the majority of errors are for the short

predicted entities for which there is not even partial over-
lap with gold standard entities (No intersections false posi-
tives (FP)). Indeed, many biomedical entities are acronyms
and abbreviations which could be easily misclassified based

12https://www.meaningcloud.com/

on casing and length of entities. Interestingly, the second
primary source of errors for short predicted entities is that the
model predicts two entities where the gold standard has a sin-
gle entity (Longer FP). A smaller number of errors are related
to short gold standard entities which the model fails to detect
(false negatives - FN). For long entities, the main source
of error is that predicted entities are shorter than required
(Shorter FP), contributing nearly 75% of the total error.

In Table 4, we present a comparison of errors among
3 models: the best model Flair_Sc_ext2, the model
which uses only Flair embeddings trained over the target
corpus Flair_Sc, and the model based on a set of standard
embeddings Standard_Sc.
Interestingly, the main discrepancies in the number of

errors for Flair_Scmodel in comparison to the best model
are related to the larger number of not predicted short entities
(FN). All other discrepancies in errors for both models vary
in a range 1-7 in both ways.

In relation to the best model, the main source of errors
for Standard_Sc is related as well to the falsely predicted
short entities without intersections with gold standard ones
(No intersections FP) with almost 15% more predicted FP.
It indicates that the bestmodel utilizing the contextual embed-
dings learns the meaning of acronyms, abbreviations and
overall short uppercased words more effectively, assigning
them biomedical labels with more caution.

This comparison also shows that lower performing mod-
els are much worse at detecting the boundaries of short
biomedical concepts, often predicting longer concepts:
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TABLE 4. Distribution of errors for different models.

TABLE 5. Examples of errors in recognizing biomedical entities by different models.

5 more incorrectly predicted concepts for the Flair_Sc
model and 21 more incorrectly predicted concepts for the
Standard_Sc model.

It is interesting to observe that for the long predicted
concepts, the absolute numbers and distribution of errors for
the best Flair_Sc_ext2 and Standard_Sc models are
mostly the same. However, the Flair_Sc model performs
slightly worse in terms of predicting shorter concepts than
the gold standard ones (i.e. predicting three consecutive terms
instead of four, etc).

In Table 5, we present two examples of sentences with
underlined gold standard and predicted entities. Sentences
were chosen from the representative groups of the most
common errors for different models. Here, FP is the
shorter abbreviation for FP without intersections. It can be
observed that the Standard_Sc model in both exam-
ples predicted long entities which were either FP or longer
version of gold standard entities. Flair-based models
are also often confusing short upper-cased entities but in
fewer cases.

Interestingly, in the second example, although both
Flair_Sc and Standard_Sc models have detected
‘USA‘ entity as a PROTEIN, the Flair_Sc_ext2 model
which combines embeddings from both models did not give
this entity a biomedical label.

In terms of the best parameter setting, we did
not perform parameter selection for either the Flair
or BERT models; this might further increase model
quality.

V. CONCLUSION
In this work, we have explored the application of transfer
learning techniques, in particular, language representation-
based word embeddings to the problem of extracting biomed-
ical entities from 1000 Spanish clinical case narratives.
By leveraging the knowledge from a huge amount of unla-
beled data, with language model pre-training it becomes

possible to build a high-quality NER system even with this
small amount of annotated data.

With this aim, we trained domain-specific Spanish lan-
guage models, in particular, Flair and BERT to derive
contextualized word embeddings and applied them to the
PharmacoNER biomedical NER data achieving competitive
results. We showed that domain-specific word embeddings
outperform general embeddings, despite being trained on a
smaller corpus. Moreover, we demonstrated that stacking
together word embeddings of different nature can improve
model performance.

Error analysis has shown that the main source of errors
for all models is over-zealous recognition of short entities.
Indeed, biomedical entities are often short and upper-cased
and can be easily mixed up with other abbreviated short
words. Testing the approach by analyzing other Spanish
health-related texts, such as social media [53], with similar
characteristics (e.g., a large number of abbreviations, lack
of grammatical structure, punctuation marks, etc.) and oth-
ers (e.g., patient oriented terminology not included in any
resource, slang words, etc.) could help to cope with these
phenomena.

Moreover, standard embedding-based models often fail
by detecting long false positive entities or longer versions
of gold standard entities (in particular, for FastText
models). However, it should be noted that the ability
to detect long entities could be beneficial in particular
scenarios.

One direction for improvement could be more sophisti-
cated utilization of contextualized embeddings. For example,
they could be incorporated into state-of-the-art NER archi-
tectures such as graph-based NNs or NNs with a dependency
tree-based attention mechanism to further improve capturing
of long-distance relationships between biomedical entities.

For handling the imbalance of classes, different strategies
such as loss function modification could be applied in future
work.
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