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ABSTRACT Permission delegation in access control provides the subject with a second method to obtain
object permissions in addition to permission granting. It is especially applicable when the owner and manager
of the object are inconsistent. With the development of the Internet of Things, there are more and more
scenes where object owners and managers are inconsistent, but the research on permission delegation in
access control based on blockchain is not perfect. Therefore, once implemented in these blockchain-based
access control algorithms, the permission delegation tends to have an unauthorized access. Based on the
analysis of the causes for the unauthorized access vulnerability, this paper proposes a token-constrained
permission delegation algorithm (TCPDA), which converts the access control policy corresponding to
permissions into constraints for permission use, embeds the constraints in the permission token, and forms
constraints on the transfer of tokens. Only subjects that meet the constraint conditions can receive tokens,
thereby solving unauthorized access vulnerability caused by permission delegation. Since not all access
control models can transform strategies into constraints and integrate them into blockchain tokens, this
paper also proposes a permission delegation algorithm for decision-making entities to make desirable
decisions. Finally, the security analysis shows that the two proposed schemes can overcome the unauthorized
access vulnerability caused by permission delegation, and the algorithm performance is analyzed through

experiments.

INDEX TERMS Access control, blockchain, permission delegation, unauthorized access vulnerability.

I. INTRODUCTION

As a distributed and decentralized computing and storage
framework, the blockchain is applied to the access control
model, which addresses the single point of failure and the
security and trust issues among multiple agencies. These
problems are mainly caused by the centralized design in the
access control model.

The main reason for the single point of failure in access
control is that it has a centralized authorized decision-making
entity. Once this centralized authorized decision-making
entity fails, it will lead to access control failure, so
Ouaddabh et al. tries to deploy this authorized decision-making
entity on the blockchain [1]. The decentralized features of
blockchain are employed to solve this problem. When there
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is a cross-domain access, multiple agencies are required to
collaborate each other to achieve access control. At this
stage, trust issues among multiple agencies will occur. The
previous solution tends to assume that there is a third-party
trusted agency acting as an authorized decision-making
entity. Multiple privacy breaches in recent years indicate that
third-party institutions are not credible [2], so blockchain is
used to replace third-party trusted institutions. Access control
is deployed on the alliance blockchain built by multiple
institutions, and the blockchain maintained by multiple
institutions is used to achieve trust issues among multiple
institutions. In addition, the immutable and traceable features
of blockchain data solve the problem of tracking access
control information leakage.

Since the blockchain was originally proposed as the
underlying architecture of Bitcoin, in the study of combining
blockchain with access control, Zyskind et al. abstracted
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those permissions into tokens in the Bitcoin blockchain
and controlled permissions through transactions [3]. Later,
when implemented in the blockchain, smart contracts were
employed to abstract permissions to non-homogeneous
currencies in Ethereum or other blockchains [4]. As the
blockchain platform originally served the financial industry,
the circulation was naturally supported the permissions
represented by the tokens and non-homogeneous currencies
mentioned above. Researchers have designed the specific
transaction specifications or the smart contracts to grant
permission requests features.

Permission delegation refers to the behavior that an entity
passes to another a specific permission after obtaining it.
Adding a permission delegation module to access control
enriches the functions of the latter and provides users with
another way to obtain permissions in addition to requesting
authorization. It is especially applicable when the owner
and manager of the object are inconsistent. Therefore,
in 2016, the blockchain-based access control proposed
by Ouaddah ef al. implemented the permission delegation
function by designing specific transaction specifications [1].
Among them, users can pass the transaction permission to
others via this transaction specification, but the process is
unknown to the permission owner. Nayak et al. proposed
a delegation of permission based on blockchain in a cloud
environment. And after receiving the entrusted permission,
users cannot delegate it [5]. Xu et al. proposed another
blockchain-based permission delegation scheme, discussed
multi-hop delegation, and set the delegation depth [6], [7].
Le et al. considered the validity period of the permission
and stipulated that the validity period of the permission
received by the receiver should not exceed the validity
period of the sender [8]. Pal et al considered the issue of
privilege escalation in the privilege delegation scheme they
designed, to avoid the possibility of increased privilege in the
delegation process [9]. Although these studies have improved
the security of permission delegation in blockchain-based
access control from different perspectives, in their scheme,
the permission delegation only needs to delegate the partici-
pation of the initiator and the permission receiver, but not the
resource owner.

Therefore, in the current blockchain-based access con-
trol model, the delegation may cause permission leakage,
resulting in an unauthorized access. Moreover, as it is to
be completed by transactions or smart contracts, the current
permission delegation requires both the consent of the user
and that of the receiver, and the blockchain acts as a trusted
third party as a witness and recorder. However, the owner
of the permission does not participate in the authorization
process, that is, when the permission is passed, the recipient
does not pass the access control policy verification, so the
recipient may not be the legal user of the permission. If the
delegatee cannot obtain the permission, after the management
agency makes a decision on the access control policy, but
obtains the permission via delegation, this thereafter leads to
an unauthorized access.

156028

The motivation of this paper is as follows:

1) To the best of our knowledge, in the current
blockchain-based access control, unauthorized access
vulnerabilities caused by permission delegation do
exist but no one has paid attention to it. Therefore, one
of our motives is to propose this kind of unauthorized
access vulnerability caused by permission delegation in
access control based on blockchain.

2) Since this unauthorized access vulnerability was dis-
covered, we then propose corresponding solutions to
the vulnerability.

This paper proposes token-constrained permission delega-
tion algorithm (TCPDA), which converts the access control
policy corresponding to the permission into the constraint
conditions used by the permission, and then embeds the
constraint conditions in the permission token used to directly
determine the recipient’s legitimacy to address unauthorized
access vulnerabilities in permission delegation. Since not
all access control models can transform strategies into
constraints and integrate them into blockchain tokens, this
paper also proposes a permission delegation scheme for
decision-making by policy decision point (PDP), which may
as well be called PDP re-decision permission delegation
algorithm (PRPDA). In light of this, our contributions in this
paper are multifold:

1) We present a model of unauthorized access vulnerabil-
ity and analyze the causes of the vulnerability.

2) We present a permission delegation scheme called
TCPDA to solve the above vulnerability. And present a
supplementary scheme called PRPDA.

3) We use the colored petri nets (CPN) to formally model
the above two schemes and prove the safety of these
two schemes.

4) We have implemented the solution and conducted
experiments for the evaluation of computation time and
storage costs.

The rest is organized as follows: Section II describes the
related work of the study. Section III introduces the per-
mission delegation scenarios, permission delegation model
and unauthorized access vulnerabilities caused by permission
delegation. Section IV proposes two permission delegation
algorithms to resolve unauthorized access vulnerabilities.
Section V analyzes the security of the proposed algorithm.
Section VI breaks down the performance of the proposed
algorithm through experiments. Section VII offers a summary
and introduces our next work plan.

Il. RELATED WORK

Combining blockchain and access control can solve the
single-point failure problem and the security and trust
problems between multiple institutions in the centralized
access control model due to the centralized design. For the
single point of failure, Jemel er al. used the blockchain
for user legitimacy checks in CP-ABE access control [10];
Outchakoucht et al. used the blockchain for operations such
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as granting, using, and circulating access permissions in
SmartOrBAC [11]. To address security and trust issues among
multiple organizations, Cruz et al. used blockchain as a
trusted third party to solve the cross-organizational access
control problem in Role-Based Access Control(RBAC) [12];
Alansari et al. used blockchain to prevent user identity
attributes and access control policies in Attributes Based
Access Control(ABAC) from being modified by malicious
users [13]; Maesa et al. publicly store policies and permission
exchanges on the blockchain to prevent one party from
fraudulently rejecting the rights granted by the policies [14].

After solving the existing defects of access control,
the researchers studied the access control model applicable
to the new Internet of Things (IoT) scenarios. Zhang et al.
proposed a IoT access control framework using smart
contracts, but this access control is static and does not
apply to dynamic IoT [15]. Islam et al. proposed a
dynamic ABAC-based access control using blockchain for
the IoT [16]. Zhang et al. also proposed a blockchain access
control based on ABAC, in this scheme, a verifiable collabo-
ration mechanism is designed to meet the needs of controlled
access authorization in emergencies [17]. Guo et al. also
proposed ABAC-based blockchain access control, but users
have multiple attributes in their schemes and need to obtain
them from multiple attribute authorities [18]. Rajput et al
proposed a blockchain-based access control system in the
context of intelligent medical treatment to protect patient
privacy [19].

In these researches on access control, the complexity of the
IoT scenario is not fully considered. However, in the real [oT,
there are many scenarios where the owner and the manager of
a large number of objects are inconsistent. Taking the smart
medical scene as an example, when the attending doctor A of
a patient encounters an unsolvable problem and needs to refer
the patient to the doctor B of another hospital, the patient’s
electronic medical record needs to be passed from A to B.
At this time, the simplest method is to delegate permission,
but there is no permission delegation function in the above
scheme.

Since the permission delegation model in access control
was proposed, a large number of researchers have done some
in-depth researches for different purposes [20]. Permission
delegation is used by researchers in different access control
models. It provides users with more flexible accesses to
permissions and yet brings security risks to the access control
model as well. There are two main types of security risks
caused by permission delegation. One is the unauthorized
access, which means illegal users can obtain permissions
from other users through permission transfer; the other
is the data privacy leakage. This privacy leakage is not
caused by unauthorized access, but by illegal use of data by
legitimate users. In response to the former risk, Wainer et al.
proposed that permissions must satisfy monotonicity during
their delegation, that is, the permissions that are passed
will not increase with the transfer [21]; Anggorojati et al.
proposed a permission delegation model, in which the

VOLUME 8, 2020

permission re-decides whether to grant the recipient when
the permission is passed, in order to solve the problem of
permission leakage caused by permission delegation [22];
Rabehaja ef al. proposed that permission delegation must
fulfil two basic conditions, namely,the user has something to
delegate and the right to delegate [23]. As for the latter risk
of data privacy disclosure, Moniruzzaman et al. designed an
additional privacy model, which considers privacy policies
when delegating decisions, and sets data usage policy
constraints through the privacy model [24].

Prior to the introduction of access control into the
blockchain, security issues caused by permission delegation
have been solved by researchers. But with the combination
of access control and blockchain, the access control model
has undergone adaptive changes. Thus, permission delegation
triggers new security problems to the access control model.

The introduction of the blockchain provides a relatively
trusty computing and storage platform for access control.
In the research on the combination of blockchain and
access control, most researchers store permission credentials
in the blockchain, and grant user permissions by passing
permission credentials through transactions or smart contract
distribution. At present, the permission delegation after the
introduction of blockchain can be divided into two categories
according to the in-depth research.

The first category is to propose permission delegation
as a module in access control. The researchers including
Ouaddah et al. [1], Tapas et al. [25], Alcarria et al. [26],
Xu et al. [27], etc. had permission delegation function in the
access control model they proposed, but they did not carry
out detailed analysis and research on permission delegation.

The second is an in-depth study of permission delegation in
the access control of the blockchain, which proposes a model
with its own characteristics. Ali et al. studied the application
of permission delegation in blockchain-based access control
in the IoT scenario, and divided the permission delegation
into an event-based one and a query-based one [28]. But this
study does not focus on the security issues brought about
by permission delegation. The model proposed by Xu et al.
supports multi-hop delegation and tree-like delegation, and
formalizes the delegation relationship as a delegation tree.
It also specifies that an entity can only be delegated once,
that is, any entity can only appear once in the delegation
tree. At the same time, the delegation depth is set for the
permission token, which limits the number of permission
delegations [6], [7]. Pussewalage et al. proposed an access
control delegation scheme in an e-health environment [29],
in which the principal can limit the length of the delegation
chain. Unlike the literature [6], there is no limit to the
number of entities that can be delegated. Nayak et al
proposed a permission delegation in the cloud environment,
which restricts users from being able to delegate permissions
again after receiving them, for permissions can only be
passed once [5]. Le et al. considered the time factor in
the permission delegation model, in which the permission
has a validity period, and stipulates that the period for the

156029



IEEE Access

J. Shi et al.: Mechanism to Resolve the Unauthorized Access Vulnerability

receiver cannot exceed that for the sender [8]. And Pal et al.
proposed an asynchronous permission delegation model
under the blockchain, in which tokens are implemented via
events, while considering the issue of privilege escalation [9].
However, in the delegation of permission, the recipients’
legitimacy is not checked through the access control policy,
and there are still loopholes in the unauthorized access.

In summary, in the researches of permission delegation
after the combination of access control and blockchain,
the security considerations brought by the introduction of
the blockchain are insufficient, although researchers have
proposed multiple permission delegation models.

Ill. PERMISSION DELEGATION MODEL AND
UNAUTHORIZED ACCESS VULNERABILITY

In this section, we introduce the scenario of permission
delegation in blockchain-based access control, and give
a model of permission delegation. Then, we proposed
an unauthorized access vulnerability based on the current
permission delegation model. Finally, the threat model of
permission delegation is proposed.

AR L Subject Q
gl A b2
Object delegatpr delegatee
1 permissjon fog
brantin 2 pprmiss!
/4 4
Smart .
. PDP Delegation
Token list P0|IC.IES
repository

i)

=
Access Control

FIGURE 1. Permission delegation scenario in the access control model
based on blockchain.

A. PERMISSION DELEGATION SCENARIO DESCRIPTION
This paper is meant to center around the permission
delegation but not the other functions of blockchain-based
access control. The permission delegation scenario is shown
in Fig. 1. The access control PDP is deployed in the
blockchain, and permission granting and delegation are
implemented by smart contracts. The blockchain here is the
consortium blockchain architecture. The resource requester
requests the access permission of the resource from the access
control system. After the PDP deployed in the blockchain
makes a decision, the permission token is granted to the
resource requester, who passes the token to the delegatee.
Definition 1 delegator: An access requester who initiates a
permission delegation. Via permission delegation, a delegator
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transfers the permissions he owns to others. The delegator
has the transferable permissions and the right to initiate
permission delegation. After the permission delegation is
completed, the delegator loses the delegated permission.

Definition 2 delegatee: The resource requester who
receives the token and obtains the permission during the
permission delegation process.

The method by which the resource requester obtains tokens
in the above scenario is called permission grant, as shown in
Step 1 in the Fig. 1. Assumption: The owner of the object has
uploaded his own access control strategy to the access control
system in the blockchain.

The process of granting permissions is as follows: (1)
Request access, the subject initiates an access request to
the object, the subject needs to send a request access
message RequestAccess(s, 1, o, {o.p1,...0.p;}) to the access
control system, the content of the message is: subject s,
the object owner r, the object o, the requested permissions
{o.p1,...0.p;i}. (2) Make a decision, after the PDP contract
deployed in the blockchain receives the subject’s request
access message, the PDP makes a decision according to
the access control policy set by the object. If access is
allowed, the permission token (pt) of the object is granted
to the subject. Otherwise, a rejection message is returned.
(3) Access object, after the subject obtains the pr of the
object, the object can be accessed by the pt. The subject needs
to send the access object message GrantAccess (s, 1, o, pt,
{0.p1,...0.p;i}) to the access control system in the blockchain.
The access control system generates an access event after
verifying that the message is legal, allows the subject to
access and records the access event in the blockchain.

The method by which the delegatee obtains the token is
called permission delegation, which is Step 2 in the Fig. 1.
Assumption: The delegator has obtained the pt of the object.

The permission delegation process is as follows: (1)
Request delegation, delegatee requests the object’s access
permission pt from the delegator who has obtained the
object’s target permission; (2) The delegator himself decides
whether to delegate pr to delegatee, and if it agrees to
delegate, proceed to the next step; (3) The delegator sends a
message of permission delegation to the PDP. The PDP makes
a decision on this delegation. If it agrees, pt is successfully
delegated to delegatee, after which delegatee can access the
object through the pr obtained from the delegator. The first
two steps of permission delegation have nothing to do with
the access control system, so the details of how the permission
delegation decision is made in the third step of the access
control system will be described later.

B. PERMISSION DELEGATION MODEL
The required symbols in the permission delegation model and
their meanings are shown in Table 1.

A typical permission delegation model is PDM =
(0,1, Sfrom>S10), Where o represents the object corresponding
to the permission in the permission delegation, and o € O.
p represents the delegated permission, which is usually
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TABLE 1. Symbols, relationships, and meanings in the permission
delegation model.

SYMBOL RELATIONSHIPS MEANINGS

S S={51,52, .,Sn} Subject set in access control
o 0={0,,0,,...,0,} Object set in access control
P P={pips,...pn} A set of permissions that an object
can grant to a subject
Stegal Sleqat &S Subject set that can access the object
according to the object's access
control policy
V4 peP Object permission
Sfiom Sfiom ESlegal Delegator
Sto S0 €S Delegatee

abstracted as a permission token in a blockchain-based access
control model. This token can represent multiple permissions.
Sfrom and sy, are the participants in the permission delegation
process, and the permissions in the model are passed from
Sfrom 1O Syo. It is assumed here that the permission p obtained
by Sfom 1s determined and granted through an access control
policy, hereby Sfom € Siegas- In the existing permission
delegation model, it is considered that the object trusts the
subject Sfrom, S0 the permission is granted to the subject Sfom,
and the subject sjo5, trusts sy, hence sgom passes p to sy, then
we can get s, € S.

FIGURE 2. Permission delegation model.

The permission delegation model is shown in Fig. 2,
in which the object is represented by an octagon; the subject,
a circle; and the granting and transferring of the permission,
arrows. This paper focuses on the process in which sfom
passes the permission p to s, in the model, shown as the
shaded part in the figure. When permission is passed multiple
times, the legality of s, cannot be guaranteed except for the
first time.

At the same time, there is a default condition here. After
obtaining the permission token, the subject can access only
the permission credentials when accessing the object without
the need to verify the validity again.

This paper is centered on the unauthorized access vulnera-
bilities in the process of permission delegation. For clarity of
description, this paper only addresses single-hop permission
delegation, but the solution proposed in this article is also
applicable to multi-hop one.

C. UNAUTHORIZED ACCESS VULNERABILITY

The unauthorized access vulnerability is shown in the follow-
ing permission delegation process: in the above permission
delegation model, the access permission p of the object
o is granted to the subject that meets the access control
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policy. These subjects like the above are called the legitimate
subjects as Sjegar = {Si, Sit1,...,8;}, where Sjer S S.
It should be noted that the object does not pre-specify the
members in Sjegq. These legitimate users are screened out by
the access control policy of the object permission. They have
the right to request the access permission of the object from
the access control system, but they may not have obtained
this permission, the elements in Sy, are not always the
same. As shown in Fig. 3, the circle in the figure represents
the subject. Some subjects get permission p, we call it Spom,
and we can know that Som € Siegqi. Then a permission
delegation event occurs, and gy, Passes permission p to sy.
The vulnerability occurs at this step. Thus, the permission
delegation mechanism in access control only verifies that
Srom and s, agree to the permission p but does not verify
whether s;, is an element in the set Sjgqi, SO 50 May not
satisfy the access control policy of permission p. But at this
time p has been passed from S, t0 51, SO 54, has obtained
permission p without satisfying the object o access control
policy. Therefore, the delegation of permission caused an
unauthorized access.

PR
¢ e @
s e @@

FIGURE 3. Schematic diagram of unauthorized access vulnerability in
permission delegation.

This vulnerability is caused by the fact that the permission
p is passed without consideration of whether s, has
permission to use p. In order to avoid this vulnerability,
the access control model must ensure that any subject s that
owns p belongs to Siegar.

Therefore, s, must be verified during permission delega-
tion. If s, & Siegar €xists, unauthorized access occurs. Such
permission delegation is illegal.

In the permission delegation model above, the transfer of
permissions is essentially the transfer of trust. For example,
an object trusts subject Alice, so the object grants permissions
to subject Alice. Because subject Alice trusts subject Bob,
subject Alice passes the object’s permissions to subject Bob.
But it is possible that the object neither knows Bob nor wants
to grant Bob permission.
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The current permission delegation model has an unautho-
rized access vulnerability. This is because it is unreasonable
to directly apply a chain of trust to permission delegation.
It can be simply understood as “I trust you, but I do not trust
your friends.” It is undesirable to pass permissions blindly to
an unknown user in the security realm.

D. THREAT MODEL

The focus of our consideration is the unauthorized access
vulnerability mentioned above, so this paper considers
that the attacker uses the unauthorized access vulnerability
proposed in Section III.C to attack the access control system
to obtain the access permissions of the object. It is assumed
here that except for the permission delegation module in the
access control system, the attacker cannot legally obtain the
permission of the target object by requesting a grant. The
attacker’s attacking method is to obtain the permission from
the user who has obtained the target object permission, and
these users cannot distinguish whether the delegatee is legal
or not, so the permission may be delegated to illegal subjects
during the permission delegation process. The security goal
is that the object permissions will not be acquired by illegal
subjects during the process.

IV. VULNERABILITY SOLUTIONS
In this section, the token-constrained permission delegation
scheme is mainly elaborated. In addition, considering that not
all access control methods can integrate policies into tokens,
we propose the PDP re-decision permission delegation
scheme as a supplement program.

A. TOKEN-CONSTRAINED PERMISSION DELEGATION
SCHEME

The unauthorized access vulnerability caused by permission
delegation is due to the fact that the permission receiver is not
verified by the access control policy, so the idea of solving
the vulnerability is to verify directly whether the recipient
is authorized to use the permission during the delegation.
In blockchain-based access control, permissions are usually
granted to the subject in the form of a token, which is stored
in the blockchain as a non-homogeneous token, and serves as
a credential for the permission of the subject.

Therefore, when the permission is delegated, the idea is
as follows of verifying whether the delegatee is authorized
to use the permission: Convert the access control policy
corresponding to the permission into the constraints for
permission usage, and then to embed the constraints for
permission usage into permission tokens. The passing of
tokens constitutes a constraint chain, and only subjects that
meet the constraints can receive tokens. For example, in a
system that combines ABAC or RBAC with a blockchain,
they can add permission access constraints with Roles or
Properties to the token.

Therefore, the permission delegation scheme with con-
straints is shown in Fig. 4, where dele_SC is a permission
delegation smart contract and token_list is a list of tokens in
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the access control system. Delegator passing his permission
token to the delegatee needs the permission delegation
contract (or module) in the blockchain to judge whether
this transfer meets three basic conditions of determining
(1) first whether the permission token is allowed to be passed,
(2) then if the delegator is authorized to pass permissions, and
(3) whether the delegatee is authorized to use the permission
token.

1) DESIGN OF PERMISSION TOKEN STRUCTURE
Integrating the access control policy in the permission token
requires designing a new token structure, which needs to
include usage restrictions for the permissions of the token.
The permission token is expressed as PT = f(s;) —
{0j.{p1...pu}.N,C}, where f() is a mapping function from
the subject to the permission token, implemented by the
blockchain, indicating that the subject is the owner of the
permission token. s; is the subject in the access control, here
represents the owner of the permission token. o; represents
the object corresponding to the permission token. {pi...p,/}
represents the access permission of the object o; represented
by the token, where the permission can be multiple. N
represents the features of the token, including transferability,
valid time, transferable hops, etc. C represents the constraints
formed by all the access strategies of {pi...p,/, and only
subjects that meet these constraints can receive the token.
Among them, C can be empty. When the permission is not
allowed to pass or the access control policy of the permission
cannot be integrated in the permission token, C is empty.

2) AN APPROACH TO POLICY INTEGRATION
When the subject requests the object’s permission {pj...p,/,
the object’s PDP generates an access control policy (ACP)
corresponding to {pi...pn}, and decides whether to grant
permission {pi...p,} to the subject. When the PDP deter-
mines that the subject can use {p;...p,/, it will generate a
permission token PT in the blockchain. The fourth element C
of the permission token PT needs to be generated by the ACP.
The description of the access control policy refers
to the XACML policy language model. An ACP cor-
responding to a permission can be expressed as ACP
= fp({p1...pi})—{policyi...policy,}, where policy; is the
policy for managing access permissions. A permission may
have multiple policies. The policy is expressed as policy
= {target, combination, {rule; ... rule,}, {responsibility}},
where target is the object to which the policy is applied, which
can be simply understood as the permission corresponding to
the policy; combination represents a combination algorithm
that combines multiple rules together. rule is the one
corresponding to target. responsibility is a collection of
responsibilities. The storage space occupied by a complete
ACP is relatively large, so the ACP needs to be converted to a
constraint C condition that is only for the current permissions.
Therefore, the specific policy integration algorithm is shown
in Algorithm 1. First, obtain the type of access control
strategy used according to the object. If it is ABAC,
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FIGURE 4. Token-constrained permission delegation scheme.

extract the ACP rules in ABAC from <subject attributes,
object attributes, environment attributes, permission> into
< subject attributes, environment attributes> and combine
them into policies according to the combination, and finally
combine all policies into a complete constraint C; if it is
RBAC, extract all allowed roles, and then combine them into
a complete constraint C.

3) ALGORITHM DESIGN

A more detailed delegation step can be expressed by
Algorithm 2, The following three conditions need to be met
during delegation: (1) First, it is necessary to determine
whether the permission token is allowed to be passed, and
here is to judge according to the N in pz. (2) Then it is
necessary to determine whether the subject has the right to
pass the permission token, here we need to verify whether
the owner of pt is the subject spon (3) It is also necessary
to determine whether the delegatee has the right to use the
permission token, and here we need to extract the constraint
C in the pt, and then use C to determine whether the delegatee
st can receive the pt. This algorithm is deployed in Smart
contract dele_SC, and the message format and verification
process are not reflected in the algorithm. The specific
algorithm is as follows:

It should be noted that when the user updates the
access control policy, the permission token becomes invalid
immediately and needs to be reapplied.

This algorithm is advantageous in that the complexity of
the algorithm is only O(/). The permission delegation does
not need to use the PDP to verify the validity of the delegatee.
Instead, it directly determines whether the delegatee is legal
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according to constraint C in the permission token, which
reduces the overhead of the decision. The average algorithm
complexity is required for this decision to be executed by the
PDP, which is O (rnlogn) in most cases, and it is considerable
for access control models with a large number of policies.

However, the disadvantage of this algorithm is that
embedding the policy in the permission token tends to
enlarge the permission token, which is one of the worst
disadvantages for the blockchain. The specific impact is given
in the experiment in Section VI of the experimental data and
analytical results.

B. PDP RE-DECISION PERMISSION DELEGATION SCHEME
Not all access control methods can integrate policies into
tokens, so the second solution is to make a decision on the
legitimacy of the delegatee by the PDP when the permission
is delegated. Only the legitimate delegatee can receive
permissions.

The difference between this solution and the previous one
is that the constraint condition C of the permission token
pt is empty, and the delegation process needs the PDP to
determine whether the delegatee has the right to use the
token. The specific process is shown in Fig. 5. The delegator
sends a request of permission delegation to the permission
delegation smart contract dele_SC. After basic verification
of the delegation request, dele_SC sends the delegatee and
pt to the PDP smart contract PDP_SC. PDP_SC decides
whether the delegatee is legal or not. PDP_SC looks up the
corresponding policy in the access control policy set, and then
judges whether the delegatee has the right to use pt according
to the policy.
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FIGURE 5. PDP re-decision permission delegation scheme.

The more detailed permission delegation steps are shown
in Algorithm 3, where Step 5 is performed in the PDP. The
PDP receives not the permission token, but the permission {p;
... pnj represented by the token. The PDP then determines
whether the delegatee has the right to use {p1 ... pn/.

This is one of the simplest solutions. The advantage of
Algorithm 3 is that it occupies less storage space on the
blockchain, and the preciousness of the blockchain storage
space will not be repeated here. Its disadvantage is that
this algorithm has a high time complexity. In Step 5 of
the algorithm, the PDP needs to make a decision, so it is
necessary to find the policy corresponding to the permission
{p1 ... pnj or the permission corresponding to the delegatee.
The minimum time complexity of its search algorithm is O
(nlogn). If there are multiple strategies, strategy combination
is required.

V. SECURITY ANALYSIS
Both solutions proposed in this paper need to meet the threat
model and security objectives.

Proposition 1: The permission delegation scheme with
constraints and PDP re-decision permission delegation
scheme proposed in this paper can counter the unauthorized
access vulnerability caused by permission delegation in
blockchain-based access control, and the object permissions
will not be obtained by illegal delegatee during the permission
delegation process.
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Safety analysis. As for the permission delegation scheme
with constraints, the access control strategy corresponding
to the permissions is transformed into the constraints of
permission usage, and then the constraints of permission
usage are embedded in the permissions token. During the
process, the permission delegation smart contract will parse
the permission token, extract the access control strategy of
the token, and then determine whether the delegatee is legal
according to the strategy. Therefore, in the delegation process,
the validity of the delegatee is verified through the constraints
of the token to ensure that the object permission will not be
delegated to illegal subjects.

With regard to the permission delegation scheme for
PDP re-decision, in the permission delegation process, the
delegation smart contract will send the delegated permission
and delegatee to the PDP of the access control system,
and the PDP will make the decision. The process of PDP
decision-making is equivalent to the process of delegatee
requesting permission, and then PDP returns the decision
result to the delegation smart contract which in turn decides
whether to complete the delegation based on the result.
Therefore, in the permission delegation process, the legality
of each delegatee is verified through PDP to ensure that the
object permission will not be delegated to illegal subjects.

In order to prove whether the solution proposed in this
paper meets the threat model and security objectives in
Section III.D, it is necessary to formally model the solution,
and then analyze whether it meets the security requirements

VOLUME 8, 2020



J. Shi et al.: Mechanism to Resolve the Unauthorized Access Vulnerability

IEEE Access

Algorithm 1 Policy Integration Algorithm
Input:

object o, permission p[pj...p,]
Output:

constraints C
1: 0.acst < GetAccessControlStrategy Type(o);
2: IF(o0.acst == ABAC) THEN
3: FOR i <« 1top.lenght DO

4. pi.ACP < GetACP(o, pi);

5: FORj < 1to p;.ACP.lenght DO

6: pi.ACP.policy; < GetPolicy(p;.ACP, j);

7: FOR k <« 1 to p;. ACP.policyj.rule.lenght DO

8: ruleCom[s.att, e.att] <
ompressionRules(p;. ACP.policy;.rule);

9: END

10: CombinationRules(ruleCom,

pi.ACP.policy;.combination);

11: END

12: END

13: C <« combine compressed policies and simplify policies;
return C;

14: ELSE IF(0.acst == RBAC) THEN

15: FOR i <1 to p.lenght DO

16: pi.ACP < GetACP(o, p));

17: extract allowed roles;

18: END

19: C <« rules after combination; return C;
20: ELSE

21: This strategy type does not support integration
22: END IF

through a mathematical model. Here, the CPN are used for
modeling. The CPN is a mathematical modeling tool with
strict mathematical definition and graphical representation.
And the relevant concepts of CPN can be referred to the
literature [30].

According to the permission delegation model proposed in
this paper, the definition and description of the color set are
shown in Table 2.

The top layer model is shown in Fig. 6. There are 8 transi-
tions and 11 places in the top layer model, of which there
are 2 substitution transitions. We simulated the delegation
message sending process, part of the message verification
process, and the pt delegation process through the model.
The transition 7estA, indicating that the delegation contract
deployed in the blockchain has received the delegation mes-
sage sent by the delegator, and has performed a preliminary
verification. Here, it is verified whether the owner of the
pt to be delegated is the delegator. Next, the transition
TestB, which means verifying whether pr is allowed to
be entrusted. The transition TestCI verifies whether the
delegatee is registered in the access control system. The
transition DifferentSituation, which means facing different
access control strategies and choosing different algorithm
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Algorithm 2 Token-Constrained Permission Delegation
Algorithm
Input:

delegator s, delegatee s;,, permission token pt
Output:

true or false
1: PermissionDelegation(Sfrom, 10, P1);
2:IF pt belongs to the spomA the pt can be delegated A the
Sfrom has the right to delegate the pr THEN
3:  pt.C < ExtractConstraints(pt);
4: IF Decision(sy,, pt.C) THEN

5: Change the owner of the pt from delegator spom to
delegatee sy,

6: return true

7: ENDIF

8: return false

9: END IF

Algorithm 3 Pdp Re-Decision Permission Delegation Algo-
rithm
Input:
delegator sy, delegatee sy, permission token pt
Output:
true or false
1: PermissionDelegation(Sfiom, 10, P1);
2: IF pt belongs to the spomA the pt can be delegated A the
Sfrom has the right to delegate the pr THEN
3: {p1...pn} < GetPermission(pt)
4:  Access(Si, {P1.--Pnf)
5:  result < PDPDecision(sy, {p1...Pn});
6: IF result == true THEN
7 Change the owner of the pt from delegator spom to
delegatee sy,
8: return true
9: ENDIF
10: return false
11: END IF

verification. The transition TestC2 means its own special
verification method in PRPDA, and the transition ZestC3
means its own special verification method in TCPDA. After
that, the two transitions of RemovePT and AddNewPT are
fired to complete the process of token owner replacement.
The TestC2 layer is shown in Fig. 7, with 5 transitions
and 9 places. For the situation where the strategy cannot
be integrated as a constraint. Therefore, it is necessary for
the PDP to determine whether delegatee has the right to use
pt, so the transition SendRequest fires and sends a request
to the PDP. After the PDP receives the request message,
the transition GetACP fires to find the policy corresponding
to pt, and then makes a decision through the transition
PDPDecision. Modeling is not a complete realization of
the system, so the decision here is abstracted without
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FIGURE 6. The top layer CPN model of permission delegation scheme.
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FIGURE 7. The TestC2 layer.

affecting the security of the system. Finally, the transition
PRPDADecision is fired and the decision message is passed
to the delegation contract.

The TestC3 layer is shown in Fig. 8, with 2 transitions
and 4 places. Since the delegatee’s constraints are integrated
in pt, the policy in constraint C can be directly extracted.
The transition TestByToken converts the constraints in pt
into policies, where ¢ + 2 means to convert constraints
into policies. Then make a decision through the transition
TCPDADecision.

Proof: Through modeling, the security problem of the
permission delegation mechanism is transformed into the
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accessibility problem in the CPN model. For any occurrence
sequence R(M), when M[RemovePT > appears, that is,
the transition RemovePT can be fired, it means that the token
in the CPN must have undergone one of the following two
transition occurrence sequences. One is the sequence using
the TCPDA scheme, and the other is the sequence using the
PRPDA scheme.

The occurrence sequence of using TCPDA is as follows:
(1) MO[TestA > M1, which means the transition 7estA is
fired, and will filter out two types of illegal requests, one
is illegal pt requests, that is, there is no corresponding pt in
the place TokenList; the other type is that the owner of pr is
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TABLE 2. The color sets of formal models.

COLOR SET
DESCRIPTION
Subject, objcet,
permission, N in pt, C in
pt
Permission token

VARIABLE

colset S,0,PN,C = int

colset TOKEN = product S¥*O*P*N*C;

colset TOKENLIST = list TOKEN; List of pt of granted
principals stored in the
blockchain

colset DELEGATE = product S¥*S*O*P*N*C;  Delegation message

colset ACCESS = product S*O*P; Decision message sent
to PDP

The subject list, here is
delegatee

Access control policy of
PDP request in
blockchain

Policies repository

colset SUBJECTLIST = list S;

colset ACP = product S*P;

colset ACPLIST = list ACP;

colset DELEQUEU = list DELEGATE;
colset ACCEQUEU= list ACCESS;
colset CQUEU = list C;

colset RESULT =list BOOL;

Message queue
Message queue
Message queue

Message queue

(from,to,0b,p,n,c) > Testby

DELEGATE

mq”™ "~ [(from,to,ob,p mC)

(from,to,obyR,N)<)::

if c< acp
4 then 1" (from,to,ob,p,n,c) | TCPDA
~ else empty Decision
DELEGATE

FIGURE 8. The TestC3 layer.

illegal, that is, the owner of the pt to be delegated is not the
sender of the delegation request message. (2) M1[7TestB >
M2, will filter out all pt that are not allowed to be delegated,
which means that all delegation messages expressed as
¢ = 0 in the model are illegal. (3) M2[TestCI > M3,
will filter out all delegatee that are not registered in the
access control system. (4) M3[DifferentSituations > M4,
the fire route is E(DifferentSituation, E) < if ¢ <> 0 then
1*(from,to,ob,p,n,c) else empty >= 1°(from,to,0b,p,n,c),
choose to use TCPDA algorithm. Next, verify in the TestC3
layer. (5) M4[TestbyToken > M5, extract the access control
policy in pt. (6) M5[TCPDADecision > M6, use the access
control policy to verify whether the delegatee has the right to
receive pt, and filter out illegal requests of delegatee.
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The occurrence sequence of using PRPDA is as follows:
the first three steps are the same as the sequence of
TCPDA, in the fourth step, M3[DifferentSituations > M4,
the fire route is E(DifferentSituation, D) < if ¢ = 0
then 1°(from,to,0b,p,n,c) else empty >= 1°(from,to,ob,p,n,c),
choose to use the PRPDA algorithm, and enter the TestC2
layer for verification. (5) M4[TestbyPDP > MS5’, extract the
permission and delegatee corresponding to pt from the dele-
gation message. (6) M5’ [SendRequest > M6’, send delegatee
and delegated permission to the PDP. (7) M6’[GetACP >
MT7’, the PDP requests the access control policy correspond-
ing to the permission. (8) M7’ [PDPDecision > M8’, the PDP
makes a decision. (9) M8’ [PRPDADecision > M9’, filter out
illegal requests of delegatee according to the decision of PDP.

According to the above-mentioned two transition occur-
rence sequences, as long as M[RemovePT > appears,
the token entered must undergo all security checks, and there
will be no unauthorized access loopholes.

At the same time, through the simulation performed
by cpn tools, the initial value in the model in the initial
state is shown in Table 3. There are 6 types of delegation
request messages representing different situations in the
delegates. The message that finally completes the delegation
through simulation is (1,2,10,1,1,1) and (1,4,10,3,1,0), meet
the experimental expectations. Therefore, the two schemes
proposed in this paper meet the safety goals.

TABLE 3. Model initialization.

NAME VALUE MEANING

delegates [(1,2,10,1,1,1),(1,3,10,2,0,1), 6 types of delegation
(1,4,10,3,1,0), (1,4,10,4,1,0), request messages
(1,5,10,4,1,0), (1,6,10,3,1,1)] representing different

situations

token_list [(1,10,1,1,1), (1,10,2,0,1), Existing pt in the
(1,10,3,1,0), (1,10,4,1,0), system
(1,10,5,1,0)]

acp_list [(10,1), (10,2), (10,3)] Access control policy

subjectlist [2,3, 4] Delegatee registered

in the system

VI. EXPERIMENT AND ANALYSIS

In this section, we evaluate the performance overhead of the
two proposed schemes from the theoretical and experimental
perspectives, and the experimental results verify the correct-
ness of the theoretical analysis.

A. ALGORITHM TIME OVERHEAD

1) ALGORITHM TIME OVERHEAD ANALYSIS

Although the permission delegation algorithm and the
blockchain consensus algorithm are not on the same layer
according to the access control architecture, currently due to
the limitations of the blockchain itself, it is not significant
to discuss the response time of the permission delega-
tion algorithm. Although some researchers have proposed
millisecond-level consensus algorithms, for example, Sujit
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Biswas et al. proposed a lightweight consensus algorithm
PoBT for commercial blockchains [31]. Under the same
conditions, PoBT is one-third faster than Fabric’s Endorse-
ment, but the current mainstream blockchain consensus time
is still longer. Table 4 shows the consensus time of the
current mainstream consensus algorithms [32]. The response
time of the permission delegation in the actual blockchain
environment is mainly determined by the consensus time of
the blockchain platform where it is located. At this stage,
the formula is given here of response time of permission
delegation considering the influence of consensus algorithm.

TABLE 4. Time scale of blockchain consensus algorithm.

CONSENSUS ALGORITHM TIME SCALE
Proof of Work (PoW) >100s
Proof of Stake (PoS) <100s
Delegated Proof of Stake (DPoS) <100s

Practical Byzantine Fault Tolerance (PBFT) <10s
RAFT <10s

Considering the permission delegation scenario, the fol-
lowing assumptions can be drawn: Assuming that the permis-
sion delegation event reaches the blockchain consensus queue
according to a Poisson process with a rate of A, the blockchain
consensus time can be regarded as an exponential random
variable with a rate of wu, and it can be known that the
consensus system of blockchain has only one service line,
so the permission delegation considering the consensus time
is a limited capacity M /M / I queuing model.

It can be seen that considering consensus time the average
response time function of TCPDA is:

LN /)" = v+ 1) (/)"
=Py (=2 (1= (1/)**")
)

Among them, trcppa refers to the execution time of
TCPDA in the Ethereum virtual machine; N is the system
capacity, and Py, the probability that the consensus queue is
full.

It can be seen that considering consensus time the average
response time function of PRPDA is:

1+N (/)N — v+ 1) (/)Y
=Py (=2 (1= (/)"
@)

trcppa refers to the execution time of TCPDA in the
Ethereum virtual machine; N is the system capacity, and Py,
the probability that the consensus queue is full.

)N+]

Trcppa = trcppa +

TprrpA = tPRPDA +

2) ALGORITHM RESPONSE TIME WITHOUT CONSIDERATION
OF CONSENSUS TIME

This experiment is a comparison of the time required for a
permission delegation algorithm without consideration of the
time required for consensus. The experiment is performed on
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the Ethereum blockchain. The experimental environment is
shown in Table 5.

TABLE 5. Experimental environment parameters.

PARAMETERS VALUE
Solidity version  0.5.3
Remix 0.8.8
Environment JavaScript VM
CPU intel(R)core(tm)i7- 4790
Memory Memory size 8G

The response time in the above two schemes is determined
by the execution time of the algorithm and the consensus
time of the blockchain. The advantages and disadvantages
are analyzed of both algorithms without considering the
consensus time of the blockchain.

Besides the algorithms proposed above, the additional
comparison objects are permission delegation schemes that
do not use these two algorithms and the method proposed
in [9]. For convenience, we will write the permission dele-
gation scheme without TCPDA algorithm as WPDA. WPDA
stands for a permission delegation scheme that does not verify
the legitimacy of the delegatee, so it will cause the problem
of unauthorized access. As a reference benchmark through
comparison WPDA can reflect the price paid by TCPDA
to increase security. Reference [9] represents a permission
delegation scheme that stores permissions and permission
delegations in the blockchain in the form of events rather than
tokens. Although the permission delegation scheme proposed
in [9] verifies the validity of the authentication delegatee, the
verifier, also the delegator, does not know the access control
policy set by the resource owner on the resource. Therefore,
the program still has unauthorized access vulnerabilities.
This scheme has the most security considerations in the
current permission delegation schemes, considering the issue
of permission proliferation, so it is used as a comparison
object, which is represented by Pal_PDA in the experiment.

Fig. 9 shows the average response time in ten experiments
of the permission delegation algorithm. The permission
delegation contract is deployed in the remix JavaScript
VM environment, so there is no effect of the blockchain
consensus time on smart contract in the experimental data.
The response time of TCPDA is 0.649s longer than Pal_PDA
and 0.7s longer than WPDA. This is because TCPDA needs
to extract the constraints in the permission token and use
these constraints to verify the delegatee, so TCPDA needs to
spend more time. PRPDA takes the longest time because the
algorithm needs to pass the permission token and delegatee to
the PDP during permission delegation, while other algorithms
do not need to complete the decision-making process. WPDA
and Pal_PDA take less time because they do not verify the
legality of the delegatee, but they are not secure.

The data in the blockchain can only be used after
consensus. At the same time, it is necessary to ensure that
the data delegated by the permission is in the main chain
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FIGURE 9. Average response time of permission delegation without
considering consensus time.

of the blockchain. As security requirements increase, it is
necessary to wait for the subsequent generation of more
subsequent blocks. So, the consensus algorithm of the chain
has a particularly profound impact on the permission transfer
algorithm.

3) SUMMARY

In summary, although the two algorithms proposed in this
paper has a longer time cost compared with the original
permission delegation, the time required by these two
algorithms is much shorter than that of the consensus
algorithm. PRPDA as a supplement to TCPDA requires more
time overhead. At the same time, the permission delegation
response time will not increase due to multiple passes of
permissions.

B. ALGORITHM STORAGE OVERHEAD

This section mainly analyzes the data overhead stored in
the blockchain during the permission process. In order to
solve the problems raised by the threat model, TCPDA and
PRPDA add token storage data, compared with other existing
solutions. The related expenses of permission delegation are
mainly divided into two parts, token storage and delegation
event storage. For the same access times in the same scenario,
the frequency of permission delegation will affect the number
of tokens in this system, and the smaller the number of tokens,
the less storage overhead we propose. Next, the analysis is
justified through experiments and comparison with existing
solutions.

1) EXPERIMENTAL ENVIRONMENT SETUP

The storage part of the blockchain can be regarded as
a monotonically increasing database. The data on the
blockchain stored can only be increased but not reduced.
Therefore, the storage overhead in the permission delegation
algorithm needs to be analyzed in detail. The following
experiments mainly analyze the storage overhead of the
algorithm.
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Since there is currently no standard data set disclosed in
permission delegation, the experiments in this section use
Python to generate data to simulate the storage overhead of
the permission delegation algorithm proposed above.

FIGURE 10. State transition diagram of permission token life process.

The simulation experiment data are generated by using a
Markov chain. The structure of the Markov chain is shown
in Fig. 10. There are four states, where State 1 indicates
that the permission token is generated and granted to the
subject; State 2 shows that the subject has an access using
the permission token Resources; State 3 signifies that the
permission delegation occurs, and the permission token is
passed to the delegatee by the delegator; lastly, Status 4 means
that the permission token is invalid. The transition between
states represents the action of the permission token in the
access control system. In state 1, the subject gets the pz. When
the subject uses the pt, it enters state 2. When the subject
delegates pt to delegatee, it enters state 3. And when the
subject’s pt is invalid, it enters state 4.

The state transition matrices of different Markov chains
represent different probabilities of permission delegation
events. The probability of sending permission delegation
events is set to 6 levels from low to high, and the state
transition matrices are specifically constructed as follows:

0 09 0.09 0.01

M. — 0 03 a 07 —a
“7 10 0.99 0 0.01
0 0 0 0

Among them, the value of a is [0.1, 0.2, 0.3, 0.4, 0.5,
0.6], which indicates the different situations in which the
permission delegation occurs from low to high probability.

2) ALGORITHM STORAGE OVERHEAD

Fig. 11 shows the storage overhead of TCPDA and PRPDA
under different probability delegation events. TCPDA has the
largest storage overhead. When a = 0.6, the storage overhead
is 3.05% higher than the scheme without delegate, 15.51%
higher than that of WPDA and PRPDA, and 20.16% higher
than that of Pal_PDA. This is because the algorithm integrates
the access policy for permissions into the permission token.
However, as WPDA and PRPDA has no storage constraints,
its permission token is significantly smaller than that of
TCPDA. Pal_PDA requires the least storage space. This is
because the scheme stores the least amount of data in the
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FIGURE 11. Comparison of storage space usage of different permission
delegation algorithms.

token. At the same time, the TCPDA token stores the data that
Pal_PDA does not, such as the validity time of the permission,
the number of times that it can be delegated, and delegatee
constraints. The storage overhead of TCPDA is always
greater than that of the scheme without a delegate. This is
because TCPDA has more data stored in the permission token
in order to counter the unauthorized access vulnerability. The
data of PRPDA and WPDA are overlapped because the cost
of token and permission delegation of the two algorithms is
the same.

As the probability of permission delegation increases. the
storage overhead of TCPDA will decrease accordingly. At the
same time, TCPDA is the algorithm with the largest decrease,
from 8370 KB at a = 0.1 to 5005 KB at a = 0.6, and the
storage overhead is reduced by 40.2%. This is because the
TCPDA’s permission token size is incredibly different from
the storage size of permission delegating event. However,
the storage overhead of TCPDA is always larger than that of
unauthorized delegation.

Under the same conditions, PRPDA, WPDA and Pal_PDA
are smaller than the scheme without delegation. This is
because the tokens of these schemes are smaller, and the
existence of permission delegation reduces the number of
tokens in the system.

As shown in Fig. 12, under different probabilities of
occurrence of permission delegation events, the comparison
of the number of permission tokens is generated by using the
permission delegation and the non-use one. The horizontal
axis represents the probability of permission delegation, and
the vertical axis is the number of permission tokens that exist
in the blockchain when the permission token is accessed
100,000 times.

It can be seen that as the probability of permission dele-
gation increases, the number of permission tokens decreases
that need to be generated in the access control system.
The storage of permission tokens in the blockchain requires
corresponding storage space, so permission delegation may
reduce the overhead of access control on the blockchain
storage.
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FIGURE 12. Impact of permission delegation on the number of
permission tokens.

Whether the storage overhead is reduced depends on the
size of the permission token, and the size of the permission
token varies in different schemes.
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FIGURE 13. Storage overhead ratio of TCPDA.

Next, the storage overhead ratio of TCPDA is analyzed.
Fig. 13 shows the ratio of storage overhead of a permission
token and a permission delegation under different probabil-
ities of TCPDA delegation events. From the experimental
data, it can be seen that when a = 0.1, the storage cost of
permission delegation accounts for 11.03% of the total cost.
When a = 0.6, the storage cost of permission delegation
already accounts for 73.15% of the total storage cost. After
a > 0.4, the permission delegation part of the storage
overhead starts to have more storage overheads than the
permission token.

As shown in Fig. 14, when a = 0.1, the storage cost
of permission delegation accounts for 19.87% of the total
cost, and when a = 0.6, the storage cost of permission
delegation accounts for 84.49% of the total cost. The
permission delegation storage ratio of PRPDA is higher than
that of TCPDA as the permission token of PRPDA is smaller
than that of TCPDA, and the permission delegation data
dominates.
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FIGURE 14. Storage overhead ratio of PRPDA.

3) SUMMARY

In summary, TCPDA counters the unauthorized access vul-
nerability caused by permission delegation, but it increases
the storage overhead. With the increase of the probability
of permission delegation, the storage overhead of TCPDA
decreases accordingly. And that of PRPDA is small while the
time overhead is large.

VIl. CONCLUSION

It is not appropriate to use the user’s trust chain directly in
permission delegation of access control. It can be simply
expressed as ‘I trust you but I do not trust your friends.”
Therefore, in the current blockchain-based access control,
the delegation is not secure, determined only by the owner
of the permission token. The token may be passed to an
unauthorized user to obtain another one. So it is proposed to
employ a permission-based unauthorized delegation vulner-
ability based on blockchain. The key to this vulnerability is
that after the permission is granted via the object, subject A
wants to pass the permission to another subject B. It must
ensure that subject B who receives the permission has the
right to use the permission. The delegatee passes the token
after verification, and may pass the token to an illegal user.
Then, two permission algorithms, TCPDA and PRPDA, are
proposed to solve the problem. The use of CPN to model
the delegation process proves the safety of the above two
algorithms. Finally, experiments and analysis are carried out
on the above two algorithms. The experimental results show
that although both of these two algorithms have increased in
time and space overhead, the time required by the permission
delegation algorithm is much shorter than the time overhead
of the consensus algorithm, and the storage overhead is
gradually reduced as permission delegation events increase
with a greater probability.

Future work will investigate the division of permissions
in access control. At present, if some of the permissions are
intended to pass on to others during the permission delegation
process, restrictions are needed to add to the permission
token so that the receiver can only use some permissions.

VOLUME 8, 2020

Given some restrictions and inconveniences of the method,
an alternative of dividing permissions is proposed to allow
users to perform more fine-grained operations on permissions
they own.
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