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ABSTRACT Under the software quality management mechanism, developers are generally required to
review and test their own code firstly to ensure that the submitted code meets specific quality standards.
At the same time, with the popularity of test-driven development (TDD) and extreme programming (XP),
programming and testing are complementary in the process of software development, i.e., software testing
has become as important as programming. Despite its importance, there is no empirical study that investigates
the ability relationships between programming and testing. This article presents such a study, where we
designed software tasks to investigate the ability of programming and testing. We distributed the program
tasks to software vocational students and analyzed the results from multiple dimensions. Our main findings
show that (i) almost half of the developers with strong programming ability do not have a good testing ability;
(i1) some developers with weak programming ability can do well in testing; (iii) compared with programming
ability, testing fundamentals have a greater impact on the testing ability; and (iv) most developers can do
well at finding bugs but lack experience in writing test scripts.

INDEX TERMS Software testing, programming ability, testing ability.

I. INTRODUCTION

Software testing has become a significant process to ensure
the quality of software systems [1]. In fact, there are corre-
sponding testing tasks at each coding stage [2]. For example,
unit testing is a correctness testing for program modules
(i.e., the smallest unit of software design) [3]. Testing can
help developers check for defects in the production code and
ensure the software system is as robust as possible under
different using conditions [2], [4], [S]. However, developers
seem to be unable to complete unit-testing well [6], and many
developers do not realize the importance of testing [7]-[9],
resulting in the difficulty of software maintenance.

A high-quality software testing process plays a vital role
in software quality assurance. With the development of
test-driven development (i.e., TDD) [10], unit testing can
help developers to understand the specific needs of software
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development and increase developer confidence in code
changes [10]. This extends the benefits of testing to include
faster refactoring of production code or description of produc-
tion requirements. In addition, in almost all software develop-
ment models [11], developers are required to write unit test
scripts of their own production code and achieve a specific
coverage. This is because programmers are familiar with the
structure and functions of their production code, while other
testers who are not familiar with the code cannot write test
scripts efficiently. Therefore, it can be reasonably expected
that there is a correlation between the programming ability of
the developer and the testing ability.

Various studies have investigated the quality of the produc-
tion code or test code. Many focus on discussing different
software indicators and how these indicators affect software
quality and reliability. Examples include building code qual-
ity models, building metrics suits for projects, assessment
of test cases, etc. [12]-[14]. The topic most relevant to our
research is the quality of production and test code. Some
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works measure the quality of test code based on the read-
ability, mutation score, code coverage, and code/test smell.
These studies calculate the indicators to mine the factors that
influence code quality. Although there are currently some
methods for evaluating the quality of code, no research has
been conducted to link the quality of production code and
test code and study the potential relationship between them.
Since developers need to complete some testing tasks, such
as unit testing [2], and testers often need to have a particular
programming foundation, it is meaningful to study the pro-
gramming and testing abilities of developers.

In this article, we design two programming tasks, which
are used to evaluate the programming and testing abil-
ities separately. We choose a class of vocational stu-
dents in the software testing direction as the testers. They
all have a particular programming foundation and mas-
ter the object-oriented programming method. Besides, they
have learned the basics of software testing and automated
testing. We analyze the programming and testing abil-
ities of students by collecting their coding information
and calculating a set of indicators. We evaluate students’
programming level, code maintainability, and coding effi-
ciency from multiple dimensions, and analyze the correlation
between programming and testing capabilities based on these
indicators.

In summary, we have found the following conclusions
in our empirical study. First, the Pearson correlation coef-
ficient of the programming ability and the testing ability is
only about 0.3, which indicates that the two abilities are not
strongly correlated. Additionally, more than half of develop-
ers with good programming ability have a good testing ability,
while a few developers with good testing ability have good
programming ability. Second, the developers with interme-
diate programming ability do best at writing readable test
code and have a particular ability to detect bugs. However,
most of them lack experience in designing test cases, which
leads to low running efficiency. Third, the impact of test
foundation on testing ability is more significant than the
effect of programming ability. Even if developers have strong
programming ability, their testing ability is generally weak
due to the lack of a testing foundation.

The remainder of this article is structured as follows.
In Section II, we use two examples to illustrate our research
motivation. In Section III the foundations for this study
are presented. Section IV illustrates our study and method-
ology in detail. The results of our study are reported in
Section V, and Section VI discusses the related work. Finally,
Section VII concludes the paper and elaborates on our future
work.

Il. MOTIVATING EXAMPLE

Both programming ability and testing ability are closely
related to coding. In some cases, the obstacles encountered
when writing test scripts are also inevitable when program-
ming. Meanwhile, in some cases, developers who do not have
strong programming ability can also write test scripts well.
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FIGURE 1. The code coverage rate of a testing task.

public static Date nextDay(Date d) {

Date dd = new Date(d.getMonth(). getCurrentPos () ,
d.getDay(). getCurrentPos (), d.getYear ().
getCurrentPos () ) ;

dd.increment () ;

return dd;

}

LISTING 1. The nextDay function.

Figure 1 is the detailed code coverage rate of a testing
task submitted by a vocational student. Since the testing task
is required to write the unit test code while the production
code has already been written, we focus on the code coverage
rate of the production code. The code coverage rate of the
entire production code is 85%. It is noticeable that most of
the classes in production code are covered by 100%, but the
class “Nextday” has a coverage of 0. In fact, this class con-
tains only one function, and this function involves a calling
relationship of multiple classes, which is shown in List 1.
However, the called classes and functions are 100% covered,
which indicates that this student knows how to write test cases
for each function, but is not familiar with the calling rela-
tionship between functions. This student’s performance in the
programming task confirmed this conclusion. This student
completed all the functions without any calling relationship
but did not implement a function with a calling relationship.
This real example shows that if a developer does not under-
stand the logic of object-oriented programming well, there
are obvious flaws in both the production and test code.

In real cases, we found that some developers can complete
the testing tasks well, but their programming skills are not
outstanding. In programming tasks, a student completed most
of the development tasks, but he did not complete the func-
tions related to the loop structure, and the only loop structure
he wrote did not meet the requirements of the task, which is
shown in Figure 2. In Figure 2, the green part indicates the
code is covered, the yellow part suggests that the branch is
not fully covered, and the red part shows that the code is not
covered, which means that this part of the production code
does not meet the requirements. Judging from the completion
of the programming task of this student, he is not familiar with
writing the loop structure but masters the basic programming
language. Although this student is not familiar with the loop
structure, it is basically not necessary to use a loop statement
in the test script. Thus the test code of this student has
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* Add a product: if it is a new product, add it directly to the product list;
* if the product already exists, only increase the number of existing products.
N

* product
* @re Returns the index of the added item in the list;
* if a new item is on the shelf, returns the size of the item list after the addition.
*/
public int addProduct(Product product) {

Iterator<Product> it = products.iterator();

int i = @;

for (; it.hasNext(); i++) {

if (product.name.equals(it.next())) {
reak;

} else {
products.add(product);
return product.count;

}

}
if (i !=0) {
Product pd = products.get(i);

return -1;

}

FIGURE 2. The code coverage of a loop structure.

achieved a high coverage rate. This case shows that even if
some developers are not good at programming, as long as
they understand the basic syntax, they may have good testing
capabilities.

These examples show that developers’ programming abil-
ity and testing ability have a special relationship, but not a
simple linear relationship. Therefore, in this study, we focus
on evaluating the relationship between programming and test-
ing ability from multiple perspectives such as coding quality,
efficiency, code coverage rate, and bug detection rate.

Ill. BACKGROUND

A. TEST-DRIVEN DEVELOPMENT

Test-driven development (i.e., TDD) [10] is a new develop-
ment method different from the traditional software devel-
opment process. It requires developers to write the test
code before writing the production code for a certain func-
tion. Then, only the function code that passes the test is
written [15]. Therefore, the test cases are used to drive
the entire development. This helps developers to write con-
cise and high-quality code and speeds up the development
process [16].

This can avoid and find errors as early as possible by
bringing test works before coding and running all tests fre-
quently. TDD greatly reduces the cost of subsequent tests and
repairs and improves the quality of the source code. Under
the protection of testing, the source code is continuously
refactored to eliminate duplicate designs, optimize the design
structure, improve code reuse, and thus improve the quality
of software products [10]. In this article, we apply TDD to
evaluate the programming ability.

B. UNIT TESTING

The purpose of unit testing is to discover various errors that
may exist within each module, mainly based on white-box
testing. It refers to the inspection and verification of the
smallest testable unit in software [3]. In general, the unit is
the smallest functional module that is artificially specified.
The meaning of a unit in the unit testing should be determined
according to the actual situation [17] (e.g., a function in C or
a class in Java).
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Unit testing is different from other tests. Unit testing can
be considered as part of the coding work and should be
completed by the developers. Meanwhile, unit testing should
start as early as possible. In TDD, developers must write all
the unit test cases before writing the source code. In the tra-
ditional software development process, unit test cases should
be written after building the framework of functions. In this
article, testers need to finish the unit testing tasks, and we
investigate the testing ability by evaluating the unit test cases.

C. MUTATION TESTING

Mutation testing (i.e., mutation analysis) is a form of
white-box testing [18]. It is an effective software testing
method that improves the source code of a program [19].
These so-called mutations are based on well-defined muta-
tion operations, which either simulate typical application
errors (e.g., using the wrong operator or variable name),
or force effective testing (e.g., making each expression equal
to 0) [20]. Compared to logic testing and path-based testing,
mutation testing can reflect the defect detection capabilities
of test cases more intuitively. Driven by previous research
in the field of software testing, mutation scores are the most
critical code coverage criterion and one of the most relevant
metrics for developers [19], [21]. In this article, the mutation
score is one of the metrics for evaluating the testing ability.

IV. DESIGN OF STUDY

Figure 3 depicts an overview of our approach. First, we design
some project tasks for software engineering vocational stu-
dents. All these tasks are Java projects, and the details are
described in Section IV-B. Students must finish the source
code or unit test cases in the allotted time. Then, within
the limited time, students can submit code multiple times.
After each submission, the server will run unit test scripts to
update scores based on the coverage rate and other factors in
Section IV-C. Finally, we collect and calculate the scores of
each indicator to form a radar chart of capabilities.

A. RESEARCH QUESTIONS
The quality of production and test code is related to the influ-
ence of multiple factors. The question of these factors arises
here: is there a potential correlation between programming
and testing abilities if these factors are used to evaluate the
ability of a developer? With the increasing pace of software
product development, many unit test tasks need to be com-
pleted by developers. Prior researchers argue that the quality
of unit test scripts written by developers is not high [6].
Therefore, it is necessary to study the relationship between
developers’ programming ability and testing ability so as to
promote the development of software development better.
Due to the normal distribution of students’ intelligence
skills, including their learning abilities, actual hands-on abili-
ties, etc. [22], we focus on students belonging to intermediate
programming levels. By analyzing the distribution of test
abilities of this group of students, we can determine their
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FIGURE 3. Overview of our approach.

overall testing ability and determine which skills they are best
at or lack.

Further, since there are many differences in the design of
the test code and production code, we consider it necessary
to refer to the testing fundamentals of developers. Analyzing
the impact of programming ability and test fundamentals on
testing ability can help testers improve their test level.

To conduct our research, we refine our goal into three
different research questions (RQs):

« RQI: Are programming ability and testing ability
strongly related?

o RQ2: What does a developer with intermediate pro-
gramming skills do best or worst when writing test
scripts?

« RQ3: Which ability has a greater impact on testing
ability?

We try to answer these questions through a set of exper-
iments. The answers to these questions provide us with an
opportunity to better understand the relationship between the
programming ability and testing ability of developers in the
actual software development field. Additionally, the results
can provide us with ideas on how to improve production
and testing relationship. Meanwhile, by studying the exper-
imental results, it could help us adjust teaching methods so
that students who are good at coding can write better test
scripts, and students with weak coding ability can improve
their programming thinking during testing.

B. DESIGN OF PROJECT TASKS

1) PROGRAMMING ABILITY TASK

We design the TDD task to evaluate the programming ability
of students. We build a Java code framework containing at
least five classes, and all the unit test cases are already written.
We also list the required functions and write some basic
annotations in the source code to help students understand
the task precisely. Students must finish the source code, and
the more test cases that pass, the higher the score is. When
students submit the source code, the server will automatically
run unit test scripts and calculate the branch coverage.
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In our study, we have designed three programming ability
tasks, two of which are object-oriented programming, and
one is a pure algorithm implementation. Students need to
complete these three tasks as much as possible within three
hours. In the algorithm task, there is only one entity class
and one implement class containing two functions. The goal
of the algorithm task is to implement the first-come-first-
served scheduling algorithm and short job priority scheduling
algorithm.

Different from the algorithm task, the other two
object-oriented tasks have multiple classes and calling rela-
tionships. They implement a store management system and
a bank simulation system, respectively. In the store man-
agement system, requirements include depositing and with-
drawing funds, calculating interest for different accounts
respectively, outputting a list of customers, and the number
of accounts they have and outputting the total interest paid
by the bank on all accounts. Similarly, the store management
system also has several calling relationships between classes
and functions. Overall, the code structure of the store manage-
ment system is more complicated than the bank simulation
system.

Whenever students submit the source code, we automati-
cally run unit test scripts on the server and calculate the pass
rate of test cases and code maintainability. For the specific
calculation method, refer to the subsections IV-C1 and IV-C3.

2) TESTING ABILITY TASK

Different from the programming ability task, the source code
in testing ability task is provided, and students are required
to write the unit test scripts. The difficulty with this type of
task is that the source code is complicated (i.e., the number of
classes is more than five). If students cannot understand the
function of the source code, the unit test coverage will not
be high.

In our study, we have designed three testing ability tasks
according to the difficulty level. Students need to complete
these three tasks as much as possible within three hours.
The first task only contains one class and four functions in
it, which implements checking if the object is a triangle,
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checking the type of triangle, calculating the diff between
borders, and obtaining the length of borders, respectively.
Compared with the first task, the other two tasks are more
complicated. The second task implements the calculation of
dates containing five classes, one of which is an interface
class. The structure of the third task is the most completed
containing nine classes and a great number of calling rela-
tionships between functions.

Whenever students submit the source code, we automat-
ically run unit test scripts on the server and calculate the
code coverage rate, code maintainability, bug detection rate,
running efficiency, and coding efficiency. For the specific
calculation method, refer to subsections IV-C2, IV-C3, IV-C4,
IV-C5 and IV-C6.

C. PROGRAMMING AND TESTING ABILITY FACTORS

In order to evaluate the capabilities of developers, we mainly
evaluate six code-related indicators, i.e., Pass rate of test
cases, Code coverage rate, Code maintainability, Bug detec-
tion rate, Running efficiency, and Coding efficiency. On the
one hand, we focus on evaluating developers’ programming
capabilities by calculating the pass rate of test cases. Since in
the programming ability task, the unit test code has already
been written, and these test codes reflect all the coding
requirements. Therefore, the more test cases passed, the more
production code is completed, which indicates that the pro-
gramming ability is stronger. On the other hand, we eval-
uate the testing ability by collecting the other five factors.
We assess the quality of the test code itself through code
coverage rate, code maintainability, and bug detection rate.
Meanwhile, we evaluate testers’ testing ability and profi-
ciency through running efficiency and coding efficiency. The
overall indicators for programming and testing ability evalu-
ation are depicted in Figure 4.

1) PASS RATE OF TEST CASES

In general, each test case of a unit test corresponds to three
results, i.e., pass, error, and failure. The passed test cases
indicate that the real result of the program is running as
expected, the error results indicate that the test code cannot
run normally, and the failure results indicate that the running
result is inconsistent with the expected. If the unit test case
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FIGURE 4. The indicators for programming and testing ability evaluation.

design is accurate, but the test case fails, it means that the
production code does not meet the software design require-
ments. In the programming tasks, we provide all accurate
test cases that reflect development requirements. Thus, failed
test cases indicate that the developer does not complete the
corresponding coding requirements.

We use the Junit framework! to write and run test code.
Then, the pass rate of test cases can be expressed as the ratio
of the number of passed test cases Num(passedCases) to the
total number of test cases Num(testCases).

Num(passedCases)
Num(testCases)

PassRate =

* 100% (1

2) CODE COVERAGE RATE

Code coverage is the most commonly used indicator for
testing code quality assessment [4]. The code coverage rate
describes the amount of production code covered during test
case execution. In particular, statement coverage refers to
which statements in the source code are executed, branch
coverage refers to which branches are executed, and path
coverage describes the paths traversed in the control flow of
the program. In our study, we use the branch coverage rate
to calculate the code coverage rate.

We use the JCov plugin® to run students’ code, which
can convert the tested code and the test code into meta
nodes and catch nodes, respectively. Then, the code cover-
age rate can be represented as the ratio of the number of
catch nodes Num(catchNode) to the number of meta nodes
Num(metaNode).

Num(catchNode)

* 100% 2)
Num(metaNode)

CoverageRate =

3) CODE MAINTAINABILITY

The test code with good quality should be easy for testers
to understand, and when source code functionality changes,
test code should be easy to refactor [23]. Both the bad code
smells, and the bad test smells have a negative impact on the
maintainability of the code [24]. Thus, we consider using the

Thttps://junit.org/junit5/
2https://hg.openjdk.java.nf:t/code-tools/jcov/
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standardization of code as the basis for calculating maintain-
ability.

To check the standardization of the code, we use the
Checkstyle plugin® and the Google’s coding standards for
source code in the Java* for code inspection. Suppose the
vector V represents the feature of code specification, each
dimension of which is expressed as a check item of the
code specification. Vi, represents the total number of code
specific check items that are violated. The value of each
dimension in the vector indicates the number of times the user
violated this code specification, or O if not. V,,,, represents
the maximum value of each code check violation for all user
datasets. Therefore, the loss score for the code under testing
can be expressed as:

T 100

Loss; =V * Vipax * ——

size
Since the scale of code in each task is different, it is not appro-
priate to calculate the code maintainability directly. Thus,
we divide the highest bug detection rate BugDetectionRate;
(refer to subsection IV-C4) by the loss score Loss;, and the
player with the highest score Cp,y is counted as 100 points.
Finally, the code maintainability scores of other students are
calculated by linearization and normalization. The calcula-

tion formula of code maintainability is as follows:

C — BugDetectionRate;
T Loss;
L Ci
CodeMaintainability = * 100% 3)
Cmax

4) BUG DETECTION RATE

In terms of the ability to detect actual bugs, mutation testing
is one of the best predictors of test case quality. Many studies
have shown that mutation test scores reflect the quality of test
code well [21].

Since the mutation testing can reflect the defect detection
capabilities of test cases intuitively, we use the mutation
factor mutation; to calculate the bug detection rate. As men-
tioned in subsection IV-B2, the difficulty of each task is quite
different. It is not accurate to calculate the scores without
considering the difficulty of each task. Thus, we regard the
maximum mutation kill rate mutation,,,, among all testers
as 100 points in each task. The bug detection rate can be
calculated as follows:

mutation;

BugDetectionRate = * 100% @

mutation, gy

5) RUNNING EFFICIENCY

For test scripts, the efficiency of the code can indicate how
efficient the test case is. Additionally, the running efficiency
can reflect the reliability of test code [25]. In existing research
[12], [25], the reliability of software products is measured by
the meantime to failure, and the meantime to repair. In our

3 https://checkstyle.sourceforge.io/
4http:// 'google.github.io/styleguide/javaguide.html
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study, the server runs the code submitted by testers and will
stop immediately if it encounters a failed test case, so we
cannot calculate the time interval between successive failures.
Thus, we use the time it takes to run all test cases to measure
the efficiency of the test code.

To calculate the running efficiency, we first use the ratio
of the bug detection rate BugDetectionRate; to the running
time of the code RunDuration;. Since the running efficiency
of code is related to the structural complexity of source
code, we regard the maximum running efficiency score Fj,q
as 100 points. The running efficiency can be calculated as
follows:

BugDetectionRate;

RunDuration;

* 100% 5)

i

RunningEfficiency =

max

6) CODING EFFICIENCY

For both developers and testers, coding efficiency is an essen-
tial factor to reflect their ability. Efficient coding can adapt to
rapid iterative updates of today’s software products. Process
metrics, including the time to produce the product, describe
the effectiveness and quality of the software products’ process
[25]. Thus, we consider the time it takes a tester to write test
cases as an indicator of his coding efficiency.

To assess the coding efficiency, we calculate the ratio of
the bug detection rate BugDetectionRate to the fastest writing
time that reaches this rate. The writing time can be calculated
as the time lag between the start time of the task StartTime
and the time for tester i to reach his highest bug detection rate
RunTime;. We regard the maximum coding efficiency score
Gnax as 100 points to eliminate the difference among tasks.
The coding efficiency can be calculated as follows:

G — BugDetectionRate;
T RunTime; — StartTime
G.
CodingEfficiency = L % 100% (6)
max

V. STUDY RESULTS
In this section, we present the results of our study and answer
each RQ separately.

A. RQI1: ARE PROGRAMMING AND TESTING ABILITY
STRONGLY RELATED?
To reflect the overall level of students’ programming and
testing ability intuitively, the programming ability score
is expressed as the average of code coverage rate for
three programming tasks(i.e., subsection IV-B1). The testing
ability score is expressed as the average of code cover-
age rate, code maintainability, bug detection rate, running
efficiency, and coding efficiency for three testing tasks
(i.e., subsection IV-B2).

In our study, 26 students have valid scores in both program-
ming and testing tasks. The Pearson correlation coefficient
[26] of students’ programming ability and testing ability
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score is 0.3752, which indicates that there is a slight positive
correlation between them, but the correlation is not obvious.
In Figure 5, each column represents a student’s performance,
with the student’s name label on the X-axis hidden. The green
bar represents the student’s programming score, and the blue
bar represents the student’s testing score. From left to right,
the student’s programming scores are arranged in descending
order.

As mentioned in Section IV-B1, two of the three program-
ming tasks are object-oriented projects, and one is an algo-
rithm task. Since all the testers in our research are vocational
students in software testing and have not studied algorithms,
all of them have 0 points in the algorithm task. Thus, the high-
est mark on the programming ability task is only 67 points,
which is equivalent to two object-oriented questions with full
marks.

As can be seen from the Figure 5, of the four students who
ranked first in programming ability, only two of them have
high testing scores, while the other two have only interme-
diate testing scores. Judging from the testing scores, two of
the three highest-ranked students did not have outstanding
programming scores. More than half of the students with
high testing scores do not have high programming scores and
even have poor programming scores. In general, students with
good programming skills have intermediate or high testing
ability, while there is a big difference in programming ability
among students with good testing ability.

Answer to RQ1: Our study results show that pro-
gramming and testing ability is not strongly related.
Most developers with strong programming ability have
good or medium testing ability. However, among the
developers with good testability, the programming abil-
ity is from strong to weak.

B. RQ2: WHAT DOES A DEVELOPER WITH INTERMEDIATE
PROGRAMMING SKILLS DO BEST OR WORST WHEN
WRITING TEST SCRIPTS?

In our study, students’ programming ability scores are nor-
mally distributed, and most of them received 34 points. Thus,
we mainly study this group of students, which accounted
for 60% of the total students. Since testing scores can only
represent comprehensive testing abilities, we analyze five
indicators in detail, as shown in Table 1. In order to better
visualize the data, we make a radar chart of the five testing
ability indicators of each student and superimpose them,
as shown in Figure 6.

As can be concluded from Table 1 and Figure 6, among
the five indicators, students’ code maintainability scores are
generally high, while the coding efficiency is generally low.
Furthermore, compared to the code coverage rate and run-
ning efficiency, the bug detection rate is relatively high.
Since these students have programming experience and the
code specifications are relatively easy to control, the code
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TABLE 1. The details of five testing ability indicators.

max min  median average
Code coverage rate 99.66 0 23.81 34.2
Coding efficiency 5347  0.08 1.84 16.52

Bug detection rate 99.31 17.3 21.71 39.66
Running efficiency 95.2 16.88 20.53 38.74
Code maintainability 100 18.98 89.8 71.73

maintainability score is the highest among the five factors.
These students’ bug detection rate is relatively high, mainly
because they can use test assertions correctly and master test
methods such as boundary testing. It can be seen from the
lowest coding efficiency that these students are not proficient
at writing test code, resulting in the bug detection rate not
being directly proportional to the code runtime. Among these
five factors, the score of running efficiency and the code
coverage rate is at a medium level, suggesting that students
are not familiar with writing test scripts. The lowest coding
efficiency score also confirms this conclusion.

Answer to RQ2: Our study results show that the
students with intermediate programming skills do best at
writing standard code, and they have a particular ability
to detect bugs. Specifically, they understand how to use
test assertions and master some test techniques such as
boundary value testing. However, these students are not
familiar with designing test cases, resulting in low test
coverage rate and extremely low code running efficiency.

C. RQ3: WHICH ABILITY HAS A GREATER IMPACT ON
TESTING ABILITY?

Although the process of writing test scripts is similar to
programming, the difference between programming and test-
ing is that testers need to understand the basics related to
testing methods, e.g., designing test cases and guidelines
for testing coverage. To evaluate the testing fundamentals
of students, we obtain their scores of the software testing
foundation course. In this course, students are taught software
testing methods, classification of testing methods, and how to
design test cases. The exam content of this course includes
multiple-choice questions and true-false judgments about
testing fundamentals(e.g., unit testing, dynamic and static
testing, black-box testing, white-box testing, and test case
design methods). There are also two design questions in the
exam, which are designing test cases for black-box testing
and white-box testing, respectively.

To study the impact of testing fundamentals and program-
ming ability on testability, we present the code coverage rate
of the programming task as programming ability, and the
testing ability is represented as the average of code coverage
rate and bug detection rate. We rank the testing ability score
from the highest to the lowest and determine that the testa-
bility of the first half is high, and the testability of the latter
half is low. Then, for the score of testing fundamentals and
programming ability, we divide them into three levels of A,
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FIGURE 5. The programming and testing scores of all the students in our study.

TABLE 2. The details of software testing foundation exam.

Basics

Description

Logical coverage methods

Judgment method of six logical coverage types including statement coverage, decision coverage (i.e.,

branch coverage), condition coverage, decision-condition coverage, condition combination coverage, and

path coverage.

Designing test cases

Specific analysis methods for equivalence class division, boundary value analysis, causality diagram

analysis decision table analysis, and scene analysis.

Static testing
and dynamic testing

The difference between dynamic and static testing, and the criteria of these testing method.

White-box testing

and black-box testing for these two test methods.

The use cases and classification basis of white-box and black-box testing. In addition, the test case design

B, and C according to the performance ranking, accounting
for 30%, 60%, and 10%, respectively. The results are shown
in Table 3.

TABLE 3. The impact of testing fundamentals and programming ability on
test ability.

Testing ability: high Testing ability: low
Testing Programming Testing Programming
fundamentals ability fundamentals ability
A C B B
A B B B
A B A B
A B B B
A C B B
B A B B
B A C B
B C C A
A B B B
B A B A
B B A B
A C C B
B B B C
B B B B
B A B B
B A C B

In our study, we found that among students with good
testing ability, proficiency of testing fundamentals is gener-
ally more potent than the programming ability. Even some
students with poor programming ability achieved high testing
scores due to a good grasp of the testing fundamentals. As for
students with bad testing ability, many of them have testing
fundamentals that are worse than their programming ability.
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FIGURE 6. The radar chart of five testing ability indicators.

Even if the programming ability is good, if the developer does
not understand test methods and fundamentals, the testability
will be reduced.

Answer to RQ3: Our study results show that com-
pared to the programming ability, testing fundamentals
have a greater impact on the testing ability. Even if
developers have a poor programming ability, as long as
they master the testing method, the testing ability can
be outstanding. Conversely, if a developer does not have
a testing foundation, even if the programming ability is
strong, the testing ability will be weak.
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D. THREATS TO VALIDITY

There is one main threat to validity. The experimental evalu-
ation is based on a small number of participants. However,
the participant group in this article is a class of students,
which is inherently representative, since there are differences
in levels between each student in the class. We also try to
recruit more participants to participate in the experiment, but
it is difficult to ensure that the participants’ programming
and testing experience are equivalent. In addition, our current
experiment is on Java programs; thus, another condition for us
to recruit participants is to be familiar with Java development
language. We plan to involve other languages and recruit
more participants for evaluation in the future.

VI. RELATED WORK

Software testing is now considered to be an important process
for improving the quality of software systems. In the past,
research focused on studying the effect of different testing
methods, such as unit testing [6], mutation testing [27], and
exploratory testing [28]. Our study tries to analyze the rela-
tionship between the developer’s programming and testing
ability based on white-box testing, instead of focusing on the
factors that affect the quality of a specific test method. In this
section, we compare our study to prior work in the field of test
code quality assessment and programming ability evaluation.

A. TEST CODE QUALITY ASSESSMENT

Athanasiou et al. [29] aimed at constructing a test code
quality model with a set of source code metrics, including
completeness, effectiveness, and maintainability. Complete-
ness mainly concerns the complete coverage of the source
code. Effectiveness shows the ability of the test code to detect
bugs and locate the cause of bugs. Maintainability reflects the
ability of test code to adapt to changes in source code, and the
extent to which test code can be used as documentation. The
experimental results show that the developer’s code quality is
positively related to some aspects of the issue handling ability
(throughput and productivity).

As mentioned previously, our study also aims to measure
a set of indicators to evaluate the test code quality. Differ-
ent from Athanasiou et al. [29], our goal is to study the
comprehensive programming capabilities of developers, not
just the developer’s programming efficiency or the ability to
fix bugs. Since we design the same programming tasks for
testers instead of collecting unrelated open-source projects
and calculating metrics, our ability assessment is more fair
and reasonable.

Another study in the field of assessing test code is the paper
of Grano et al. [14]. To evaluate the quality of test cases,
they mainly considered dependent metrics, such as mutation
score and independent metrics, including code coverage, test
smells, code smells, and readability. In addition to the indica-
tors listed above, we consider coding efficiency and running
efficiency additionally. The goal of Grano et al. [14] was to
classify effective and non-effective test cases without running
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the code. However, we evaluate both the source code and the
test code and then analyze the potential relationships between
the indicators of the two codes.

B. PROGRAMMING ABILITY EVALUATION

As for assessing the programming ability, there are many
studies focusing on how to evaluate and improve students’
programming skills in the teaching field, e.g., [30], [31] and
[32]. These studies tried to evaluate programming ability
by designing exams or program tasks. Different from their
concerns, we design test-driven development programming
tasks to evaluate the students’ programming ability. We also
evaluate the level of students’ testing fundamentals by con-
sidering their scores of software testing foundation course.

Rashid et al. [12] presented a comprehensive study on
using indicators to assess code quality through indicators
with multiple classifications. They compared and analyzed
different metrics types, including product quality metrics,
in-process quality metrics, and maintenance quality metrics.
When evaluating these three types of indicators, multiple
technical methods were used to evaluate the relevant indica-
tors and the correlation between the indicators. The exper-
imental results showed that these indicators are effective at
detecting the status and quality of the project. In our study,
we selected relevant indicators as metrics for the evaluation of
programming and testing ability. Different from Rashid e? al.
[12], we mainly explore the relationship between capabilities
instead of between indicators.

In addition to the related work mentioned above, there are a
few other studies on factors affecting testing or programming
code, e.g., [7], [13], [33], and [34]. Nevertheless, these papers
only studied the indicators that can reflect the source code or
testing code and did not compare and analyze the relationship
between the two codes at the same time. To the best of our
knowledge, we are the first to conduct empirical research
on the relationship between developers’ programming ability
and testing ability.

VII. CONCLUSION AND FUTURE WORK

In this article, we conduct an empirical study on the ability
relationships between programming and testing. We selected
a class of software testing vocational students as the research
testers. To evaluate the programming ability of students,
we designed TDD programming tasks and used the code
coverage rate to represent the ability. To assess the testing
ability of students, we measured the code coverage rate, code
maintainability, bug detection rate, running efficiency, and
coding efficiency. In addition, the students’ scores of software
testing foundation course were represented as the level of
testing fundamentals.

We analyzed different factors of the source code and test
code to discover the potential connection between program-
ming and testing. Our studies show that: (i) the programming
ability and testing ability are not strongly related; (ii) develop-
ers with intermediate programming ability do best at writing
standard code but are not familiar with designing test cases
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and writing test scripts; (iii) compared to the programming
ability, testing fundamentals have a more significant impact
on the testing ability.

In the future, we plan to further explore the correlation
between programming and testing by comparing program-
ming and testing capabilities. Furthermore, we will inves-
tigate other testing methods such as integration testing and
automated testing.
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