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ABSTRACT Exploring the regional eco-environmental quality (EEQ) and its driving factors is of great
significance for regional management. Although existing studies have paid much attention to evaluate EEQ,
few studies have been performed to investigate the spatiotemporal variations of EEQ and its driving factors
in different ecosystem service regions (ESR) at an urban agglomeration scale. In this study, we selected Jing-
Jin-Ji urban agglomeration (JJJ) as the study area to evaluate its EEQ, analyze its spatiotemporal variations,
and investigate potential driving factors explanatory power based on the geographical detector methods in
different ESR during 2001 ∼ 2015. The main conclusions were as follows: (1) The EEQ of JJJ had improved
from 2001 to 2015, with the average RSEI increased from 0.43 to 0.46; among them, Bashang Plateau and
Western Hebei Ecosystem Service Region (BWHE) had the highest RSEI change rate (+26.19%) and the
highest NTEDI value (0.13), while Central Hebei Plain Ecosystem Service Region (CHPE) had the lowest
RSEI change rate (−5.41%) and the lowest NTEDI value (−0.02). (2) The EEQ of JJJ had strong spatial
agglomeration effects, with the global Moran’s I increased from 0.82 to 0.88. Spatially, the LL regions
mainly changed into the HH regions in the northwestern part, while in the central and eastern areas, some
isolated LL regions displayed an aggregated trend. (3) In terms of the driving factors, soil type and elevation
were primary factors in explaining the variations of EEQ. Specifically, natural factors explained the highest
variations in BWHE. The interaction of topographical and socio-economic factors had high explanatory
power in Yanshan and Taihang Mountain Ecosystem Service Region (YTME) and CHPE; To Bohai and
Coastal Ring Ecosystem Service Region (BCRE), the interaction of meteorological and socio-economic
factors accounted for the high variations of EEQ. All these findings could provide more valuable advice for
relevant policy-makers.

INDEX TERMS Eco-environmental quality, remote sensing ecological index, Jing-Jin-Ji, geographical
detector, ecosystem service region.

I. INTRODUCTION
Since the implementation of the reform and opening-up
policy in 1978, tremendous changes have taken place inmain-
land China, especially in the following aspects, urbanization,
population expansion, and industrialization [1]. Neverthe-
less, along with these processes and intensive human activ-
ities, the regional eco-environment quality (EEQ) has also
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degraded to some extent, which had caused various environ-
mental problems [2]–[4]. Furthermore, these problems had
impeded the achievement of the goal of regional coordinated
development. Hence, it is exceptionally urgent to evaluate
regional EEQ.

Eco-environment defines as ‘‘the total quantity and qual-
ity of water resources, land resources, biological resources
and climate resources that affect human survival and devel-
opment.’’ It is a social-economic-natural compound system
and an essential element for human subsistence [5], [6].
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EEQ assessment is a useful tool to help decision-makers
fully understand the natural and anthropogenic effects on the
regional eco-environment and provide them with valuable
information to formulate corresponding measures [7]. Till
now, numerous researches have been conducted to evaluate
the regional eco-environment at various scales, such as farm-
land [8], province [6], [9] prefecture-level city [10], urban
agglomeration [5], river basin [7], [11], island [12], open pits
[13], and tableland [14]. However, based on existing studies,
it can be found that few studies have performed at the urban
agglomeration scale. An urban agglomeration is a highly
developed spatial form of integrated cities [15]. In 2014,
the China government issued a development roadmap of the
‘‘National New Urbanization Plan,’’ which pointed out to
establish a coordinated mechanism for urban agglomerations
development [5]. To date, China has proposed building a hier-
archical urban agglomeration system with five national-level
large urban agglomerations, nine regional-level medium-
sized urban agglomerations, and six sub-regional-level small-
sized urban agglomerations [15]. Overall, as the final urban
spatial form, evaluating the EEQ at the urban agglomeration
scale will provide support to relevant policy-makers.

A comprehensive evaluation of the regional EEQ should
include two parts, which are the evaluation of the local EEQ
and the exploration of its driving factors. Firstly, regional
EEQ evaluation mainly divided into two types, which are
qualitative and quantitative evaluation methods. Qualitative
evaluation places more emphasis on the ‘‘state’’; however,
it can not provide the degree of these ‘‘state.’’ For instance,
region A and region B are both in a good state, but we
cannot know which region is better? Compared with quali-
tative evaluation, quantitative evaluation can give objective
evaluation value of the eco-environment. To date, numerous
quantitative evaluation methods have been proposed, such as
the ecological footprint method [16], artificial neural network
method [17], matter element analysis method [18], and so
forth. However, these traditional methods mostly evaluate the
whole regional eco-environment with one quantized value,
which fails to acquire the result at any location. Under such
background, integrating with remote sensing datasets and
geographical information system technology to evaluate the
regional eco-environment has attracted the attention of schol-
ars all over the world [19]. Currently, remote sensing with its
advantages of rapid, real-time, and large-scale monitoring has
made much progress in land use classification [20]–[23], eco-
environment evaluation [12]. For example, the normalized
difference vegetation index (NDVI) has been widely used
to monitor the regional vegetation situation [24]; the land
surface temperature (LST) retrieved from thermal images is
applied to evaluate the urban heat island [25]. However, the
eco-environment is one complicated system; one single index
can hardly evaluate it comprehensively [12], [19]. There-
fore, it is common practice to construct one index system to
evaluate the regional eco-environment [19]. He et al. devel-
oped a comprehensive evaluation index (CEI) integrating
fine particulate matter (PM2.5) concentration, land surface

temperature (LST), and vegetation cover (VC) to evalu-
ate the urban environmental change [26]. Chang et al.
established one index system, including fourteen indica-
tors, to assess the eco-environment of the upper Hanjiang
River [27]. Musse et al. integrated remote sensing and cen-
sus data to assess Cali city’s environment based on one
proposed urban environment quality index (UEQI) [28].
He et al. (2019) combined remote sensing and statistical data
to explore the regional differences of ecosystem health based
on VORS (vigor, organization, resilience, and ecosystem ser-
vice) framework [29]. Liou et al. synthesized 12 variables to
assess the eco-environment vulnerability [30].

To sum up, existing researchesmostly more or less selected
some indicators which are cumbersome or difficult to obtain.
Besides, some studies included too much subjectivity in
the EEQ assessment, especially in the indicator weight set-
ting aspect [12]. To make up for these shortcomings, one
comprehensive aggregated index, remote sensing ecological
index (RSEI) proposed by Xu [31], has made progress. This
index integrated four aspects (greenness, heat, wetness, and
dryness), which could reflect the intuitive eco-environment
[12]. What is more, the weight of each indicator was set
objectively based on the spatial principal component analysis
method (SPCA). Till now, various studies have utilized RSEI
to assess regional EEQ successfully [8], [32], [33]. Due to the
comprehensive evaluation of the regional eco-environment,
RSEI was selected to evaluate the EEQ of an urban agglom-
eration.

Secondly, explorations of the driving factors that affect
the local eco-environmental changes have drawn much atten-
tion from scholars globally. Currently, numerous methods
have performed, such as regression analysis [34], correlation
analysis [35], and principal component analysis [36]. How-
ever, these traditional methods can only acquire the influence
degree of individual factors and fail to explore the interac-
tions of different driving factors and their combining effects
on regional eco-environment variation [29], [37]. Compared
with these methods, one promising approach, named the
Geodetector method, proposed by Prof. Wang provides a
solution to make up for these existing shortcomings [38],
[39]. Geodetector method can analyze the single and com-
bined effects of driving factors by investigating the spatial
heterogeneities of geographical phenomena and the changes
of various driving factors [38], [39]. Till now, several studies
have performed by applying this innovative method to inves-
tigate the driving factors in the ecosystem health field or the
urban thermal environment [29], [40]. However, in the eco-
environment evaluation field, existing studies seldom explore
the driving factors of regional eco-environment at different
years and different ESR. Spatial heterogeneity widely exists
in large regions. Hence, it is of considerable significance to
investigate the regional EEQ, and its driving factors influence
degree from the perspective of different ESR.

In this study, Jing-Jin-Ji urban agglomeration (JJJ) was
selected as the study area to evaluate the EEQ and explore
their driving factors from the whole and ESR views.
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The objectives of this study are to a) understand the
spatiotemporal distribution and variation of JJJ’s eco-
environment; b) explore the driving factors affecting the JJJ’s
eco-environment at the whole and ESR level. Our work will
provide useful suggestions for relevant policy-makers to bet-
ter formulate eco-environmental protection measures. The
rest of this paper is organized as follows. Section II intro-
duces the materials and methods, including the study area,
study framework, RSEI construction, NTDEI construction,
spatial autocorrelation, and geographical detector method.
Section III details our results, which includes the spatiotem-
poral changes of EEQ and NTDEI in JJJ and different ESR,
the spatial autocorrelation analysis, the factor, and interaction
detection analysis of JJJ and different ESR. Discussions are
presented in Section IV to compare the result of RSEI and EI
and analyze the implications, limitations, and further study.
Finally, Section V provides the conclusions and suggestions
for relevant policy-makers.

II. MATERIALS AND METHODS
A. STUDY AREA
JJJ locates in north China (36◦05′ ∼ 42◦40′ N, 113◦27′ ∼
119◦50′ E) and covers approximately 218,000 km2.
It includes two municipalities (Beijing, Tianjin), and eleven
prefecture-level cities (Shijiazhuang, Tangshan, Qinhuang-
dao, Handan, Xingtai, Baoding, Zhangjiakou, Chengde,
Cangzhou, Langfang and Hengshu) (Fig. 1). This region has a
temperate semi-humid and semi-arid monsoon climate with
the average temperature in July and annual precipitation of
18 ∼ 27 ◦C and 524.4 mm, respectively. Based on JJJ’s
special geographical features, in this study, it was divided
into four ESR, which were Bashang Plateau and Western
Hebei Ecosystem Service Region (BWHE), Yanshan and Tai-
hang Mountain Ecosystem Service Region (YTME), Central
Hebei Plain Ecosystem Service Region (CHPE), and Bohai
and Coastal Ring Ecosystem Service Region (BCRE) [41].
Nowadays, JJJ is considered as ‘‘the three engines of China’s
economic growth’’ in the 21st century. In 2017, the total
population and gross domestic product reached 95.74 million
and 8058.04 billion yuan, which accounts for 6.89% and
9.77% of that of the whole country (http://www.stats.gov.cn).
Overall, with the fast urbanization, it is a hot topic to evaluate
JJJ’s eco-environment and explore their driving factors in JJJ
and each ESR.

B. DATA SOURCES AND PROCESSING
In our study, the data can be divided into five categories:
remote sensing data, statistical data, meteorological data,
topographic data, and socio-economic data. The remote
sensing data included two datasets, namely MOD09A1 and
MOD11A2, which were provided by the NASA LP DAAC
at the USGS EROS Center (https://lpdaac.usgs.gov) with
a spatial resolution of 500 m and 1000 m. Statistical data
included industrial Sulphur dioxide emission (SF) and sec-
ond industry proportion (SI), which were acquired from the

FIGURE 1. Location of the study area.

China City Statistical Yearbook (http://www.stats.gov.cn).
Meteorological data, involving the annual average tem-
perature (AT) and annual precipitation (PR), was col-
lected from the China Meteorological Data Service Center
(https://data.cma.cn). Topographic data included the ele-
vation (EV) and slope (SP) at the raster format with a
spatial resolution of 90 m, among it, the elevation data
was downloaded from SRTM 90 m DEM Digital Ele-
vation Database (http://srtm.csi.cgiar.org). The slope data
was derived from the elevation data. Socio-economic data
included the gross regional product (GP) and population
density (PD) with a spatial resolution of 1 km, providing
by the Data Center for Resources and Environmental Sci-
ences, Chinese Academy of Sciences (http://www.resdc.cn).
Besides, this website can also give the soil type (ST)
and land use (LU) at the raster format with a resolution
of 1 km. Furthermore, MOD09A1 and MOD11A2 datasets
were collected and processed at the Google Earth Engine
platform (https://code.earthengine.google.com). All other
datasets were preprocessed to at the 1 km spatial resolution
and the same projection with MOD09A1 and MOD11A2 by
using the ArcGIS 10.6 software.

C. STUDY FRAMEWORK
In this study, we proposed a framework to evaluate the JJJ’s
EEQ during 2001 ∼ 2015. This framework consists of three
parts, which were the assessment of JJJ’s EEQ based on
RSEI, the spatiotemporal variations and spatial aggregation
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FIGURE 2. The study framework.

characteristics of JJJ’s EEQ based on NTEDI and spatial
autocorrelation method, and the investigation of driving fac-
tors explanatory power in different ESR. Figure 2 displays the
detailed information.

D. RSEI CONSTRUCTION
The regional EEQ assessment was represented by the com-
prehensive remote sensing ecological index (RSEI). It was
composed of four sub-indexes, which were normalized differ-
ence vegetation index (NDVI), wetness (WET), normalized
difference build-up and soil index (NDBSI), and land surface
temperature (LST). Existing studies found that this index
could be influenced by the crop phenology [42], and was
mainly applied at the city level. To overcome these problems,
we integrated it with MODIS datasets in the period of 1st
June to 31st October. Specifically, LST was directly derived
from the MOD11A2 datasets, the left three sub-indexes were
calculated based on Eq. (1)-(3).

NDVI = (ρnir − ρred ) / (ρnir + ρred ) (1)

WET = 0.1084× ρred + 0.0912× ρnir
+ 0.5065× ρblue + 0.4040× ρgreen
− 0.2410× ρmir1 − 0.4658× ρmir2
− 0.5306× ρmir3 (2)

NDBSI =
1
2


2×ρmir2
ρmir2+ρnir

−
ρnir

ρnir+ρred
−

ρgreen
ρgreen+ρmir2

2×ρmir2
ρmir2+ρnir

+
ρnir

ρnir+ρred
+

ρgreen
ρgreen+ρmir2


+

1
2

{
(ρmir2 + ρred )− (ρmir2 + ρblue)

(ρmir2 + ρred )+ (ρmir2 + ρblue)

}
(3)

where ρ denotes the band surface reflectance; blue,
green, red, nir, mir1, mir2, mir3 are the MODIS
bands at 459-479 nm, 545-565 nm, 620-670 nm, 841-
876 nm, 1230-1250 nm, 1628-1652 nm, and 2105-2155 nm
respectively.

After acquired daily NDVI, WET, and NDBSI datasets
during the period in 2001 and 2015, the average value of
each dataset was calculated. Then spatial principal com-
ponent analysis (SPCA) was performed to synthesize four
sub-indexes. As the first component integrated the highest
ecological information, then Eq. (4)-(5) were applied to get
the final RSEI value.

RSEIorigin= 1− PC1 [f (NDVI ,WET ,NDBSI ,LST )] (4)

RSEI =
(
RSEIorigin_i−RSEImin

)
/(RSEImax−RSEImin)

(5)

where PC1 is the first component result; RSEIorigin_i rep-
resents the RSEIorigin value at the ith pixel; RSEImin is the
minimal value of RSEIorigin value; RSEImax represents the
maximum value of RSEIorigin.

E. NTEDI CONSTRUCTION AND INTRODUCTION OF
SPATIAL AUTOCORRELATION
In this study, to understand the change situation of JJJ’s eco-
environment, one new index, named normalized time eco-
environmental difference index (NTEDI), was proposed to
analyze the regional eco-environment variations in a different
time. The value of this index belongs to −1 ∼ 1. The higher
the value, the better the EEQ, and vice versa. If the value
equals 0, it shows that the EEQ does not change. The formula
is as follows.

NTEDI =
(
EQTend − EQTstart

)
/
(
EQTend + EQTstart

)
(6)

where EQ denotes the EEQ, which was represented by RSEI,
Tstart and Tend represent the start and end time.

The concept of spatial autocorrelation describes the cor-
relation between a variable at a specific position and its
neighboring position. If one observed spatial value changes
in the same direction with the surrounding values, it is called
a positive spatial correlation. If these two values are inversely
related, it is called a negative spatial relationship. If the
observed values show randomness in spatial distribution, this
indicates that the spatial correlation is not apparent, and it is
called a random distribution. The spatial autocorrelationmea-
surement method can be divided into global and local spatial
autocorrelation. Global spatial autocorrelation describes the
overall distribution of some phenomena and judges whether
these phenomena have an aggregated characteristic in par-
ticular areas. However, it fails to precisely point out these
areas [43], [44]. Local spatial autocorrelation calculates the
local spatial aggregation and points out their locations [45].
Moran’s I is the most commonly used indicator to detect the
spatial autocorrelation situation [43]. Eq. (7) and Eq. (8) are
the formulas of global Moran’s I (Ig) and local Moran’s I (Il)
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respectively.

Ig =

N
∑
i

∑
j
wij (xi − µ)

(
xj − µ

)
(∑

i

∑
j
wij

)∑
i
(xi − µ)2

(7)

Il =
xi − µ∑

i
(xi − µ)2

∑
j

wij
(
xj − µ

)
(8)

where xi and xj denote the variable value at pixel i and j;
represents the average value; wij is the spatial weight func-
tion; N is the number of point pairs. In this study, RSEI
was first resampled to 1 km; then, the spatial weights matrix
was generated. Specifically, the inverse distance was used to
conceptualize the spatial relationship, the euclidean distance
was adopted as the distance method, the exponent was set
to 1, and the number of permutations was set to 999 [46].
Finally, Ig and Il were acquired based on the spatial weights
matrix.

F. GEOGRAPHICAL DETECTOR METHOD
The geographical detector method can measure the spatially
stratified heterogeneity of the geographic variable Y and
explore how factor X explains the spatial pattern of Y [38],
[47]. Different from traditional methods, the geographical
detector method can analyze both categorical and discretized
continuous variables; besides, it can investigate factors inter-
action result. The correlation degree between geographic
variable Y and factor X is measured by the q-statistic value,
which is expressed as Eq. (9) [39].

q = 1−
1

Nσ 2

L∑
h=1

Nhσ 2
h (9)

where h indicates the number of geographical variable Y
stratified by factor X (a categorical variable or discretized
continuous variable); N and Nh represent the number of total
grids and grids in stratum h; σ2 and σ 2

h are the variances of
geographical variable Y at the whole region and stratum h.
The value of q ranges from 0 to 1. A higher q value indicates
that Y has a stronger spatially stratified heterogeneity, and
factor X can explain 100 × q% of the spatial pattern of Y
(http://www.geodetector.org). In this study, Y represents the
RSEI value in 2001 and 2015; X represents each driving fac-
tor. Each factorX needs to be categorized using a user-defined
method or a categorization algorithm. Here, we choose four
discretized methods, which are equal interval (EI), natural
breaks (NB), quantile (QU), and geometrical interval (GI).
Besides, each method at five, six, and seven groups was
performed to acquire the optimal q statistic value [48].

The interaction detector is one promising tool to identify
the combined effect of any two different driving factors,
which has five categories (Eq. (10)-(14)).

Nonlinear − enhance :

q(X1 ∩ X2) > q (X1)+ q (X2) (10)

Bi− enhance :

q(X1 ∩ X2) > Max (q (X1) , q (X2)) (11)

Independent :

q(X1 ∩ X2) = q (X1) + q (X2) (12)

Single factor nonlinear weaken :

Min (q (X1) , q (X2)) < q(X1 ∩ X2)

< Max (q (X1) , q (X2)) (13)

Nonlinear − weaken :

q(X1 ∩ X2) < Min (q (X1) , q (X2)) (14)

where q is the factor detector value, X1 and X2 were the any
two driving factors.

III. RESULTS
A. SPATIOTEMPORAL CHANGES OF JJJ’S EEQ
Figure 3 displays the RSEI result in 2001 and 2015. Spatially,
the EEQ in JJJ showed an increasing trend in the northwest-
ern areas. Oppositely, in the central and southeastern areas,
a decreasing trend was found. By calculating the average
RSEI value of JJJ, we found that the value had increased from
0.43 in 2001 to 0.46 in 2015. To further understand the change
patterns, we set 0.2 as the interval to classify RSEI into five
groups, which were the poor (0 ∼ 0.2), fair (0.2 ∼ 0.4),
moderate (0.4 ∼ 0.6), good (0.6 ∼ 0.8), and excellent
(0.8 ∼ 1.0). Based on Figure 4, compared with 2001,
in 2015, the percentage of poor, fair, and moderate grades
decreased, while the percentage of good and excellent grades
increased, further validating that the JJJ’s eco-environment
had improved.

FIGURE 3. Spatial distribution of RSEI in JJJ.

B. SPATIAL AUTOCORRELATION ANALYSIS
OF JJJ’S EEQ
The global Moran’s I values in 2001 and 2015 were 0.82
and 0.88, respectively, which was significant at the 0.01 level.
According to global Moran’s I values, we found that, in both
years, the JJJ’s EEQ displayed an apparent positive correla-
tion. That is to say, the spatial distribution of JJJ’s EEQ had
a clustering feature. Besides, compared with 2001, in 2015,
the global Moran’s I value had increased by 7.31%, repre-
senting the degree of spatial clustering was strengthing.
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FIGURE 4. The area percentage of different grades.

FIGURE 5. Spatial distribution of LISA clustering.

The localMoran’s I result displayed the spatial distribution
maps in 2001 and 2015 (Figure 5). Typically, it includes
five spatial clustering models, which are high-high aggrega-
tion (HH), high-low aggregation (HL), low-high aggregation
(LH), low-low aggregation (LL) and not significant (NS).
Based on Figure 5, the EEQ of JJJ was mainly composed
of HH and LL. In both years, the LL aggregation areas
were mostly found in the northwestern, southern-central, and
eastern parts. The HH aggregation areas were mainly located
in the northern regions and partly in the western areas. Dur-
ing 2001 ∼ 2015, the area of the LL aggregation in the
northwestern part decreased and was mainly turned into HH
aggregation, indicating the improvement of the ecological
environment in these regions. In the central and eastern parts
of JJJ, however, many isolated LL regions were gradually
aggregated.

C. VARIATIONS OF JJJ’S EEQ BASED ON NTDEI
Figure 6(a) and Figure 6(b) display the NTEDI value and
spatial distribution of different grades. Among them, natural
breaks (Jenks) method was applied to divide NTEDI into five
grades. We found that the region with higher NTEDI value,
including high and second high grades, mainly distributed
in the northwestern part, except for one located in the east-
ern coastal area. As for those regions with a lower NTEDI
value, including second low and low grades, they were mostly
distributed in the central Hebei plain. To the medium grade,
it mainly distributed in the Yanshan and Taihang mountains
area.

FIGURE 6. Spatial distribution of NTEDI and different grades.

TABLE 1. The average value of RSEI and NTEDI in different ESR.

D. EEQ AND NTEDI ANALYSIS IN DIFFERENT ESR
We analyzed the RSEI and NTEDI values of each ESR
(Table 1). Specifically, compared with 2001, in 2015, the
average RSEI value in BWHE, YTME, and BCRE all
increased; however, the change rates were different; the order
of three ESRs’ change rate was as follows: BWHE (26.19%)
> YTME (5.88%) > BCRE (2.70%). CHPE was the only
region with a negative change rate (-5.41%). The same order
was also acquired in the average NTEDI value. Combined
with Figure 6(b), we could further find that the high and sec-
ond high NTEDI grades were mostly distributed in BWHE,
while second low and lowNTEDI grades weremainly located
in CHPE. Besides, YTME was mostly covered with the
medium NTEDI grade. As for BCRE, all five NTEDI grades
distributed in this region.

E. FACTOR DETECTION ANALYSIS FROM THE WHOLE
AND DIFFERENT ESR VIEW
Table 2 shows the optimal q statistic value. From the per-
spective of the whole region, the second industry proportion
had explained the highest variation of JJJ’s eco-environment
(average q value was 0.4255), followed by the slope (aver-
age q value was 0.4149), the industrial Sulphur dioxide
emission (average q value was 0.3954), and annual average
temperature (average q value was 0.3809). Besides, except
for the annual precipitation’s q value decreased, all left fac-
tors’ q value increased. Among it, the q value of land use
had increased with the highest degree (174.63%), followed
by population density (142.41%), elevation (141.59%), and
gross regional product (103.04%).

To each ESR, the explanatory power showed a differ-
ence. Specifically, to BWHE, soil type, annual precipitation,
slope, and land use were the top four factors that occupied
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TABLE 2. The q statistic value of the whole and each ESR of JJJ.

the high variations of this region’s eco-environment, with
the average q value of 0.4999, 0.3888, 0.2999, and 0.2941,
respectively. From the view of the change rate of q value
in a different year, the annual average temperature had the
highest decreased degree (−59.19%), other factors with a
decreased degree had land use, second industry proportion,
industrial Sulphur dioxide emission, and soil type. To those
left factors with an increased degree, elevation had the high-
est increased degree (75.23%), followed by gross regional
product (63.89%) and slope (39.48%). To YEME, elevation,
annual average temperature, and population density were the
top three factors with the average q value of 0.4271, 0.3805,
0.3677, respectively. The explanatory power of land use dis-
played the highest decreased degree (−15.89%). Besides,
the gross regional product and soil type had a low decreased
degree (−6.98% and −0.85%). Moreover, the q value of
elevation, annual precipitation, and the annual average tem-
perature had a higher increased degree, which was 35.25%,
32.15%, 24.32%, respectively. As for CHPE, the annual aver-
age temperature had the highest average q value (0.3239),
followed by the second industry proportion and industrial
Sulphur dioxide emission (0.3062 and 0.3005). Based on the
change rate of q value, except for the annual precipitation and
gross regional product had a negative change rate (−49.71%
and−3.67%). In those factors with a positive change rate, ele-
vation had the highest increased degree (581.25%), followed
by the slope (295.00%), land use (185.76%), and population
density (150.97%). To BCRE, the annual average tempera-
ture, second industry proportion, industrial Sulphur dioxide
emission, and gross regional product were the top four factors
with the high average q values, which were 0.4839, 0.4776,
0.4521, and 0.4330, respectively. From the change rate point
of view, five factors had a negative change rate, which was
the elevation (−66.42%), industrial Sulphur dioxide emission
(−44.68%), second industry proportion (−43.99%), annual
average temperature (−34.29%), and gross regional product
(−8.53%). In the rest factors with a positive change rate,
the slope had the highest increased rate (186.36%), followed

by population density (74.71%), the annual precipitation
(34.66%), soil type (31.05%), and land use (28.88%).

F. INTERACTION DETECTION ANALYSIS FROM THE
WHOLE AND DIFFERENT ESR VIEW
The interaction of second industry proportion and industrial
Sulphur dioxide emission of CHPE in 2001 displayed an irrel-
evant relationship. All the left interaction detection results in
both years revealed that any two driving factors’ interaction
could enhance the explanatory power, whether in the whole
region or the ESR. Table 3 listed the top three interaction
detection results. We found that there existed a difference
in a different year. Besides, all results represented a bi- or
nonlinear enhancement.

Specifically, from the perspective of the whole JJJ, in both
years, soil type, elevation, annual average temperature,
second industry proportion, and industrial Sulphur dioxide
emission together explained the spatial variations of JJJ’s
eco-environment. In 2001, soil type was an important factor
in interacting with the other three factors, while in 2015,
elevation was displayed as one important factor.

From the regional scale, different ESR showed a differ-
ence. To BWHE, soil type, elevation, annual average temper-
ature, annual precipitation, and population density had high
explanatory power. Among it, in 2001, soil type acted as an
important factor; in 2015, elevation represented as a signifi-
cant factor. As for YEME, elevation, second industry propor-
tion, annual precipitation, industrial Sulphur dioxide emis-
sion, and annual average temperature were important factors
in explaining the eco-environmental variations, among them,
elevation displayed as one important factor in both years.
To CHPE, the second industry proportion, elevation, annual
precipitation, annual temperature, industrial Sulphur diox-
ide emission, and gross regional product were key factors.
In 2001, the second industry proportion was an important
factor, while in 2015, elevation represented as a significant
factor.
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TABLE 3. The top three interaction detection results of the whole and each ESR of JJJ.

TABLE 4. The average values of RSEI and EI at the whole and city level.

As for BCRE, annual average temperature, population
density, gross regional product, soil type, second industry
proportion, annual precipitation together explained the vari-
ations of regional EEQ. Among them, in 2001, the annual
average temperature was found as a key factor. In 2015,
the population density was displayed as an important factor.
Besides, in 2001, the order of the average interaction value of
top three interaction results was as follows: BCRE (0.7176)
> YTME (0.6318) > BWHE (0.6139) >Whole (0.5264) >
CHPE (0.3595). To 2015, the sequence was YEME (0.7031)
> Whole (0.6884) > BWHE (0.5980) > BCRE (0.5566)
> CHPE (0.4979). Moreover, in some regions, one factor
had a low ability to explain the eco-environmental variations
while interacted with other factors; it represented a remark-
able increase. For instance, in BWHE, in 2015, the q value
of elevation was 0.0985. However, the explanatory power
increased sharply to 0.6003 when interacted with annual
precipitation. Furthermore, in 2001, to CHPE, the q values
of elevation and second industry proportion were 0.0256 and
0.2557, respectively. However, the interaction of two fac-
tors displayed a nonlinear enhancement. These indicated that

driving factors from one aspect might act as a bridge enhanc-
ing driving factors from other aspects [29].

IV. DISCUSSION
A. COMPARISON OF RSEI AND EI
In this study, we adopted the ecological index (EI), which
was promoted by the Ministry of Ecology and Environment
of China in 2015, to compare its results with RSEI [49].
Table 4 shows the average values of the two indexes at the
whole and city level. Among it, RSEI value has rescaled to
0 ∼ 100 to compare EI at the dimension. From the perspec-
tive of the whole JJJ, two indexes all displayed an upward
trend, further validating that the JJJ’s EEQ had improved.
From the view of the city level, eight cities showed the same
change trend in both EI and RSEI, while five cities showed
a different one. The reason for this might be the difference
in the data acquisition and processing. The RSEI was derived
from remote sensing datasets; therefore, it could reflect the
JJJ’s EEQ anywhere. However, to EI, it required both remote
sensing and statistical data. Previous studies had concluded
that the RSEI could reflect regional eco-environment changes
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more effectively than EI; even there existed a small difference
[8], [19]. Hence, it was feasible to evaluate regional EEQ
using RSEI.

Overall, based on both indexes, the eco-environment of
JJJ had improved during 2001 ∼ 2015. Existing researches
also reported similar conclusions. For instance, Wang et al.
analyzed the land-use dynamics of JJJ. They found that
deforestation, grass destruction, and grain cultivation grad-
ually declined [50]. Indeed, the implementation of numerous
projects by the government has contributed a lot [51]. For
example, ‘‘Returning Farmland to Forest (grass) Project,’’
‘‘Three-North Shelter Forest Program,’’ and ‘‘Beijing-Hebei
Ecological Water Resources Protection Forest Project,’’
which were begun in 2000, 1979, and 2009, respectively [5].
Taking Zhangjiakou city as an example, the high NTEDI
grade was mainly distributed in this city, combined with
statistical data, at the end of 2015, farmland with almost
0.2257 million hectares had converted into the forest [50],
[52]. To sum up, existing projects had made progress; how-
ever, more stringent plans should be formulated to acquire a
better eco-environment in the future [50].

B. IMPLICATIONS OF DRIVING FACTORS ANALYSIS IN
WHOLE AND DIFFERENT ESR OF JJJ
Exploring the driving factors at the whole and ESR scale
will provide more detailed information in regional eco-
environment management. In this study, the explanatory
power of all driving factors in the different year have a
significant difference.

From the whole perspective, the second industry propor-
tion had a high q value, which represented its strong ability to
explain the spatial variations of EEQ. Besides, its interaction
with soil type and elevation enhanced explanatory power.
The second industry proportion was one component of the
industrial structure, while the latter had an important effect
on the eco-environment [53]–[55]. Previous studies found
that the increase of the second industry proportion exerted
the most significant influence on the discharge of indus-
trial solid wastes [55], it had been validated that industrial
development in some developing countries could cause the
deterioration of environment [56], [57]. Except for the second
industry proportion, the high q value of industrial Sulphur
dioxide emission also indicated that the air quality could also
influence the regional EEQ [57]. The driving factors of land
use and population density displayed a sharp increase during
2001 ∼ 2015, showing that anthropogenic activities exerted
an increasing effect on the regional EEQ. Similar studies had
proven that land-use changes and population expansion could
have an impact on the variations of eco-environment [58],
[59]. According to Table 3, we also found that the interaction
of soil type with meteorological or topographical factors
could increase the explanatory power. Namely, the variations
of EEQ were not driven by one or two stable indicators, but
a combined effect of numerous factors.

Compared with the detection results from the whole view,
to each ESR, the q value showed a difference. To BWHE,

soil type, annual precipitation, and slope had a high q value;
namely, BWHE was mainly dominated by natural factors.
Interaction detection revealed that two natural factors could
enhance the explanatory power, for instance, the combined
influence of soil type and elevation could explain 63.12% and
61.91% variations of BWHE’s eco-environment in 2001 and
2015. This region belonged to the semi-arid grassland zone,
and the elevation was in the range of 1300 m∼1600 m.
Besides, this region was the primary area of soil forma-
tion and protection [41]. In the semi-arid climate zone, pre-
cipitation could influence the patterns of vegetation [60],
[61], while vegetation was a crucial element in improving
the regional eco-environment [60]. To YTME, elevation,
annual average temperature, and population density had a
high q value. The interaction detector revealed that the com-
bined effect of elevation and second industry proportion
could explain 63.29% and 71.75% variations of regional
eco-environment. The primary land-use type in YTME was
forest and grassland, with high vegetation coverage and high
biodiversity. It had been reported that temperature exerted an
effect on the vegetation [62], [63]. Besides, YTME located in
the mountainous area; that is why the elevation was shown as
an essential factor. CHPE, mainly covered by cultivated land,
was not only an important food supply area but also a densely
populated area in JJJ. The above analysis revealed that the
EEQ of this region displayed a negative trend (−5.41%). Dif-
ferent from BWHE, this region was deeply driven by natural
and human factors, including annual average temperature,
the second industry proportion, and industrial Sulphur diox-
ide emission. Besides, the q value of elevation, slope, land
use, and population density had increased sharply. Recently,
the land-use intensity of this region was increasing, especially
the continuous increase of construction land and the decrease
of farmland. As for BCRE, even the annual average tempera-
ture had the highest q value; however, socio-economic and
environmental factors all had a higher explanatory power.
Generally, this region was close to the Bohai Sea and an area
with rapid economic development [41]. Set the Binhai new
district as an example, Hu et al. found that imperviousness
and socio-economic factors had a high explanatory power of
this region’s thermal environment [40].

Overall, based on the factor and interaction detection
results, it could provide more detailed information for
regional eco-environment management. For BWHE, more
measures should be taken to protect and improve soil for-
mation. For example, change the mode of production of
animal husbandry, ban grazing, and rest grazing, carry out
house feeding and captive breeding, determine livestock
by grass, and strictly control livestock carrying capacity.
Besides, several existing projects should be strengthened to
increase the regional vegetation coverage. What is more,
the industrial structure should adjust to realize the virtuous
cycle of its eco-environment. As for YTME, natural veg-
etation should be strictly protected; besides, overgrazing,
disorderly mining, deforestation, and grassland reclamation
shall be prohibited. To CHPE, we should develop ecological
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agriculture, gradually reduce the number of chemicals used,
protect soil quality, and increase construction land moder-
ately. To BCRE, it was suggested that the proportion of
construction land should be adjusted when developing the
economy. Besides, soil protection measures also need to be
formulated [41], [64]–[67].

C. LIMITATIONS AND FURTHER STUDY
The spatial resolution of JJJ’s eco-environmental quality was
essential for the final analysis. In this study, the spatial
resolution of RSEI at 1 km was acquired to perform the
latter analysis. However, there still existed defects, as the
higher resolution could provide more detailed information
in conveying the eco-environmental variations. Nowadays,
with the fast development of image pansharpening tech-
nologies, it can be expected that continuous remote sensing
datasets at a high temporal and spatial resolution will be of
great help to assess regional eco-environment at large scale.
Besides, several conditions should be taken into considera-
tion when utilizing RSEI. Firstly, considering the wetness
information was derived from tasseled cap transformation
formula, regionswith large proportions of water bodies would
increase the contribution of water bodies and could not reflect
the true wetness information of earth surface; hence, it was
not recommended to evaluate ocean’s EEQ [42]; Secondly,
as mentioned in Section II, crop phenology would exert an
influence on the variations of regional EEQ; therefore, it was
important to keep the time period at the same dimension and
summer was suggested [19], [42]; Thirdly, RSEI was applied
to evaluate the regional general EEQ, which was not suitable
to some special cases, such as habitat analysis [19].

In addition, even the geographical detector method pro-
vided a way to detect the interaction results of two factors;
it could not acquire the combined explanatory power of
three or more factors. It would be further work to develop
a novel method to analyze combined explanations of multi
factors. Besides, ten driving factors of five aspects were
detected; however, the regional eco-environment was a com-
plex compound system; more factors need to be taken into
consideration.

Generally, even there exist several limitations, we still
believe that our study is meaningful. Although the spatial
resolution of EEQ was 1 km, it still could reflect the spa-
tiotemporal variations of the eco-environment. The detection
of two factors interaction results has achieved a significant
leap compared with traditional statistical methods. Overall,
our proposed framework can provide more detailed sugges-
tions for relevant policy-makers to formulate more specific
measures to improve the JJJ’s eco-environment.

V. CONCLUSION
In this paper, we evaluated the regional EEQ, explored the
spatial distribution characteristics, and investigated the driv-
ing factors at the JJJ urban agglomeration and ESR scale from
2001 to 2015. Our research extended the existing knowledge
of eco-environmental assessment studies from the following

aspects. Firstly, we integrated RSEI and MODIS datasets
to evaluate regional EEQ at the urban agglomeration scale
successfully. Secondly, we analyzed the spatiotemporal dis-
tribution and spatial distribution characteristics and proposed
a new index (NTEDI) to investigate the variations of JJJ’s eco-
environment at the whole and ecosystem service perspective.
Thirdly, we explored the driving factors’ ability to explain
regional eco-environmental variations and detected a single
factor’s effect and combined effect of two factors in a differ-
ent year by applying the geographical detector method.

Generally, the main findings of this study were as follows.
Firstly, the eco-environmental quality in JJJ had improved
during 2001 ∼ 2015, with the RSEI value increased from
0.43 to 0.46. Secondly, there existed strong spatial agglom-
eration effects of JJJ’s eco-environmental quality, with the
global Moran’s I increased from 0.82 to 0.88. Local Moran’s
I revealed that, during 2001 ∼ 2015, in the northwestern
regions, the LL regions showed a decreased trend and mainly
turned into the HH regions, while some isolated LL regions
in the central and eastern parts represented an aggregated
trend. Thirdly, during 2001 ∼ 2015, the EEQ of BWHE
had the highest RSEI change rate (+26.19%) and the highest
NTEDI value (0.13), while the CHPE had the lowest RSEI
change rate (−5.41%) and the lowest NTEDI value (-0.02).
Finally, we found that driving factors displayed spatial het-
erogeneity. Specifically, soil type and elevation were primary
factors in explaining the variations of eco-environmental
quality. The interaction of natural factors (soil type, eleva-
tion, annual average temperature, and annual precipitation)
explained the highest variations in BWHE. To YTME and
CHPE, the interaction of topographical and socio-economic
factors had high explanatory power. To BCRE, the interaction
of meteorological and socio-economic factors (e.g., annual
average temperature, second industry proportion, population
density) accounted for the high eco-environmental quality
variations. Overall, the assessment of regional EEQ and the
investigation of driving factors in different ecosystem ser-
vice regions could provide useful suggestions for relevant
policy-makers.

ABBREVIATIONS
AT Annual Average Temperature
BCRE Bohai and Coastal Ring Ecosystem

Service Region
BWHE Bashang Plateau and Western Hebei

Ecosystem Service Region
CHPE Central Hebei Plain Ecosystem Service Region
EEQ Eco-environmental Quality
EI Ecological Index
ESR Ecosystem Service Region
EV Elevation
GP Gross Regional Product
JJJ Jing-Jin-Ji
LST Land Surface Temperature
LU Land Use
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NDBSI Normalized Difference Build-up and Soil Index
NDVI Normalized Difference Vegetation Index
NS Not Significant
NTEDI Normalized Time Eco-environmental

Difference Index
PD Population Density
PR Annual Precipitation
RSEI Remote Sensing Ecological Index
SF Industrial Sulphur Dioxide Emission
SI Second Industry Proportion
SP Slope
SPCA Spatial Principal Component Analysis
ST Soil Type
VC Vegetation Cover
WET Wetness
YTME Yanshan and Taihang Mountain

Ecosystem Service Region
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