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ABSTRACT Non-orthogonal multiple access (NOMA) is a technique which allows multiple users to share
the same radio access resources. However, there exist interferences among these users in the NOMA system.
These interferences need to be taken into account in the signal detection and error performance analysis.
In the downlink NOMA system, the far user detects its signal by treating the near user’s signal as interference,
while the near user employs successive interference cancellation (SIC) to detect its signal. Based on the
conventional signal detection, it is not straightforward to derive the error performance for both the far user
and near user. By analyzing the constellation relationships between the far user’s signal and superposition
coded (SC) signal, and the near user’s signal and SC signal, in this article, a simple threshold based detection
algorithm is proposed to detect both the far user’s signal and near user’s signal. Furthermore, by aid of the
constellation relationships, in this article, simple expressions of the average symbol error probability (ASEP)
with squared M -ary quadrature amplitude modulation for both the far user and near user are easily derived
in Rayleigh fading channels. Simulation results validate the derived theoretical ASEP results.

INDEX TERMS Downlink non-orthogonal multiple access, maximum likelihood detection, threshold based
detection, signal constellation, successive interference cancellation, superposition coded signals, symbol
error probability.

I. INTRODUCTION
Nowadays there is an ever-growing demand for high data
transmission rates and reliability in wireless communication
systems. Traditionally, multiplexing is a technique to improve
data transmission rate. Multiple-input multiple-output
(MIMO) is a technique to provide multiplexing gain in
wireless communications. Recently non-orthogonal multiple
access (NOMA) has been considered as a promising tech-
nique to improve data transmission rate in 5G wireless
communication system [1], [2]. In the NOMA system, all
users share the same radio access resources, thus allowing
a further improvement in spectral efficiency. In the conven-
tional NOMA system, superposition coding is employed at
the transmitter in order to enable sharing of the common
resources for different users, and successive interference can-
cellation (SIC) is used to detect the superposition coded (SC)
signals at the receiver [2], [3].

There are two kinds of NOMA systems, uplink NOMA
(UL-NOMA) and downlink NOMA (DL-NOMA) systems.
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The research problems in NOMA systems can be mainly
categorized into error performance analysis [4]–[8], outage
probability analysis [9], [10], power allocation [11] and sys-
tem capacity or ergodic sum-rate [12], [13]. In this arti-
cle, we mainly focus on error performance analysis of the
DL-NOMA systems. In general, the DL-NOMA system con-
tains one base station (BS) and two users, a far user and a near
user. Due to the non-orthogonal multiple user access there is
an interference at the receiver for either the far user or the near
user. Most of the work in the literature has taken into account
the interference to detect the users’ signal and to analyze the
error performance. In the literature, the conventional signal
detection is that the far user detects its signal by regarding the
near user’s signal as interference, and the near user uses SIC
to detect its signal. In [4] and [7], the error performance of
the DL-NOMA system is analyzed based on the conventional
signal detection. The derivation of the error performance is
also based on two dimensional signal constellations and the
procedure to derive the error performance is not concise.
Since an M -ary quadrature amplitude modulation (MQAM)
symbol is composed of independent in-phase and quadrature
components, [5] firstly analyzed error performance based
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on only the one dimensional in-phase or pulse amplitude
modulation (PAM) signal. The derivation of error probability
for the far user is based on the relationship between the SC
signal and the far user’s signal and is not straightforward.
However, the derivation of error performance for the near user
is too long because by examining and comparing the decision
regions and distant parameters, [5] classifies all signals into
three types. Then, by considering the relationship between
PAM and QAM, [5] derived error performance expressions
for MQAM. However, these expressions are only derived
for additive white Gaussian noise (AWGN) channels and not
fading channels.Meanwhile, thework of [6] also analyzed the
error performance based on interference cancellation. Since
the probability density function (PDF) of the summation of
interference and noise is not Gaussian distributed, the error
performance expression is not simple. Finally, taking into
account interference, [8] derived the error performance based
on one dimensional signals. The average symbol error prob-
abilities (ASEPs) for both the far user and near user are
derived in Rayleigh fading channels considering imperfect
SIC. However, the derived error performance expressions are
too complicated.

In summary, most of the above work considered
interferences to derive error performance but the derivations
are not concise. In this article, we will not take into account
the interference to derive the error performance. Instead,
by analyzing the constellations of the individual user’s signal
and the SC signal, we firstly propose a threshold based simple
signal detection algorithm for both the far user and near user.
Then aided by the proposed detection algorithm, we easily
derive the ASEPs for both the far user and near user.

Hence, the main contributions of this article are
summarized as:

1) A threshold based simple signal detection for both
the far user and near user is proposed. The proposed
threshold based detection has low detection complexity
compared to the conventional detection.

2) An approach to derive error performance for the
individual user is proposed. The approach is to convert
the derivation of error performance for the individual
user’s symbols into the error performance of the SC
symbols.

The remainder of the paper is organized as follows:
In Section II, the systemmodel is presented. The constellation
analysis of the individual users’ symbol and the SC symbols
is presented in Section III. The conventional detection scheme
and the proposed threshold based detection algorithm are
presented in Section IV. The ASEPs for both far user and near
user are derived in Section V. In Section VI, the numerical
results are demonstrated. Finally, the paper is concluded in
Section VII.
Notation:Bold lowercase and uppercase letters are used for

vectors and matrices, respectively. [·]T , (·)H , | · | and ‖ · ‖F
represent the transpose, Hermitian, Euclidean and Frobenius
norm operations, respectively. E{·} is the expectation opera-
tion. j =

√
−1 is a complex number. A complex symbol x

has the real or in-phase part xI and imaginary or quadrature
part xQ, such that x = xI + jxQ.

II. SYSTEM MODEL
The conventional DL-NOMA system has been documented
in the literature [4]. The conventional DL-NOMA system
consists of one BS and two users which are denoted as User
n and User f . User n is an intra-cell user or near user, while
User f is a cell-edge user or far user. Relatively, User n expe-
riences good channel conditions, while User f experiences
severe channel conditions. In the DL-NOMA system, the BS
communicates with User n and User f on the same radio
access resources, frequency and time through superposition
coding. Let �u be the signal set of the squared QAM with
modulation order Mu, u ∈ [n, f ], xn and xf be the modulated
symbols to be transmitted to Users n and f , xn ∈ �n and
xf ∈ �f . Similar to the discussion in [4], in this article,
we will considerMf ≤ Mn because User f experiences severe
channel conditions. In the system model, it is also assumed
that E{|xn|2} = E{|xf |2} = ε. By multiplying xn and xf with
different power coefficients and summing them, the SC signal
xsc is given by:

xsc =
√
αnxn +

√
αf xf , (1)

where αf = 1−αn. Since E{|xn|2} = E{|xf |2} = ε, it follows
that E{|xsc|2} = ε.

In the conventional DL-NOMA system, it is also assumed
that both User n and User f have a single receive antenna [4].
However, in this article, we extend the single receive antenna
intoNr receive antennas at the receivers of User n and User f .
The received signal at User u is given by:

yu = huxsc + wu, (2)

where yu ∈ CNr×1 is the signal vector received at the receiver
of User u. hu ∈ CNr×1 is the channel coefficient vector
between the BS and User u.wu ∈ CNr×1 is the AWGN vector.
The entries of both hu and wu are mutually independent
and identically distributed (i.i.d.) complex Gaussian random
variables (RVs) distributed asCN(0, σ 2

u ) andCN(0,
ε
ρ
), where

ρ is the signal-to-noise ratio (SNR) at each receive antenna.
It is also assumed that σ 2

n > σ 2
f because User n experiences

good channel conditions, while User f experiences severe
channel conditions. It is further emphasized that the key idea
in the DL-NOMA system is to allocate more power to the user
with severe channel conditions [5]. Thus αf > αn is held in
(1).

III. CONSTELLATION ANALYSIS OF THE SC SYMBOLS
The constellation of the SC symbols is essentially important
to signal detection and error performance analysis. In the
DL-NOMA system, the individual User u only receives
huxsc+wu, not their own signal huxu+wu. The User u needs
to detect or extract xu from huxsc + wu. That motivates us
to analyze the signal relationship between xsc and xu. In this
section, we focus on constellation analysis of the SC sym-
bols. Since QAM is composed of independent in-phase and
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FIGURE 1. The constellations of xp
f , xp

n and xp
sc with αf = 0.75 and

αn = 0.25.

quadrature components, the constellation of the SC symbols
is also composed of independent in-phase and quadrature
component constellations. In this section, we only analyze
a one dimensional constellation of the SC symbol, either
in-phase or quadrature component.

Let xsc = xIsc + jxQsc, xn = xIn + jxQn and xf = xIf + jxQf
in (1), where xpu ∈ �

p
u, p ∈ [I ,Q] and �p

u is the signal set of
PAM with modulation order Ku =

√
Mu. x

p
sc ∈ �

p
sc, �

p
sc is

the signal set of xpsc with modulation order Kf × Kn. (1) can
be rewritten as:

xIsc + jx
Q
sc =
√
αnxIn +

√
αf xIf + j(

√
αnxQn +

√
αf x

Q
f ). (3)

From (3) we have:

xpsc =
√
αnxpn +

√
αf x

p
f . (4)

A. THE RELATIONSHIP BETWEEN CONSTELLATION
PATTERN OF THE SC SIGNAL xp

sc AND POWER
ALLOCATION
There are Kf × Kn signal constellation points (SCP) in the
signal set �p

sc. Let Znk , Z
f
l and Z sci be the signal values of

xpn , x
p
f and xpsc, where k ∈ [1 : Kn], l ∈ [1 : Kf ] and

i ∈ [1 : Kf × Kn]. For convenience in discussion, we also
let Znk1 < Znk2 for k1 < k2 and Z

f
l1
< Z fl2 for l1 < l2.

As an example, in this article we set Kf = 2, Kn = 4,
αf = 0.75, αn = 0.25 and E{(xpn )2} = E{(xpf )

2
} = 5. We

also set Z f1 = −
√
5, Z f2 = +

√
5, Zn1 = −3,Z

n
2 = −1,

Zn3 = +1 and Zn4 = +3. Based on superposition coding of
(4), the constellations of xpf , x

p
n and x

p
sc are shown in Figure 1.

The constellation pattern of the SC symbol depends on
power allocation in the DL-NOMA system. This article will
not discuss the power allocation in superposition coding.
However, in order to make the DL-NOMA system work well,
the power allocation in superposition coding of (4) must
guarantee Z sc1+lKn > Z sclKn . This is very important to signal
detection.

As discussed in Section II, the guideline of the power
allocation is αf > αn and αf + αn = 1. Figure 1 shows
the constellation of xpsc with αf = 0.75 and αn = 0.25,
while Figure 2 shows the constellation of xpsc with αf = 0.6

FIGURE 2. The constellation of xp
sc with αf = 0.6 and αn = 0.4.

and αn = 0.4. Both power allocation schemes meet αf > αn
and αf + αn = 1. In this example, from Figure 1 it is seen
that Z sc5 > Z sc4 . Figure 1 also shows that Z sci1 < Z sci2 for
i1 < i2. However, the constellation pattern in Figure 2 shows
that Z sc5 < Z sc4 , not Z sc5 > Z sc4 which will not make the
DL-NOMA system work well.

B. THE CONSTELLATION RELATIONSHIP BETWEEN
SC SIGNAL xp

sc AND FAR USER’s SIGNAL xp
f

Based on superposition coding of (4), we can regard xpsc as
a function of xpf and xpn , which is equivalent to Z sci being a

function of Z fk and Znl . Let f (·, ·) be the function. Then we
have:

Z sci = f (Z fk ,Z
n
l ). (5)

Now we discuss the constellation relationship between xpsc
and xpf .

Given xpf = Z f1 , it is observed from Figure 1 that Z sc1 =

f (Z f1 ,Z
n
1 ), Z

sc
2 = f (Z f1 ,Z

n
2 ), Z

sc
3 = f (Z f1 ,Z

n
3 ) and Z

sc
4 =

f (Z f1 ,Z
n
4 ). In general, we have Z

sc
(k−1)Kn+l

= f (Z fk ,Z
n
l ), where

l ∈ [1 : Kn] for the given k th symbol of xpf , Z
f
k . The indexes

of these Kn symbols Z sc(k−1)Kn+l are consecutive, which is
very important to the far user’s signal detection and error
performance analysis.

At the receiver, as long as User f detects that the
transmitted xpsc is Z sci , then based on the relationship i =
(k − 1)Kn + l, User f knows that the estimation of the
transmitted xpf is Z

f
k . Again, as the example used in this article,

if User f estimated that the transmitted xpsc is Z sck , k ∈ [1 : 4],
then User f knows that the estimation of the transmitted
xpf is Z f1 .

C. THE CONSTELLATION RELATIONSHIP BETWEEN SC
SIGNAL xp

sc AND NEAR USER’s SIGNAL xp
n

Given xpn = Zn1 , it is observed from Figure 1 that Z sc1 =
f (Z f1 ,Z

n
1 ) and Z sc5 = f (Z f2 ,Z

n
1 ). In general, we have

Z sc(k−1)Kn+l = f (Z fk ,Z
n
l ), where k ∈ [1 : Kf ] for the l th symbol

of xpn , Znl . The indexes of these Kf symbols Z sc(k−1)Kn+l are
arithmetic numbers, which is also important to the near user’s
signal detection and error performance analysis.

At the receiver, as long as User n detects the transmitted
xpsc is Z sci , then based on the relationship i = (k − 1)Kn + l,
the User n knows the estimation of the transmitted xpn is Z fl .
Again, as the example used in this article, if User n estimated
that the transmitted xpsc is Z sc1 or Z sc5 , then User n knows that
the estimation of the transmitted xpn is Zn1 .
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In this article, the above constellation relationships actually
represent the equivalent models for the error performance
analysis of the DL-NOMA system.

IV. SIGNAL DETECTIONS
In the DL-NOMA system, it is assumed that the channel state
information (CSI) hu is known at the receiver of User u.
Based on the CSI, User n and User f detect their own symbol
in different ways. In the following subsections, we discuss
the signal detections for User n and User f , respectively.
We firstly discuss the conventional detection for the far and
near users, and then discuss the proposed threshold based
detection for the far and near users.

A. CONVENTIONAL FAR USER SIGNAL DETECTION
The conventional far user signal detection has been described
in [4] and [5]. The far user, User f , directly detects
xf by regarding the near user signal, xn, as interference.
By regarding xn as interference, (2) may be rewritten as:

yf = hf
√
αf xf + w̄f , (6)

where w̄f = hf
√
αnxn + wf .

Since hf is known at the receiver of User f , we further have:

zf =
hHf yf

‖hf ‖2F
√
αf
= xf + vf , (7)

where vf =
hHf w̄f
‖hf ‖2F

√
αf
.

According to the maximum likelihood (ML) detection
rule, the estimation of xf at the receiver of User f is given
by [5]:

x̂f = min
xf ∈�f

|zf − xf |2. (8)

B. SIC BASED NEAR USER SIGNAL DETECTION
At the receiver of User n, User n also needs to estimate the
transmitted xf . Similar to the above discussion in the previous
subsection, the estimation of xf at the receiver of User n can
be obtained. Let the estimation of xf at the receiver of User
n be x̃f . Then User n uses SIC to subtract x̃f from yn. Let
ŷn = yn − hn

√
αf x̃f . ŷn can be written as:

ŷn = hn
√
αnxn + ŵn, (9)

where ŵn = hn
√
αf (xf − x̃f )+ wn.

Again, since hn is known at the receiver of User n, we
further have:

zn =
hHn ŷn

‖hn‖2F
√
αn
= xn + vn, (10)

where vn =
hHn ŵn
‖hn‖2F

√
αn
.

Based on the ML detection, the estimation of xn is finally
given by:

x̂n = min
xn∈�n

|zn − xn|2. (11)

From the above signal detection for both the far user and near
user, the following is evident:
1) Equs. (8) and (11) represent the ML detection. The

detection complexity of (8) and (11) can be reduced by

FIGURE 3. The constellations of xp
sc and thresholds t f

k and tn
l .

detecting the in-phase and quadrature components of
xf and xn, respectively.

2) In (6), w̄f = hf
√
αnxn + wf . The distribution of xn is

uniform, while the distribution of each entry in wf is
Gaussian distributed. It is not easy to derive the PDF
for the entry of w̄f , and to further analyze the error
performance of xf .

Motivated by the above observation and the constellation
relationship between xpsc and x

f
u , in the following subsections,

we present a simple and low complexity detection algorithm,
threshold based signal detection, to detect the in-phase and
quadrature components of xf and xn.

C. THRESHOLD BASED FAR USER’s SIGNAL DETECTION
Since both the received signal yf and hf in (2), are known at
the receiver of User f , we have:

zf =
hHf yf
‖hf ‖2F

= xsc + vf , (12)

where vf =
hHf wf
‖hf ‖2F

.
Following (4), we rewrite (12) as:

zpf = xpsc + v
p
f . (13)

As discussed in Section III, there are Kn possible symbols of
xpsc, Z sc(k−1)Kn+l for a given k th symbol of xpf , Z

f
k . When one

of xpsc = Z sci is transmitted, i ∈ [1 + (k − 1)Kn : kKn] the
estimation of xpf should be Z

f
k for t fk−1 < zpf < t fk , where both

t fk−1 and t
f
k are thresholds which are used to detect Z fk . Since

there are Kf symbols of xpf , we need to find Kf −1 thresholds

for detecting xpf . These Kf − 1 thresholds t fk , k ∈ [1 : Kf − 1]
are easily derived as:

t fk = Z sckKn +
Z sckKn+1 − Z

sc
kKn

2
. (14)

For convenience in discussion in the next subsection, we set
t f0 = −∞ and t fKf = ∞ in (14). For the above example, only

one threshold, t f1 is also shown in Figure 3.
Generally, based on zpf in (13), and the threshold t

f
k in (14),

the estimation of xpf can be easily implemented based on
Algorithm 1:

D. THRESHOLD BASED NEAR USER’s SIGNAL DETECTION
Similar to the discussion in the previous subsection,
the received signal at the receiver of User n is given by:

zpn = xpsc + v
p
n. (15)
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Algorithm 1 Threshold Based Signal Detection for Far
User

Input: A list of thresholds [t fi ], i = [1 : Kf − 1], a list of
standard outputs Z fk , k = [1 : Kf ] and z

p
f .

Output: x̂pf
x̂pf ← Z f1 ;
for i← 1 to Kf − 1 do
if zpf > t fi then

x̂pf ← Z fi+1;
end if

end for

Algorithm 2 Threshold Based Signal Detection for Near
User: Step 1

Input: A list of thresholds [t fl ], l = [0 : Kf ] and z
p
n.

Output: t fl < zpn < t fl+1
t f0 < zpn < t f1 ;
for l ← 1 to Kf − 1 do
if zpn > t fl then

t fl < zpn < t fl+1;
end if

end for

Based on Algorithm 1, it is easy to find that zpn > t fk . From
the constellation relationship between xpsc and x

p
f discussed in

Section III, it is known that the estimation of the transmitted
symbol xpn is in the range between t fk and t fk+1. There are
Kn symbols of xpsc between t fk and t fk+1. Now we apply
Algorithm 1 again to estimate the transmitted xpn in the range
between t fk and t

f
k+1. We needKn−1 thresholds to detect x

p
n in

each range between t fk and t
f
k+1 in Algorithm 1. These Kn−1

thresholds between t fk and t fk+1 can also be easily calculated
as:

tnkKn+l = Z sckKn+l +
Z sckKn+l+1 − Z

sc
kKn+l

2
. (16)

These thresholds tnk , k ∈ [1 : Kf × Kn − 1] are shown
in Figure 3. Based on the proposed threshold based detection
algorithm, the estimation of xpn takes two steps.
Step 1:Apply the proposed threshold based detection

algorithm in the previous subsection to find t fl < zpn < t fl+1,
l ∈ [0 : Kf − 1], which is shown in Algorithm 2.
Step 2: Between t fl and t fl+1, apply the proposed

threshold based detection algorithm to find the estimation of
xpn , x̂

p
n .

From Figure 3, it is found that the thresholds for detecting
xpn are tni , i ∈ [lKn + 1 : (l + 1)Kn − 1] between t fl and t fl+1.
Applying the proposed threshold detection algorithm to find
the estimation of xpn is shown in Algorithm 3.

Algorithm 3 Threshold Based Signal Detection for Near
User: Step 2
Input: A list of thresholds [tnlKn+k ], k = [1 : Kn − 1],

a list of standard outputs Znk , k = [1 : Kn] and z
p
n.

Output: x̂pn
x̂pn ← Zn1 ;
for k ← 1 to Kn − 1 do
if zpn > tnlKn+k then

x̂pn ← Znk+1;
end if

end for

E. COMPLEXITY ANALYSIS OF THE THRESHOLD BASED
SIGNAL DETECTION
Compared to the detection in (8), the proposed Algorithm 1
will not treat xn as an interference to detect the far user’s
signal. The proposed Algorithm 1 only requires comparison,
and not the norm operation. Hence, the detection complexity
of Algorithm 1 is less than (8).

Compared to the SIC based detection of xn in (11),
the proposed Algorithm 2 and 3 do not use SIC and/or norm
operations to detect the near user’s signal. The proposed
Algorithm 2 and 3 also only need comparisons. Hence, once
again the detection complexity of Algorithms 2 and 3 is much
lower than (11).

In the following discussion, we regard that the complexity
of the conventional detection and the proposed threshold
based detection is in terms of real operations. It is also
assumed that one complex operation is equal to four real
operations averagely [14].

In (7), hHf yf takes Nr complex multiplications and Nr − 1
complex additions, which is equal to 4(2Nr − 1) real
operations. It is easy to calculate that ‖hf ‖2F

√
αf in (7) takes

4Nr real operations. Finally, the division
hHf yf

‖hf ‖2F
√
αf

in (7),

needs two real operations. Totally from yf to (7), it takes
12Nr − 2 real operations.
For the far user’s signal detection, (7) also can be rewritten

as:
zpf = xpf + v

p
f , (17)

where p ∈ [I ,Q]. Based on the ML detection, the estimation
of xpf is given by:

x̂pf = min
xpf ∈�

p
f

|zpf − x
p
f |

2. (18)

In (18), given a xpf ∈ �
p
f |z

p
f − x

p
f |

2 costs two real operations.
If we use the sort(·) function to implement the function
min(·) in (18), the complexity is Kf log2 Kf real operations
[15]. (18) needs 2Kf + Kf log2 Kf real operations for in-
phase or quadrature signal detection. For the conventional
detector to detect one complex far user signal, the overall
number of real operations is given by:

δfc = 12Nr + 4Kf + 2Kf log2 Kf − 2 (19)
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However, for the proposed threshold based detector to detect
one complex far user signal, the overall number of real
operations is given by:

δfp = 12Nr + 2Kf − 4 (20)

In the conventional detection, User n detects the far user’s
signal first, and then detects its signal based on SIC. From
the above discussion, the near user needs δfc real operations
to detect the far user’s signal. In (9), yn − hn

√
αf x̃f costs Nr

complex multiplications and Nr subtractions, which is equal
to 8Nr real operations. Similar to the above discussion, from
yn to (10), it takes 12Nr−2 real operations. For the near user’s
signal detection, (11) also can be rewritten as:

zpn = xpn + v
p
n. (21)

Based on the ML detection, the estimation of xpn is given by:

x̂pn = min
xpn∈�

p
n

|zpn − x
p
n |

2. (22)

(22) needs 2Kn + Knlog2 Kn real operations for in-phase or
quadrature signal detection. For SIC based detector to detect
one complex near user signal, the overall number of real
operations is given by:

δnc = δ
f
c + 20Nr + 4Kn + 2Knlog2 Kn − 2. (23)

For the proposed threshold based detection, Algorithm 2 needs
Kf − 1 real operations, and Algorithm 3 needs Kn − 1 real
operations. For the proposed threshold based detector to
detect one complex near user signal, the overall number of
real operations is given by:

δnp = 12Nr + 2Kf + 2Kn − 6. (24)

Define the percentage of complexity reduction for the
proposed threshold based detection compared to the
conventional detection as:

βu =
δuc − δ

u
p

δuc
× 100, (25)

where u ∈ [f , n]. β f and βn are the percentage of complexity
reduction for the far user and near user, respectively.

Again, as an example, we set Kf = 2 and Kn = 4. The
proposed threshold based detection results β f = 45.45%
and βn = 75% complexity reduction for Nr = 1, and
β f = 29.41% and βn = 71.15% complexity reduction for
Nr = 2, respectively.
From the above complexity analysis and discussion, it is

easy to find that the proposed threshold based detection has
low detection complexity compared to the SIC based conven-
tional detection.

V. ASEP ANALYSIS OF THE DL-NOMA SYSTEM
Based on the literature survey for the error performance
analysis in Section I, most of the work derived error per-
formance based on SIC. Only [5] derived error performance
in Gaussian channel by considering the relationship between

PAM and QAM. In this article, we did not derive error perfor-
mance for the individual user directly. We convert the deriva-
tion of error performance for the individual user’s symbol
into the error performance of the SC symbols based on the
constellation relationship between xpsc and x

p
u . This approach

is straightforward and easy to understand.
In this article, the error performance analysis for the

DL-NOMA system is directly based on the transmission
of xsc over the AWGN channel. The received signal is
given by:

rsc = xsc + nsc, (26)

where nsc is a complex Gaussian RV distributed as CN(0, ε
ρ
).

Following (4), (26) is further written as:
rpsc = xpsc + n

p
sc, (27)

where npsc is a Gaussian RV distributed as N(0, ε
2ρ ).

Let pu(e) be the average error probability of either the
in-phase or quadrature component of xu, and psu(e) be the
symbol error probability (SEP) of xu, u ∈ [f , n]. Since
QAM is composed of independent and identical in-phase and
quadrature components, the SEP psu(e) may be expressed as:

psu(e) = 2pu(e)− (pu(e))2 . (28)

Since there areKu signal values of x
p
u , pu(e) may be expressed

as:

pu(e) =
Ku∑
k=1

p(e|xpu = Zuk )p(x
p
u = Zuk ), (29)

where p(e|xpu = Zuk ) is the error probability when xpu = Zuk is
transmitted.

If xpu = Zuk were directly transmitted, p(e|xpu = Zuk )
would be easily derived. However the DL-NOMA system
transmits xpsc, not x

p
u . At the receiver of User u only x

p
sc + v

p
sc

is known, and xpu + v
p
u is not known. Thus, we need to derive

the error performance of the DL-NOMA system based on the
received xpsc+ v

p
sc. As discussed in Section III, there exist two

constellation relationships between xpsc and x
p
f , and between

xpsc and x
p
n . Now we derive the ASEP for the far user and near

user, respectively.

A. ASEP OF FAR USER OVER AWGN
Based on superposition coding, transmitting xpf = Z fk is
equivalent to transmitting one of Kn SC symbols xpsc =
Z sci , i ∈ [1 + (k − 1)Kn : kKn], where k ∈ [1 : Kf ]. As an
example, in this article, we set Kf = 2 and Kn = 4. Suppose
Z f1 is transmitted. Then transmitting Z f1 is equivalent to the
transmission of one of four symbols: Z sc1 , Z sc2 , Z sc3 or Z sc4 . This
is shown in Figure 3. From Figure 3 it is observed that if any
one of the above four symbols Z sci , i ∈ [1 : 4] is transmitted,
an unsuccessful detection of xpf = Z f1 occurs when the

received signal of (27) satisfies the condition rpsc > t f1 .
In general, there are Kn × Kf SC symbols xpsc = Z sci , i ∈

[1 : Kn×Kf ]. There are Kf −1 thresholds t
f
k , k ∈ [1 : Kf −1]

to detect xpf . As discussed before we also have t
f
0 = −∞ and

t fKf = ∞.
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Define p(e|xpf = Z fk ) as the error probability when x
p
f = Z fk

is transmitted. Similar to the above discussion and analysis,
the derivation of p(e|xpf = Z kf ) is equivalent to finding
p(ef |x

p
sc = Z sck ), which is defined as the error probability of

detecting xpf when xpsc = Z sck is transmitted. Thus, in terms
of transmission of xpsc, the ASEP for the far user pf (e) is
alternatively given by:

pf (e) =
Kn×Kf∑
k=1

p(ef |xpsc = Z sck )p(spsc = Z sck ), (30)

where p(spsc = Z sck ) = 1
Kn×Kf

.

From Figure 3, it is seen that p(ef |x
p
sc = Z sck ) in (30),

is given by:

p(ef |xpsc = Z sck )

= p(Z sck + n
p
sc < t fa )

⋃
p(Z sck + n

p
sc > t fa+1), (31)

where a = b k
Kn+δ
c, bxc is the floor function and δ is a very

small positive rational number.
Since t f0 = −∞ and t fKf = +∞. Then p(Z sck +n

p
sc < t f0 ) =

0 and p(Z sck + n
p
sc > t fKf ) = 0 in (31).

According to t fa+1 > Z ksc and Z
k
sc > t fa , (31) can be further

written as:

p(e|xpsc=Z
sc
k )=p(npsc > Z sck − ta)

⋃
p(npsc > ta+1 − Z sck ).

(32)

We further have that:

p(e|xpsc = Z sck ) = Q
(√

d f2k−1ρ
)
+ Q

(√
d f2kρ

)
, (33)

where Q(·) is the Gaussian Q-function, d f2k−1 =
2(Z sck −ta)

2

ε

and d f2k =
2(ta+1−Z sck )2

ε
.

Finally, the error probability pf (e) over the AWGN channel
is given by:

pf (e) = A
2K∑
l=1

Q
(√

d fl ρ
)
, (34)

where K = Kn × Kf and A = 1
K .

B. ASEP OF NEAR USER OVER AWGN
Based on superposition coding, transmitting xpn = Znk is
equivalent to transmitting one of Kf SC symbols xpsc = Z sci ,
i ∈ [(l − 1) × Kn + k], where l ∈ [1 : Kf ]. Again, we set
Kf = 2 and Kn = 4 as an example in Figure 3. Suppose Zn1 is
transmitted. Transmitting Zn1 is equivalent to the transmission
of one of two symbols: Z sc1 and Z sc5 .

From Figure 3, it is seen that if Z sc1 is transmitted, a suc-
cessful detection of xpn = Zn1 occurs when the received signal
of (27) satisfies the condition −∞ < rpsc < tn1 or tn4 <

rpsc < tn5 . Similarly, from Figure 3 it is also seen that if Z sc5
is transmitted, a successful detection of xpn = Zn1 occurs
when the received signal of (27) also satisfies the condition
−∞ < rpsc < tn1 or tn4 < rpsc < tn5 . Actually if Z sc1 is
transmitted, the probability of−∞ < rpsc < tn1 is much larger

than the one of tn4 < rpsc < tn5 . Similarly, if Z sc5 is transmitted,
the probability of tn4 < rpsc < tn5 is much larger than one of
−∞ < rpsc < tn1 . Thus, in the following discussion, we only
take into account tnk−1 < rpsc < tnk when Z sck is transmitted.
For convenience, we also let tn0 = −∞ and tnKf×Kn = +∞.
Similar to the above discussion in the previous subsection,

pn(e) is alternatively given by:

pn(e) = 1−
Kn×Kf∑
k=1

p(cn|xpsc = Z sck )p(xpsc = Z sck ), (35)

where p(xpsc = Z sck ) is given in (30) and p(cn|x
p
sc = Z sck )

is defined as the correct probability of detecting xpn
when xpsc = Z sck is transmitted.

From Figure 3, it is seen that p(cn|x
p
sc = Z sck ) in (35) is

given by:

p(cn|xpsc = Z sck ) = p(tnk−1 < Z sck + n
p
sc < tnk ). (36)

We further have that:

p(cn|xpsc = Z sck ) = 1−
(
Q
(√

dn2k−1ρ
)
+ Q

(√
dn2kρ

))
,

(37)

where dn2k−1 =
2(Z sck −t

n
k−1)

2

ε
and dn2k =

2(tnk−Z
sc
k )2

ε
.

Finally, the error probability pn(e) over the AWGN channel
is given by:

pn(e) = A
2K∑
l=1

Q
(√

dnl ρ
)
. (38)

C. ASEPs OF FAR AND NEAR USERS IN RAYLEIGH
FADING CHANNELS
The SEP of both User f and User n over AWGN has been
shown in (28). In this subsection, we will derive the symbol
error probability of both User f and User n in Rayleigh fading
channels based on the received signal in (2).

Given hu, psu(e) in (28) becomes psu(e|hu). ρ in (34) and
(38) becomes ‖hf ‖2Fρ and ‖hn‖2Fρ, respectively. Define the
instantaneous SNR at the receiver of User u as γu =

Ps
Pn
=

‖hu‖2Fρ, where Ps is the instantaneous signal power and Pn
is the instantaneous noise power. The PDF of γu is given
by [16]:

fγu (γu) =
1

(Nr − 1)!γ̄ Nru
γ Nr−1u e−

γu
γ̄u , (39)

where γ̄u = σ 2
u ρ.

Finally, the ASEP of User u in the Rayleigh fading channel
is given by:

psu(e) =
∫
+∞

0
psu(e|hu)fγu (γu)dγu, (40)

where psu(e|hu) = 2pu(e|hu)− p2u(e|hu).
In order to derive closed-form ASEP expressions, we need

to approximate the Gaussian Q-function in (40) for integra-
tion. Taking into account conciseness of ASEP expressions
and approximation accuracy we approximate the Q-function
in 2pu(e|hu) using the trapezoidal rule, while we approximate
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TABLE 1. Parameters setting for simulation.

the Q-function in p2u(e|hu) using the exponential bound in
[17]. The Gaussian Q-function based on the trapezoidal rule
may be approximated as:

Q(x) ≈
1
2c

[1
2
e−

x2
2 +

c−1∑
k=1

e−
x2
2sk

]
, (41)

where sk = sin2(kπ/(2c)) and c is the number of partitions
for the integration in the Q-function.
The GaussianQ-function using the exponential bound may

be approximated as:

Q(x) ≈
1
12
e−

x2
2 +

1
4
e−

2x2
3 . (42)

Substituting (39), (41) and (42) into (40), the ASEP psu(e) for
User u in the Rayleigh fading channel may be derived as:

psu(e) = 2A
2K∑
l=1

mG(dul )+ A
2

2K∑
k=1

2K∑
l=1

mP(duk , d
u
l ), (43)

where mG(x) is defined as:

mG(x) =
∫
+∞

0
Q
(√

xγu
)
fγu (γu)dγu,

=
1
4c

(
(1+0.5xγ̄u)−Nr+2

c−1∑
k=1

(1+0.5xγ̄us
−1
k )−Nr

)
,

(44)

and mP(x1, x2) is defined as:

mP(x1, x2) =
∫
+∞

0
Q
(√

x1γu
)
Q
(√

x2γu
)
fγu (γu)dγu,

=

4∑
k=1

(1+ ak γ̄u)−Nr , (45)

with a1 =
x1+x2

2 , a2 =
3x1+4x2

6 , a3 =
4x1+3x2

6 and a4 =
2x1+2x2

3 .

VI. NUMERICAL RESULTS
In this section, we present the simulated symbol error
rate (SER) versus SNR results for the DL-NOMA system.
In the simulation, it is assumed that the channel fading coef-
ficients hf and hn with AWGN are the same as discussed in
Section II. Both Nr = 1 and Nr = 2 are considered in this
article. The remaining simulation parameters are tabulated
in Table 1.

It is further assumed that the CSI is fully known at the
receiver of User f and User n. We also calculate the theo-
retical results of (43) and validate these theoretical results by
simulations.

Figures 4 and 5 demonstrate the SER versus SNR results
of the DL-NOMA system with Mf = 4,Mn = 16 and
Mf = 16,Mn = 16, respectively. The theoretical ASEPs
of (43) are also plotted in Figures 4 and 5. In the legend,

FIGURE 4. SER versus SNR performance of the far user and near user in
the DL-NOMA system with 4-16QAM.

FIGURE 5. SER versus SNR performance of the far user and near user in
the DL-NOMA system with 16-16QAM.

‘‘1 × Nr Mf -MnQAM User u Csimula, simula or theory’’,
1 × Nr denotes that the BS is equipped with one transmit
antenna, and User u is equipped with Nr receiver antennas;
Mf -MnQAM denotes that the symbols to be transmitted to
User f and User n are MfQAM and MnQAM, respectively;
‘‘Csimula, simula or theory’’ denote simulation based on
conventional detection, simulation based on proposed thresh-
old based detection and theoretical results based on (43),
respectively.

From Figures 4 and 5, it is observed that the symbol error
performance of the proposed threshold based detection is
identical to the one of the conventional detection. It is also
observed that the theoretical results are worse than simulation
results at very low SNR. This is caused by the low accuracy
of the approximatedQ-function using the exponential bound.
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However, it is also observed that the theoretical results match
very well with the simulation results for other SNR ranges for
two DL-NOMA systems with Nr = 1 and Nr = 2.

VII. CONCLUSION
In this article, we investigated the signal constellation
relationship between the individual user’s signal and the SC
signal. Based on the constellation relationships, we proposed
a simple signal detection scheme, threshold based detection
for both far and near users. Compared to the conventional
detection, the proposed threshold detection does not treat the
near user’s signal as interference at the receiver of the far user,
and also does not use SIC to detect its signal at the receiver of
the near user. The detection complexity for both the conven-
tional detection and the proposed threshold based detection
was analyzed. We further derived closed-form ASEP expres-
sions for both the far user and near user based on the constella-
tion relationships. Finally, we presented the simulation results
which served to validate the theoretical frameworks. In future,
we will directly extend the proposed threshold based detec-
tion algorithm and the derivation of the ASEP into multi-user
DL-NOMA system with multiple receive antennas. We may
also extend the work of this article into other channel fading
models.
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