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ABSTRACT Conventional optical image encryption methods based on phase-shifting interferometry need at
least two interferograms, and the storage or transmission of interferograms needs to occupy a lot of resources.
At the same time, the low quality of reconstructed complex natural images has always been a main limiting
factor in the application of optical image security. In this paper, a high-quality object reconstruction method
from one-dimensional compressed encrypted signal based on multi-network mixed learning is proposed.
First, an encrypted interferogram can be obtained using the double random phase encoding (DRPE) method.
Then, we can obtain the one-dimensional compressed sampling signal of the encrypted hologram on the
photodiode using single-pixel compressive holographic imaging method. Finally, the mapping of 1D signal
to 2D object image can be learned utilizing multiple neural network models. Numerical simulation results
show that the complex natural images can be reconstructed using the proposed method with high quality at

lower sampling ratio.

INDEX TERMS Optical image encryption, single-pixel imaging, multi-network, high quality reconstruction.

I. INTRODUCTION

With the rapid development of cloud computing, Internet
of Things (IOT) and digital communication technology,
the security and efficiency of information in the process
of storage and transmission have received more and more
attention [1]-[5]. In recent decades, information security
technology based on optical theory and methods has been
one of the research hotspots, benefiting from the parallel
processing of optical information and the characteristics of
high-speed operation and multi-dimensional capabilities [6].
Since the introduction of the double random phase encod-
ing technology (DRPE) [7] based on optical 4f system,
various optical image encryption technologies have been
widely developed [8]-[12]. However, the DRPE-based 4f
system is essentially a linear system, which makes the func-
tional relationship between the key, plaintext, and ciphertext
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interdependent, so it is vulnerable to various attacks, thereby
limiting the security of the system [13]. Reference [14]
proposed a photoelectric information encryption technology
based on phase-shifting interferometry (PSI), which can per-
fectly reconstruct the complex amplitude information of an
object using four -frame interferograms. However, due to
the huge number of interferograms, storing or transmitting
them requires occupying or consuming a large amount of
media resources, which greatly limit their practical appli-
cations. An application of two-step PSI in image encryp-
tion is proposed [15], thereby reducing the data redundancy
of the interferogram. Compressed sensing (CS) theory can
effectively reconstruct the signal at a lower sampling rate
through the solution of the underdetermined equation [16].
To further solve this problem, many methods are proposed
in combination with CS theory and PSI [17]-[19]. Taking
compressed optical image encryption [17] as an example,
the object image uses the Mach-Zehnder interferometer
to obtain three-frame encrypted interferograms using the
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FIGURE 1. The schematic of high-quality object image reconstruction from one-dimensional compressed encrypted signal based on multi-network
mixed learning method. The whole training process includes three steps: two linear regression models (LR1 and LR2) and a CGAN model. Where

P1 and P2, random phase plates; &, measurement matrix; A, network optimization process; /, reconstructed hologram in the LR1 model training
process; I, the hologram reconstructed by the optimized LR1 model; T, the reconstructed object image in the LR2 model training process; 7,

the low-quality object image reconstructed by the optimized LR2 model; O, the high-quality reconstructed object image in the CGAN model training

process; O, the reconstructed object image during the test process.

DRPE encryption method. Then according to the theory
of CS, the encrypted image is highly compressed into a
one-dimensional signal, and then the interferogram is recon-
structed by the Two-Step Iterative Shrinkage/Thresholding
Algorithms (TwIST) [20]. Finally, the object image is recon-
structed by using three-step phase shifting method. The above
scheme can effectively reconstruct a binary image or a simple
grayscale image with a lower sampling rate, but when recon-
structing a complex natural image with a lower sampling rate,
the high-frequency detail information of the object image
cannot be reconstructed, and it is greatly affected by the noise
in system.

In recent years, learning-based methods, including linear-
based learning methods and non-linear-based learning meth-
ods, have been widely used in the field of optical signal
processing. When the overall system model can be viewed
as a linear system, such as a random-phase-encoded optical
cryptosystem [21] and blind reconstruction for single-pixel
imaging [22], when the phase masks or illumination pat-
terns are unknown, they can be regarded as linear systems
of black box model. And these black box systems are suit-
able for the black box model based-neural network train-
ing methods. Therefore, the learning method of training
linear regression (LR) model can be used to reconstruct
the target object [23]. Deep learning (DL), a nonlinear
learning method is widely used in various fields of optical
image processing, including cryptography [24], holographic
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reconstruction (phase retrieval) [25]-[28], computational
ghost imaging [29], [30], super- resolution [31]-[34] and
so on. The method based on LR has certain advantages
over DL in the case of a small number of training sam-
ples and complex natural images. However, this method
cannot effectively reconstruct high-frequency detail infor-
mation of images and cannot deal with nonlinear systems.
Nonlinear-based DL has more powerful processing capa-
bilities than LR methods in processing nonlinear systems
and image high-frequency detail information reconstruction.
However, this method requires a larger training sample size.

Based on this, a high-quality object image reconstruction
from one-dimensional compressed encrypted signal based
on multi-network mixed learning method is proposed for
the first time. In the image encryption process, the pro-
posed method only needs one interferogram, thus we do not
require PZT to produce phase shifts which greatly reduces
the experimental burden. And then the multiple neural net-
work models are developed to directly obtain the secret
two-dimensional image from the one-dimensional compres-
sive sampling data, which makes full use of the high-speed
and multi-dimensional parallel processing ability of opti-
cal method, and greatly reduces the amount of data stored
and transmitted. In addition, an important key-measurement
matrix, is added to increase the security of the system. The
overall flow diagram is shown in Figure 1. First, a LR model
is used to reconstruct the hologram by learning the physical
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relationship between the one-dimensional compressed signal
and the hologram. Next, another LR model is used to initially
reconstruct the object image by learning the relationship
between the reconstructed hologram and the object image.
However, in this step, the quality of the reconstructed object
image is not high and the high-frequency detail informa-
tion of the image cannot be reconstructed. Therefore, the
DL model based on conditional generative adversarial net-
work (CGAN) [35] is used to reconstruct the object image
with high-quality. By using the cascaded three models, 2D
object image can be directly quickly reconstructed from
one-dimensional compressed signal. In addition, this method
can efficiently reconstruct complex natural images at a lower
sampling ratio.

FIGURE 2. Schematic diagram of the optical setup. BE, beam expander;
BS, beam splitter; M, mirror; P, random phase plate; SLM, spatial light
modulator; DMD, digital micromirror device.

il. METHOD

A. THE APPROACH OF COMPRESSIVE OPTICAL

IMAGE ENCRYPTION

The compressive optical image encryption process is shown
in “Data Processing” in Fig.1, and the corresponding optical
setup is shown in Fig.2. The laser beam emitted from a
He-Ne laser (REO/30989) with the wavelength A of 633 nm
is divided into an object beam and a reference beam. First,
the image is added to the spatial light modulator (SLM)
and illuminated by the object beam, and then the image
is encrypted using the DRPE method through two random
phase masks P1 and P2. In the other arm, the reference beam
passes directly through the mirror. Then, the two beams are
overlap on the digital micromirror device (DMD) to form
an interference pattern, and then the DMD device is used
to modulate the encrypted complex light field, and the com-
pressive sampling data is obtained through the photodiode
detector. Finally, the compressive sampling is transmitted to
the computer, and the trained model can be used to directly
decrypt and reconstruct the object image. In the process of
data production, a CCD is needed to be added in the position
of DMD to collect the interferograms to train the model. Once
the model is trained, the object image can be reconstructed
directly from the one-dimensional compressed sampling data
measured by DMD.
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For simplicity, the real amplitude of the reference plane
ave is supposed as R, and the complex object field in plane
Py is set as Up(xo, yo). expli2m - p1(xo, yo)] and exp[i2w -
p2(x1, y1)] represent the complex amplitude transmittance of
Py and P,, respectively, where p(xo, yo) and p>(x1, y1) are
two independent white noises uniformly distributed in [0, 1].
d, is defined as the distance between P and P», d» is defined
as the distance between P, and DMD. FR,; represents the
Fresnel transform of distance d. Then, the complex object
field on the DMD plane can be expressed as

U(x,y) = FRg,{FRy,{Uo(x0, yo) expli2m - p1(x0, yo)]}
x expli2m - pa(xr, yDI} (1)

Then, the hologram / of the complex amplitude field on the
DMD plane are expressed as

1(x,y) = [R+ U(x,y)|*> = Ip(x,y) + 2Re[U(x, )] -R ()
where Iy is the zero-order light given by
Io(x,y) = R +|U(x, »)? 3)

Finally, when the DMD device is modulated by the com-
plex amplitude field and the measurement matrix loaded into
DMD, the compressed sampling signal is coupled to the
photodiode detector through the lens and the one-dimensional
compressed sampling data of the encrypted hologram is
obtained. The mathematical description of this process is as
follows: we can obtain

ym) =&, 1 m={1,2,...M} )

where @ is the measurement matrix loaded into the DMD,
® is the inner product. The final compressed sampling data
Y € RM*1 on the photodiode can be obtained after repeating
the process M times.

B. LEARNING-BASED IMAGE DECRYPTION

AND RECONSTRUCTION

A LR model can be considered as a single-layer fully-
connected neural network with an i.i.d. prior over its param-
eters is equivalent to a Gaussian process (GP) [36], For a
linear optical system such as random-phase-encoded optical
cryptosystem [21] and blind reconstruction for single-pixel
imaging [22], We simply assume that the function of this
linear system is expressed as: f(x) = w - x, x represents
the input signal, y represents the output signal, w represents
weighting matrix which corresponds to the linear optical
system. If given a large number of labeled training samples
(x"and f"(x), n = 1,2, ..., N), after training these batches
of samples, this optical system is likely to be learned. We first
initialize w randomly, and then during the training process we
use the back-propagation algorithm [37] to continuously opti-
mize w, and finally when the model converges, the optimized
w can approximate the optical system. For nonlinear deep
learning networks, it can be equivalent to multilayer fully-
connected neural network, and its learning process is similar
to the above process.
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FIGURE 3. The designed network architecture, including LR1 model, LR2 model and CGAN model.

The method proposed in this paper first employs LR
model to directly reconstruct the encrypted hologram from
the one-dimensional compressed sampling data. The process
can be described as

I= A {Y} &)

where I is the reconstructed hologram in the training pro-
cess, Arr1{-} represents function mapping from the sampling
signal Y to the encrypted hologram. This mapping can be
learned after training a LR model from N pairs of different
label training data, and each pair has a known hologram 7"
and a sampling signal Y”, where n = 1,2,...,N. This
training process is similar to the optimization process and can
be expressed as
N

A 1 n__yn
Argy = argmin 3 11" = 1" (6)
n=1
I = Arri{Y} (N
where Az {-} represents optimized LR1 model, 1 represents
the hologram reconstructed by the optimized model, || - || is a

loss function about the error between I and I". The learning
processes of the other two models LR2 and CGAN are similar
to the above process and can be expressed as follows:

T = Aroll} ®)

N
A 1 n )
Argy = argmin = 3 110" = "]

n=1

©))
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T = Agofl) (10)

O = Acean{T} (11)
1 N

Acgan = argmin — 3 [|0" — 0"|| (12)
n=1

0 = Acaon AL (Arri {Y 1)) (13)

where Argo{-} represents the function mapping from 1 to the
label O, T is the reconstructed object image in the LR2 model
training process, Arro () represents the optimized LR2
model, 7 is the low-quality object image reconstructed by
the optimized LR2 model, Acgan{-} represents the function
mapping from T to the label O, O is the high-quality recon-
structed object image in the CGAN model training process,
and ACGAN {-} represents the optimized CGAN model. Once
these three optimized models are obtained, we can use the
cascaded three models to directly reconstruct the object 0
from the sampling signal Y during the testing process. The
average time to reconstruct an object image from a com-
pressed data is 0.03 seconds with the sampling ratio of 20%.

C. THE DESIGNED NETWORK ARCHITECTURE AND
TRAINING PROCESS

The detailed network structure is shown in Fig.3. The LR
model actually can be equivalent to a fully connected neural

network without a nonlinear activation function, shown as
“LR1 model” and “LR2 model” in Fig.3. In LR1 model,

155227



IEEE Access

Y. Li et al.: High-Quality Object Reconstruction From One-Dimensional Compressed Encrypted Signal

o [ 9] i B B
o (9] it 8 B
= [9] < Fd B
» (2] aa T B E

—_—
[
~—

)

) Ht)ﬂ
Bl 8

!

«©D
j 5

P

Py
P

FIGURE 4. Qualitative analysis and comparison of simulation results of Faces-LFW dataset at different sampling
ratios by using: (a) LR + CGAN method and (b) all-optical method [17].

the input and output of the network are compressed data and
reconstructed hologram, respectively. The neuron size of the
input layer is M x 1, and the neurons in the output layer of
4096 x 1 in size are reshaped to an image with the size of
64 x 64. In LR2 model, the input and output of the network are
the hologram reconstructed by the optimized LR1 model and
the low-quality reconstructed object image, respectively. The
input layer and output layer are both composed of neurons
of 4096 x 1 in size. A CGAN model is used to reconstruct
high-quality object image, which is composed of generator
network and discriminator network. The input of the gener-
ator network is a low-quality object image generated by the
optimized LR2 model, then it goes through 6 downsampling
convolutional layers and 6 upsampling convolutional layers
to reconstruct high-quality object image. Discriminator net-
work adopts Markovian discriminator (PatchGAN) structure
that only penalizes structure at the scale of patches, which
can make the image generated by the generator network more
similar to the object image in semantic and texture [35]. One
of the inputs of the discriminator is the input of the generator,
and the other input is the output of the generator or label
image. After four convolutional layers, discriminator outputs
a 14 x 14 size feature map for calculating the discriminator
loss to optimize the generator. The detailed parameters of
these two networks can refer to the Fig.3.

During the training process, we employ the mean square
error (MSE) as loss function to optimized LR1 and
LR2 model. The least absolute deviations loss (L1_Loss)
and binary cross entropy loss (BCE_Loss) are employed to
optimize the generator network and discriminator network
in the CGAN model, respectively. We set the learning rate
to 0.00002 for LR1 and LR2 mode and 0.0002 for CGAN
model and use stochastic gradient descent (SGD) and Adam
optimizer to optimize and update parameters of model. The
training step is 500, and all programs are running under
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Pytorch in Python3.7 environment, and accelerated calcu-
lations are performed using NVIDIA Geforce GTX1080Ti
GPU.

D. PREPARATION OF TRAINING DATA

In the proposed method, two complicated natural image
datasets including Faces-LFW dataset [38] which is labeled
faces in the wild and Dog [39] are used as training data to
test the method proposed in this paper. The background of
the image in Dog dataset is more complex than Faces-LFW
dataset. We randomly select 6000 object images from each
dataset as training samples and 600 object images for testing
which do not participate in the training process. In the simu-
lation, we grayed and resized them to 64 x 64, and then we
can generate the same number of encrypted holograms and
compressed sampling data. For comparison, we generated
5 sets of data with different sampling ratios of 50%, 20%,
30%, 10% and 5%.

Ill. RESULTS AND ANALYSIS

A. RESULTS

For convenience, we named the proposed model based on
multi-network mixed learning as LR + CGAN model. The
qualitative results of the proposed method are shown in the
column (a) of Fig.4 and Fig.5, and the size of the recon-
structed image is 64 x 64. The reconstruction efficiency and
quality of the encrypted hologram are not only related to the
reconstruction algorithm and measurement matrix, but also
related to the system parameters and the accuracy of the opti-
cal key. Most of CS reconstruction algorithms heavily rely
on two conditions include the sparsity condition and incoher-
ence condition of the image [40]. Since the encrypted image
is like noise, and the traditional optical decryption method
often fails to obtain satisfactory results, such as our previous
work [17], [19]. In terms of the efficiency of hologram storage
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and transmission, the proposed scheme only needs to use
one encrypted hologram to complete the reconstruction of
the object image, while all-optical method [17] needs three
encrypted holograms. This can reduce storage space by 1/3.
Therefore, from the visual effect, it can be found that the
two-dimensional complex natural object image can still be
successfully reconstructed from one-dimensional sampling
data using the LR + CGAN model even when the sampling
rate as low as 5%. When the sampling rate increases to
20%, the object image can be almost perfectly reconstructed,
and high frequency information can be retained. In addition,
the noise has almost no effect on the reconstructed image.
For comparison, the all-optical scheme [17] are performed
and the simulation results are shown in the column (b) of
Fig.4 and Fig.5. Evidently, for the all-optical scheme, when
the sampling rate is increased to 30%, the contour of
the object is reconstructed successfully, and most of the
low-frequency information of the image can be reconstructed
when the sampling rate increased to 50%. We also found
that the quality of image reconstruction can be improved by
improving the resolution by using the all-optical method, and
the reconstruction results at different resolutions are shown
in Fig.6. Despite all this, the method proposed in this paper
hardly needs to consider the limitation of image resolution,
and it can still reconstruct images well even when the image
resolution is as low as 64 x 64.

For quantitative analysis of the above results, two indica-
tors including Peak Signal to Noise Ratio (PSNR) and struc-
tural similarity (SSIM) [41] are calculated to quantitatively
analyze the method proposed in this paper, in which the aver-
age of these two indicators for the 600 reconstructed images
in the test set are calculated (i.e., the results of all the quan-
titative analysis below are the average of 600 reconstructed
images). All the images in the test set did not participate in
the training process. The PSNR curves and SSIM curves at
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FIGURE 6. Reconstruction results at different resolutions and sampling
ratios using all-optical method.

different sampling ratios are plotted in Fig. 7. It can be seen
from the change trend of the curves, the reconstruction quality
of images decreases as the sampling ratio decreases, and
the more complex the objects, the lower the reconstruction
quality, which is in line with the actual situation.

To further evaluate the performance of the proposed model,
the performance is tested on reconstructing images with dif-
ferent number of training sets at a sampling rate of 20% and
the data volume changes from 300 to 6000. The results are
presented in Fig.8. As can be seen from Fig. 8(a), the image
can still be successfully reconstructed when the number of
training samples is as low as 300. Of course, the recon-
struction quality of the object improves as the number of
samples increases. The corresponding quantitative analysis is
shown in Figs.8 (b) and (c). We found that the PSNR and
SSIM values of the reconstructed target image have little
difference when the training samples are 3000 and 6000. Even
when the training sample data is 300, the PSNR value of
the reconstructed object image can reach 17.8dB. Therefore,
the above results show that the proposed model can achieve
ideal results with a small number of training samples.

155229



IEEE Access

Y. Li et al.: High-Quality Object Reconstruction From One-Dimensional Compressed Encrypted Signal

PSNR({dB)

—+— Faces-LFW
—6— Dog

16 :
0 02 04
sampling ratio
@

0.6

SSIW

08
075
0.7
0.65
0.6

0.55
05

—+— Faces-LFW
—&— Dog

0.45

04

02 04 0.6

sampling ratio
(b)

FIGURE 7. The PSNR and SSIM curves at different sampling ratios.

=2 & B R
~RZARLE
- QX ARE
-~ QX RARE
600 @ ": nm g
~-BRALE
7 ‘

—_—
Q
~

> 4

’

-~

PSNR(dB)

2000 3000 4000 5000 6000

the number of training samples

(b)

) 1000

08

SSIW

04

2000 3000 4000 5000 6000
the number of training samples

(c)

o 1000

FIGURE 8. Reconstruction results at different number of training samples with the sampling ratio of 20%: (a) the

qualitative results, (b) PSNR values and (c) SSIM values.

B. ANALYSIS OF THE DESIGN OF THE NETWORK MODEL

As we all know, the design of the model plays a vital role in
the performance of the system in machine learning. In order
to verify the superiority of the proposed method, we compare
the proposed LR + CGAN model with two other feasible
models. One of them is to use only linear regression models
to train and reconstruct images, named as LR. The other one
is that two linear regression layers are added to the CGAN
model as its initial two fully connected layers, we named
it csCGAN. The quantitative analysis results are shown in
Fig.9. Compared with the LR model and csCGAN model, the
proposed LR 4+ CGAN model performs best. Due to the LR
model cannot learn the non-linear relationship of filtering out
the random noise, the noise has a great influence on recon-
struction results using the LR model. Furthermore, the facial
expression in the csCGAN- based reconstruction has changed
and distorted, the main reason is that the DL model is easy to
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learn the high-frequency information of the image and but
will miss the low-frequency information, and the DL model
is often easy to fall into the local optimal and miss the global
optimal under this training mechanism of parameter sharing.
Quantitatively, the PSNR and SSIM distributions obtained
using above three models at different sampling ratios are
presented in Fig.10, in which the superiority of the proposed
method is further proved.

C. ROBUSTNESS
Because the propagation of optical information may be
affected by noise pollution, we also study the robustness of
the proposed method on noise. The Gaussian white noise is
added to the detection signal with different signal-to-noise
ratios (SNR) and the SNR can be expressed as
P signal
SNR(dB) = 1010g(P—)

noise

(14)
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M .
where Pgignal = 1%/1 3 xrzn and Ppoise represent the powers of results obtained by the proposed method and LR method
m=1 with the sampling ratio of 50% are shown in Fig.11 and

signal x and noise. For comparison, the quantitative analysis Fig.12. The results show that with the increase of SNR,
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(f) The PSNR distributions obtained using the LR + CGAN model at different sampling ratios.

the quality of image is improving. Although the SNR of the
noise is less than 30 dB, the image can still be successfully
reconstructed using the proposed method indicating that the
proposed method has a strong anti-noise ability. In addition,
compared with the LR model, the reconstructed images using
LR + CGAN model can improve the PSNR value by 2-3 dB
and the SSIM value by 0.1 on average.

D. GENERALIZATION

Generalization ability is one of the important standards to
measure whether the model is practical. We use the model
trained on the Faces-LFW dataset to reconstruct the object
images from other five disjoint datasets, and the quantitative
analysis results with the sampling ratios of 20% and 50%
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are shown in Fig.13. Although the model is trained on a
Faces-LFW dataset containing only human images, it can still
be used to successfully reconstruct other types of objects,
including handwritten digits, clothes, animals, handwritten
characters, etc. This means that our proposed model learns
the entire optical system, rather than just fitting a certain data
set.

E. SECURITY

We also studied the security of the proposed compressed opti-
cal image encryption method. Among the keys, the principal
key pa(xo, yo0) and measurement matrix play critical roles in
the optical image encryption system. If one of the keys is
incorrect, the retrieved object image is the same as the noise
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FIGURE 14. Retrieved images with the incorrect keys in the decryption

process: (a) when the principal key p, (xq, yo) is incorrect; (b) when the
measurement matrix is incorrect; (c) when 1 has relative error 3%; and

(d) when d; has relative error 1%.

and fully unrecognizable, as shown in Fig.14 (a) and (b).
When the first diffraction distance d; of the object image and
the wavelength X of the He-Ne laser exhibit a relative error,
the reconstruction images cannot be recognized, as shown
in Figs.14 (c) and (d). The simulation results show that the
decrypted image is very sensitive to the correct key. Only
when all optical keys are available, the correct decrypted
image is obtained, which can prove that the proposed com-
pressive optical encryption system is safe.

IV. CONCLUSION

In this paper, a high-quality object reconstruction method
from one-dimensional compressed encrypted signal based on
multi-network mixed learning is proposed for the first time.
The complex natural images can be reconstructed directly
from a one-dimensional compressed sampling data of the
encrypted information with high quality at lower sampling
ratio and only a small number of training samples is needed
by combining the optimized linear regression and deep learn-
ing model. In addition, we also compare different models
in the quality of reconstruction results, and prove that the
proposed LR + CGAN model is the most suitable model
for compressive optical image encryption system. Further,
the strong anti-noise ability, the powerful generalization abil-
ity and the security are verified and show that the pro-
posed method can overcome the limitation of the current
hologram data volume of the optical image encryption sys-
tem and improve the efficiency of information storage and
transmission.
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