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ABSTRACT A unique member of the power transformation family is known as the Box-Cox transformation.
The latter can be seen as a mathematical operation that leads to finding the optimum lambda (λ) value
that maximizes the log-likelihood function to transform a data to a normal distribution and to reduce
heteroscedasticity. In data analytics, a normality assumption underlies a variety of statistical test models.
This technique, however, is best known in statistical analysis to handle one-dimensional data. Herein, this
paper revolves around the utility of such a tool as a pre-processing step to transform two-dimensional data,
namely, digital images and to study its effect. Moreover, to reduce time complexity, it suffices to estimate the
parameter lambda in real-time for large two-dimensional matrices by merely considering their probability
density function as a statistical inference of the underlying data distribution. We compare the effect of this
light-weight Box-Cox transformation with well-established state-of-the-art low light image enhancement
techniques. We also demonstrate the effectiveness of our approach through several test-bed data sets for
generic improvement of visual appearance of images and for ameliorating the performance of a colour
pattern classification algorithm as an example application. Results with and without the proposed approach,
are compared using the AlexNet (transfer deep learning) pretrained model. To the best of our knowledge,
this is the first time that the Box-Cox transformation is extended to digital images by exploiting histogram
transformation.

INDEX TERMS Box-Cox transformation, image enhancement, automatic estimation of lambda, color
pattern classification.

I. INTRODUCTION
It is not uncommon that image-based computer vision algo-
rithms start with a pre-processing phase whereby images are
transformed to prepare the data for further processing. Image
transformation may embody contrast stretching of intensity
values, histogram equalization or its adaptive version, inten-
sity normalization, point-wise operation (e.g., gamma cor-
rection), etc. The colours present in an image of a scene
supply information about its constituent elements. However,
the richness of this information depends very much on the
imaging conditions, such as illumination conditions [1] which
may significantly degenerate the performance of a variety of
computer vision and pattern recognition algorithms.

To eradicate any confusion, we stress -in what follows-
that by the term gamma correction, we mean the power-
law adjustments performed to improve the quality/contrast of
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images. Gamma correction, likewise, arcsine transform, are
all members of a class of transformations known formally
as power transformation which also encompasses the so-
called Box-Cox transformation (BCT), a theme that forms
the core of this work. The BCT, as a versatile technique,
is mostly popular within the statistical and information theory
communities. It aims at improving normality of a distribution
and equalizing variance (reducing heteroscedasticity) to meet
statistical assumptions and improve effect sizes for quantita-
tive analysis of data [2].

Traditionally, BCT is applied to a vector (one-dimensional
data) but, to the best of our knowledge, it has not been
extended to matrices exhibiting adjacency correlation such as
images except in Bicego and Baldo [3], whose work, unfor-
tunately, provides only a cursory overview of the subject.
Besides, the generalization to a d-dimensional set of points
that they advocate for which typically consists in performing
d 1-dimensional transformations, one for each direction of
the problem space, is time consuming and not feasible in our

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 154975

https://orcid.org/0000-0002-4390-411X
https://orcid.org/0000-0003-2026-1219


A. Cheddad: On Box-Cox Transformation for Image Normality and Pattern Classification

case. The other work is that of Lee et al. [4] who exploited the
parameter lambda (λ) to further extend the classical mixtures
expectation-maximization segmentation to allow generalisa-
tion to non-Gaussian intensity distributions for medical MR
images.

The rationale behind our approach is not in quest of gaus-
sianity, since images do not always conform to unimodality,
but rather to enhance images and boost classes separability (in
machine learning context). Of the many techniques currently
in vogue for image enhancement, we advocate for the use of
our approach both in tandem with machine learning and as a
general tool for image enhancement.

A. MOTIVATIONS
This work is motivated by the scarcity of automatic algo-
rithms that fine-tune the parameter λ in gamma power trans-
formation for image enhancement. Power transformations
are ubiquitously used in various fields, however, estimating
proper values for λ remains problematic. For instance, Fattal
[5] proposed an algorithm that returns the atmospheric light
colour (orientation and magnitude) and stated within the
implementation that gamma correctionmight help orientation
recovery where he suggested setting it to 1.5. In Ren et al.
[6], the authors recommended in their implementation that
if the input is very hazy, one can use a large gamma value,
but they did not reveal the mechanism. In Berman et al. [7]’s
implementation, they borrowed gamma values of specific
images from Fattal [5]. In Meng et al. [8]’s implementation
they set λ = 2 as a regularization parameter.

MATLAB’s built-in function, imadjust (ver. 2019a), de-
faults λ to 1 (linear/identity mapping) to dictate the shape of
the curve describing relationship of input and output values.
MATLAB lets fine-tuning it to the user’s arbitrary guess,
though the software highlights generic intuitive guidelines
to set λ without delving into any insights on how to esti-
mate that automatically. Liu et al. [9] proposed a dehaz-
ing method where λ is set to 0.5 in the Gamma correction
based pre-processing step. Shi et al. [10] realised, as we
did, that the traditional power-law transformation has the
following disadvantage, increasing λ would overcompensate
the image’s Gamma and thereby darken the processed image
while enhancing its contrast. As they did not work out a
remedy for such disadvantage, they eventually resorted to
using intensity range normalization. These were partially the
impetus behind this study.

Therefore, herein, in this article we pinpoint this prob-
lem and provide a real-time solution to find the optimal
λ automatically, which is an essential pre-processing phase
in various image processing-based disciplines. This article
comes purely to address this issue and propose a solution to
it.

B. CONTRIBUTIONS
In a nutshell, the contributions of this paper can be sum-
marised as follows:

• Indirectly extending the statistical method, BCT, to dig-
ital images to establish informed statistical inference on
how to estimate image transformation.

• Suggesting a simple yet robust, efficient and inexpensive
image enhancement technique that is data dependent
(i.e., adaptive) and parameter-free.

• Refining current state-of-the art colour pattern identifi-
cation algorithm.

The remainder of the paper is apportioned to the following
sections: Section II discusses the related work, Section III
reviews the BCT algorithm, Section IV discusses the appli-
cation of BCT to digital images (termed henceforth BCI),
Section V brings about the experimental set-up as well as the
data sets which are utilized in this study. Section VI is devoted
to results and discussion and SectionVII concludes this paper.

II. RELATED WORK
Herein, we list some of the existing and commonly used
image enhancement techniques.

A. CONTRAST LIMITED ADAPTIVE HISTOGRAM
EQUALISATION (CLAHE) [11]
In response to the drawback of global histogram equalisation
in giving unfavourable results, the CLAHE operation was
proposed with two major intensity transformations. The local
contrast is estimated and equalized within non-overlapping
blocks in the projection image, subsequently, the intensities
are normalized at the border regions between blocks through
bilinear interpolation. The name contrast-limited refers to the
clip limit, which is set to avoid saturating pixels in the image
[12].

B. SUCCESSIVE MEANS QUANTIZATION TRANSFORM
(SMQT) [13]
This is an iterative method that can automatically enhance the
image contrast. It is capable to perform both a non-linear and
a shape preserving stretch of the image histogram.

C. BRIGHTNESS PRESERVING DYNAMIC FUZZY
HISTOGRAM EQUALIZATION (BPDFHE) [14]
This method enhances images by means of calculating fuzzy
statistics from image histogram and is built on a prior work.

D. ADJUSTING IMAGE INTENSITY VALUES (IMADJUST)
[15]
In here, we use MATLAB’s built-in function which maps
the intensity values in a grayscale image to new values. By
default, imadjust saturates 1% at both top and bottom of all
pixel values, resulting in increase of contrast in the output
image.

E. ADAPTIVE GAMMA CORRECTION WITH WEIGHTING
DISTRIBUTION (AGCWD) [16]
Huang et al., presented an automatic transformation tech-
nique that improves the brightness of dimmed images via
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gamma correction and probability distribution of luminance
pixels.

F. WEIGHTED VARIATIONAL MODEL (WVM) [17]
This algorithm estimates both the reflectance and the illumi-
nation from a given image whereby a new weighted varia-
tional model is imposed for better prior representation. The
authors claim that their model can preserve the estimated
reflectance with more details. However, when we tested it on
square matrices of size 211 × 211, it took 76.59 sec to con-
verge on average using the authors’ original implementation.

G. LOW-LIGHT IMAGE ENHANCEMENT (LIME) [18]
The algorithm proposes a simple yet effective low-light image
enhancement method where the illumination of each pixel is
first estimated individually by finding themax (R, G, B). Sub-
sequently, it refines the initial illumination map by imposing
a structure prior on it to produce the final illumination map.
Finally, the enhancement is achieved guided by the obtained
illumination map.

III. THE BOX-COX TRANSFORMATION (BCT)
BCT is a parametric non-linear statistical algorithm that is
often utilized as a pre-processing channel to convert data to
normality, it is credited to Box and Cox [19]. The method
is part of the power transform techniques whose quest is to
find the parameter lambda, λ, by which the following log-
likelihood is maximized.

L (λ) ≡ −
n
2
log

[
1
n

∑n

j=1

(
xλj − xλ

)2]
+ (λ− 1)

∑n

j=1
log xj (1)

where xλ is the sample average of the transformed vector.
There are different attempts to modify this transform, such

as those of John and Draper [20] who introduced the so-called
modulus transformation and Bickel and Doksum [21] who
provided support for unbounded distributions, nevertheless,
we prefer to stick to the original definition of the transform
as defined in Eq. 2.

X (λ) =


χλ − 1
λ

, if λ 6= 0;

ln (χ) , if λ ∼= 0.
(2)

∀χ ∈ R>0, whereχ is a data vector that wewish to transform,
and ln is the natural logarithm applied when λ approaches
zero (i.e., invoked in our case arbitrarily when |λ| ≤ 0.01).
The tested λ values are normally in practice bounded (e.g.,
[−2 2] or [−5 5] are a two common ranges).

The BCT’s goal is to ensure that the assumptions for
linear models are met so that standard analysis of variance
techniques may be applied to the data [22]. The algorithm
could be a direct possible solution to automatic retrieval of
the value of λ that somewhat relates to gamma correction.
If the parameter λ can be properly determined, then each
enhanced pixel brightness can be mapped to the desired value

and hence contribute to maintaining the overall brightness
[23]. The BCT does not change data ordering as per Bicego
and Baldo [3].

Obviously not all data can be power-transformed to yield
normality, however, Draper and Cox [24] argue that even in
cases that no power-transformation could bring the distribu-
tion to exactly normal, the usual estimates of λ can help regu-
larize the data and eventually lead to a distribution satisfying
certain characteristics such as symmetry or homoscedasticity.
The latter is especially useful in pattern recognition and
machine learning (e.g., Fisher’s linear discriminant analysis).

IV. BOX-COX FOR IMAGES (BCI)
As mentioned earlier, there is a lack of studies that deal
with BCT and its power transformation in conjunction with
digital images. BCT is an iterative algorithm and applying it
to large images would take prohibitively considerable time to
converge (e.g., on a square image of size 211∗211 it took the
BCT algorithm around 10sec to converge on our machine,
while operating at the histogram level the time complexity
is theoretically size independent, and it took 0.05sec on this
image). This feature proves its merit in the big data era where
processing large scale image data sets is a concern. The key
idea here is to consider the image histogram as a compressed
proxy of the entire data matrix since it reflects the estimate of
pixel probability distribution as a function of tonal. In this
section, we lay down our algorithm in reference to colour
images and the application to a grayscale type is encompassed
within.

Given a true colour image in the primary red-green-blue
(RGB) colour space,

F (u, v) = {R (u, v) ,G (u, v) ,B (u, v)} , (3)

where (u, v) are the pixel spatial coordinates u = 1, . . . .U ,
v = 1, . . .V and (U ,V ) are the two image dimensions.

By referring to Eq. 2 and after having an estimate of the
parameter λ for an input image, we check if the following
equality holds:

F′ (u, v)λF′ ∼=? F′ (u, v)λ̂χ ,

where χ (i) =
255∑
i=0

F′i, i is the gray level, and

F′ = (0.299R+ 0.587G+ 0.114B) . (4)

F′ corresponds to the gray level channel as the YCbCr colour
space calculates it. This colour space is proven to be useful in
teasing apart the high frequency signal from the chroma tones
that are blended in the RGB space.

We experimentally scrutinized the relationship in Eq. 4.
For finding the transformation parameter, lambda, whether to
derive it from the image matrix, λF′ , or from the image prob-
ability function (a.k.a histogram), λ̂χ , (see Eq. 4), we found
that the two options yield different gamut enhancement
effects in the majority of cases, however, the merits of relying
on the histogram are twofold. Our empirical observations
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indicate the stability as well as the high gain in time com-
plexity when estimating λ from the histogram, see Fig 1(c).
Fig. 1(a) depicts the Spearman correlation coefficients of both
transformations (images are compared) using a sample size
of 600 randomly selected natural images acquired by several
camera models (correlation between λ̂χ & λF′ was r2 =
−0.3022). Despite the plot seemingly exhibiting an adequate
correlation in most cases, the underneath visual impact on the
transformed image is not clear from the plot. For example,
there are a few instances (e.g., images 64 and 174) when
visually examined, Fig. 1(b), they pinpointed the stability of
our choice (λ histogram). Therefore, we conclude that (w.r.t.
Eq.4):

F′ (u, v)λF′ 6= F′ (u, v)λ̂χ .

Since the BCT may produce values outside of the image
permissible dynamic range, therefore, in our case, rescaling
the range is invoked which takes the form:

BCI =
(F′′ (u, v)−min(F′′ (u, v)))(
max

(
F′′(u,v)

)
−min

(
F′′(u,v)

))
where F′′ (u, v) = F

′
(u, v)

λ̂χ (5)

V. EXPERIMENTAL SET-UP
The extension of the Box-Cox transformation to digital
images would not be complete without exploring how the
estimation of λ affects some image-domain specific applica-
tions. This section shall provide insight into two dominant
areas: image enhancement and image colour pattern classifi-
cation using a recent pre-trained model. In the below exper-
iments, compressed images (i.e., JPEG, JPG), are converted
to lossless compressed type (.png) before carrying out any
analysis to prevent re/compression artifacts contaminating
the statistical conclusions.

A. IMAGE ENHANCEMENT
Testing for the capability of our proposed approach, BCI,
against commonly used methods is carried out, for this task,
using the Phos II data set along with images collected from
the illumination dataset [25]. Phos II [26] is a colour image
database of 15 scenes captured under different illumination
conditions. More concretely, every scene of the dataset con-
tains 15 different images: 9 images captured under various
strengths of uniform illumination, and 6 images under differ-
ent degrees of non-uniform illumination. The images contain
objects of different shape, colour and texture.

1) TESTS AND EVALUATION METRICS
Probability Distribution Test on Simulated Data: As a sanity
test, we first create a synthetic image (a gradient map) where
each row is a vector that defines 257 equally spaced points
between 0 and 1, see Fig. 2.

We then contrast our proposed approach, BCI, to enhance-
ments using the methods reported in section II. To assess
the goodness of fit, the QQplot (quantile-quantile plot) is

FIGURE 1. Time complexity and correlation coefficients between
600 transformed images using λ̂χ and λF′ . (a) the plot depicts the
correlation between BCI enhanced images with λ derived from the image
histogram and their counterparts with λ derived from the image intensity
values. (b) visualisation of the transforms on images having the lowest
correlation values (i.e., #64 and #174 in (a)). (c) time complexity of
estimating lambda from the histogram (label 1) as compared to
estimating it from image data resized to 64xNaN (label 2) and 256xNaN
(label 3).

utilised which plots the quantiles of the input vector data
against the theoretical quantiles of the distribution specified
by pd (probability distribution). If the empirical distribution
conforms to pd, then data points shall fall on a straight line.
Our choice of pd landed on the Rayleigh distribution for the
very reason that it is commonly used in imaging technology
[27]–[30].
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FIGURE 2. The image corrected gamut turns brighter more swiftly in (BCI)
than the linear colour space and the other methods.

The Rayleigh distribution is a special case of the Weibull
distribution and its probability density function is formally
defined as:

ρ (x|δ) =
x
δ2
e

(
−x2

2δ2

)
(6)

where δ =
√

1
2n

∑n
i=1 x

2
i is a scale parameter of the distribu-

tion.

FIGURE 3. Rayleigh distribution fit test using QQplots on the synthetic
images shown in Fig. 2. Additional tests can be found on our webpage
(see the link in Section VI).

In Fig. 3, QQplots of the synthetic image and the enhance-
ments using the eight methods (as shown in Fig. 2). The
overall impression one gets from this visualisation of assess-
ing goodness of fit is that BCI, as compared to other
methods, is the output that fitted most on the probabilistic
line.

In the above experiment, we noticed that the AGCWD’s
output was far from what we expected from this algorithm.
This observation triggered us to extend our experiments
by varying the vector length to observe the algorithm’s
behaviour. The AGCWD re-affirmed our observation, see
Section VI and the web-link therein.

2) QUANTITATIVE EVALUATION METRICS
In this sub-section, we highlight the different statistical met-
rics that we utilise. The intention here is not to go into details
as these metrics are well established popular measurements.
Quantitative evaluation of contrast enhancement is not an
easy task. Huang et al. [16] attributed that to the absence of an
acceptable criterion by which to quantify the improved per-
ception, quoting also [31], [32]. However, since then, a couple
of image quality evaluator metrics have been proposed and
are currently widely used. Hence, to gauge image enhance-
ment efficiency, the so-called blind image quality metrics are
adopted.

a: NATURALNESS IMAGE QUALITY EVALUATOR (NIQE) [33]
This metric compares a given image to a default model
derived from natural scene statistics. The score is inversely
correlated to the perceptual quality, in other words, a lower
score indicates better perceptual image quality.

b: PERCEPTION BASED IMAGE QUALITY EVALUATOR (PIQE)
[34]
This metric calculated the score through block-wise distor-
tion estimation. The score is inversely correlated to the per-
ceptual quality.

c: BLIND/REFERENCELESS IMAGE SPATIAL QUALITY
EVALUATOR (BRISQUE) [35]
This metric compares a given image to a support vector
regressor model trained on a set of quality-aware features and
corresponding human opinion scores. The score is inversely
correlated to the perceptual quality.

VI. RESULTS AND DISCUSSIONS
Herein, wewarrant themerits of the proposed approach (BCI)
by conducting quantitative comparisons. The results give us
a cue that BCI can be a potential alternative for existing
methods. BCI time complexity should not be a concern since
the algorithm, as we stated earlier, operates on image his-
togram (<=256 points to process) to derive λ. BCI, like
any other image enhancement algorithm, alters colour gamut.
Therefore, for studies that are interested in the relationship
between colours (assuming quantitatively accurate intensity
values), such as the case in studies on β-cells promotion of
insulin secretion or protein expression levels [36], should
keep this fact in mind when dealing with image enhancement
in general. The numerical output that we report here go
into three directions, first the image enhancement domain,
second, the vivid research area of image de-hazing [37], and
finally the area of machine learning for image classification
(deep/transfer learning for image classification).

A. IMAGE ENHANCEMENT
In this section, we demonstrate the integrity and stability
of our approach against two tests, namely, quality enhance-
ment test and colour pattern segmentation test. In the first
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experiment, we selected 550 images exhibiting non-uniform
lighting and contrast conditions. Images are of different
sizes and are stored in RGB format. Table 1 tabulates the
obtained results averaged across the entire set. It is evident
that, on average, BCI outperforms all methods in quality
assessments (i.e., NIQE, PIQE, BRISQUE). It is important to
know that a couple of the methods shown in Table 1 operate
only on single channel images (e.g., CLAHE), consequently,
we convert the input image to HSV where these algorithms
operate on the V channel then the image is reverted back to
RGB space. It is interesting to see, from this analysis, that
the algorithm SMQT retains image statistics which results
in it having the same scores as the original image. Twelve
randomly selected samples drawn from the 550 set are shown
in Fig. 4.

FIGURE 4. Randomly selected samples from the 550-test set used to
generate Table 1.

Given both extremes, BCI can be singled out for giving
consistent favourable results in both cases. As for the SMQT,
imadjust and BPDFHE, the contrary is true, they are prone
to severe performance degradation under low exposure. This
observation is consistent across additional experiments we
conducted as a sanity check. Ultimately, this may be the best
use of BCI transformation technique for those cases when
inferences on the optimal transformation can be affected by
exposure uncertainty.

TABLE 1. Image enhancement performance evaluation.

Results on a grayscale image are shown in Fig. 5. To not
clutter this paper with images, higher resolution visual qual-
itative comparisons on RGB still images and on simulated
synthetic data (animation) that define different vector lengths

(see Sec IV) are all furnished online through the following
page: http://www.abbascheddad.net/BCI.html.

It is observed that the LIME algorithm (Fig. 5j) malfunc-
tions around bright light regions in the image (i.e., exagger-
ates the oversaturated/bright areas), this phenomenon was
also observed on additional tests that we conducted (data
not shown). Another property of BCI is its ability to make
data distribution less asymmetric as compared to existing
methods. We tested this property on 600 randomly selected
natural images by using descriptive statistics, the skewness
(Skew) and kurtosis (Kurt). The average results are depicted
in Table 2.

TABLE 2. Skew and kurtosis tests.

B. COLOUR PATTERN SEGMENTATION
Pixel-wise colour pattern segmentation has been a long-
standing research problem. Weijer et al. [38], [39], proposed
a handy algorithm where colours are learned from real-world
noisy data. To avoid manual labelling, their learning model
is trained on colour images retrieved from Google image
search engine. The algorithm can recognise colour patterns
belonging to 11 colour gamut, namely, black, blue, brown,
grey, green, orange, pink, purple, red, white and yellow.
In this experiment, we show that BCI does improve the
performance of Weijer et al.’s method if incorporated prior to
segmentation. In Fig. 6, we provide three examples, showing
challenging synthetic chromaticity images.

C. OTHER APPLICATIONS
This section delves into some contemporary fields that
can take advantage of the developed BCI method. Namely,
we will examine a face recognition problem using deep learn-
ing and another vivid computer vision area known as image
dehazing (removing haze from captured images).

1) DEEP LEARNING (FACE RECOGNITION)
In these experiments we report the average mean of running
10-fold cross-validation (70% training, 30% test).

(The extended Yale Face Database B): This set contains
1922 images of 38 human subjects under 9 poses and 64 illu-
mination conditions [40]. The images are of dimensions
168×192. The variation in illuminance in this data set forms
an ideal platform to test the BCI’s performance. In here we
use the renown pretrained deep learning model, AlexNet, for
what is termed as transfer learning. We trained a Support
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FIGURE 5. Enhancement of grayscale images. (a) Original low-contrast image. Result of using (b) BCI, (c) SMQT [13], (d) imadjust [15], (e) CLAHE [11],
(f) BPDFHE [14], (g) AGCWD [16], (h) LIME [18] red circles added to highlight exaggerated bright areas -astronaut and lake-, and (i) WVM [17].

FIGURE 6. Three examples of pixelwise colour pattern segmentation1. (o) Segmentation-challenging synthetic image. (a)
Results obtained with the native code of [38], results obtained with: (b) [38] +BCI, (c) [38] +SQWT [13], (d) [38] +imadjust
[15], (e) [38] +CLAHE [11], (f) [38] +BPDFHE [14], (g) [38] +AGCWD [16], (h) [38] +LIME [18], (i) [38] +WVM [17].

Vector Machines model (SVM) as a classifier for the Yale
Database with and without image enhancements. The dataset
was divided into 70%, 30% for training and test, respectively.
To eliminate any overfitting and/or biases in the selected
samples, random selection was deployed, and the process was
repeated 10 times. We then reported in Table 3, the average
accuracy and the best AUC (the area under the ROC Curve)
of each method.

2) IMAGE DEHAZING
Visual quality can be decreased substantially due to adverse
weather conditions (e.g., fog), man-made air pollution (fire

1Full resolution available online: http://www.abbascheddad.net/BCI.html

fume, smoke-bombs by football fans, lachrymator when com-
bating riots), etc. The optical field of science that deals
with restoration of degraded photographs captured during
such situations, is known as image de-hazing. It is a vivid
research area, as evidenced by its presence in one of the major
conferences on computer vision and pattern recognition,
namely, CVPR’2019 workshop on Vision for All Seasons:
Bad Weather and Night-time (https://vision4allseasons.net/).

The additional statistical metrics that we utilised in the
experiments reported in this sub-section for the de-hazing
scenario are the reference-based image quality metrics. The
Peak Signal-to-Noise Ratio (PSNR), the Structural Similar-
ity Index (SSIM ), the Information Content Weighted PSNR
(IWPSNR) [41], the Information Content Weighted SSIM
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(IWSSIM ) [41], and the Pearson Correlation Coefficient
(Corr).

We selected the top two methods (i.e., LIME and BCI)
from Table 3. Additionally, we run a comparison of six
existing image de-hazing methods (data not shown), namely,
Ren et al. [6], Berman et al. [7], Galdran [42], Fattal [43],
Meng et al. [8] and He et al. [44], we found that Galdran
[42] outperformed other methods based on PSNR and Corr
values. Additionally, Galdran [42] is the most recent method
published in 2018. Therefore, we selected it to test the added
value that LIME and BCI may introduce.

The advantage of our approach in boosting the perfor-
mance of image de-hazing algorithms on the O-Haze dataset
[45] is depicted in the results shown in Table 4. Although,
the improvement is consistent across all metric, it is a mild
improvement (except for the correlation value). We also
noticed that if the dehazing method in [9] is pre-processing
using LIME, the latter would introduce a reversed effect. This
again, advocated for the stability and utility of the proposed
BCI approach.

TABLE 3. Results of image classification on the yale face database B.

TABLE 4. Quantitative evaluation of all the 45 set of images of the
O-Haze dataset. This table presents the average values of the seven
quality metrics, over the entire dataset.

VII. CONCLUSION
In this paper, we propose a new approach to enhance images
by extending the renowned Box-Cox transformation to 2D
data. Since Box-Cox algorithm stems from statistical and
probability theories and since it is formulated to, among other
benefits, stabilize the variance in one dimensional data (e.g.,
a vector of covariate/confounding variables), extra vigilance

should be taken when tackling digital images. Our approach,
termed herein BCI, precludes the need to arbitrarily estimate
the parameter λ in Gamma correction or the need to find
limits to contrast stretch an image. When this approach was
conceived, we tried to not involve regularization parameter
controls into our algorithm to reduce complexity and ease
replication of results. The proposed scheme is simple and fast,
does not require any model training, and we believe that it can
complement other existing image enhancement algorithms.

The results land credibility to the efficiency of our pro-
posed approach and show its stability and robustness com-
pared to commonly used contrast enhancement techniques.
Subsequently, we support our approach by improving the
performance of the state-of-the art colour learning algorithm
and a deep learning algorithm (see Section VI). This paper
warrants a succinct description of the proposed approach,
however, due to the page limit we have omitted other promis-
ing results in other domains which could have otherwise
instilled credibility even more in the notion of BCI.

The Box-Cox algorithm as a well-adopted statistical and
probabilistic method, is shown in this study to retain its
fidelity even on two-dimensional data (i.e., digital images).
One of the aims of this paper is to rekindle interest in the
Box-Cox algorithm in conjunction with image enhancement.
In a wider context, this optimisation algorithm might even
help leverage the results of other enhancement algorithms that
depend on the parameter λ, such as [10], and/or those setting
it arbitrarily for gamma correction [5]–[9], and in other areas
which we did not cover here such as image retrieval where
informative features are sought [46]. There are some attempts
to devise new methodologies to estimate λ for 1-dimensional
data transformation, like the work of [47], however, this
proposal comes to create an accrual of evidence regarding
the utility of the renowned Box-Cox transformation in the
imaging field. A possible road map for future work could be
to examine the performance of the proposed BCI on different
colour space transformations, or in other domain specific
applications (e.g., integration into deep learning architec-
tures, image fusion, etc.).
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