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ABSTRACT We consider automated vehicles operation in constrained environments, i.e. the automated
parking (AP). The core of AP is formulated as a path planning problem, and Rapidly-exploring Randomized
Tree (RRT) algorithm is adopted. To improve the baseline RRT, we propose several algorithmic tweaks,
i.e. reversed RRT tree growth, direct tree branch connection using Reeds-Shepp curves, and RRT seeds
biasing via regulated parking space/vehicle knowledge. We prove that under these tweaks the algorithm is
complete and feasible. We then examine its performance (time, success rate, convergence to the optimal
path) and scalability (to different parking spaces/vehicles) via batched simulations. We also test it using a
real vehicle in a realistic parking environment. The proposed solution presents itself more applicable when
compared with other baseline algorithms.

INDEX TERMS Automated vehicles, automated parking, sampling-based path planning, knowledge-based
biasing.

I. INTRODUCTION
A. MOTIVATION
Recent advances in automated vehicles (AVs) have shown
radical impacts on our societal lives. Among the many sce-
narios that the AVs have been deployed/tested in, most
of them focus on open roads interacting with other road
users. However, the operation in constrained environments,
e.g. automated parking (AP), is also important. In this
scenario, the spaces are limited, vehicle movements are
constrained to kinematic (minimum turning radius) and
geometric (collision checking) constraints. Vehicle start pose
and parking angle/sizes also varies. How to develop a robust
AP solution still remains an open question.

Essentially, the operation of AP hings on three folds: to
perceive the parking environment, to find the parking path,
and to execute the path. For the low-speed vehicle parking
control, the path execution has been well addressed [1], [2].
For perception, we propose to rely on AV’s onboard sensors
[3], and formulate the parking path finding as a planning
problem. The path planning therefore is the core. We hope
to develop a complete and feasible algorithm that yields
good performance (high success rate, short planning time,
fair convergence to the optimal path). We also hope this
algorithm has an unified (wide scalability) form; i.e., it can
be applied to all vehicles (with different sizes) that start

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaosong Hu .

from any pose in all parking spaces (with different parking
angles/sizes).

B. RELATED WORK
Many of the path planningwork forAP adopts geometric-based
methods; curve fitting are widely used to concatenate a path
that guides the vehicle from the start to the parking pose
[4]–[9]. In these methods, however, the vehicle must start
from a specific point/region, which does not satisfy our
formulation for a unified parking solution.

Robotic planning algorithms have also been widely used.
In [10], given global map of the parking space, A* was
used to find a geometrical path. Trajectory smoothing is then
performed to satisfy the kinematic constraints. Other meth-
ods that rely on pre-known knowledge of the parking space
includes the artificial potential field [11] and state roadmap
[12]. These solutions, however, usually hinge on careful tun-
ing of the algorithmic parameters (cost in A*, the potential
field, etc.), which is sensitive to the parking spaces. In real
cases the parking spaces may vary significantly. Scalability
of these algorithms is unknown.

We adopt Rapidly-exploring Randomized Tree (RRT) [13]
as our solution. In this algorithm, randomized seeds are gen-
erated. The RRT tree is biased to these seeds, performing an
exploration of the environment. As proved in [2], [13], RRT
satisfies the vehicle’s constraints. Given sufficient planning
time, the algorithm is also guaranteed to find the path that
starts from any poses (so long as it exists). In literature
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FIGURE 1. Illustration of the proposed algorithm for 90o parking. Left: heatmap of the clustered optimal parking paths. Middle: RRT seeds
generation are biased to the hot area of the heatmap. Right: RRT tree’s growth (black) is guided by the generated seeds, exploring more into the hot
areas where the optimal paths are more possibly to happen. The tree is also reversely grown from the parking spot, and last branch connected via
Reeds-Sheep curves. After a feasible path (magenta) is found, post optimization is performed to obtain the optimized path (green).

RRT-based AP solutions have appeared. In [14] the authors
discussed perpendicular, parallel, and inclined parking. But
as admitted in the paper, the adopted algorithm was slow, and
the planned path not smooth enough. In [15] orientation of the
RRT seed was specified. But the orientation is dependent on
the parking environment; the authors discussed perpendicular
parking only. It is unknown how to generalize the algorithm
to other parking spaces. In [16] the authors proposed two
improvements over the baseline RRT. But no justification as
to feasibility and efficiency of the algorithm was disclosed.
Lastly in [17] the authors implemented RRT via reversely
growing a tree from the parking spot. Branches on the tree,
however, were pre-assigned. Completeness of the algorithm
was unclear.

In literature there exist efforts dedicated to improving the
baseline RRT, which may render the algorithm more suitable
to the constrained AP problem. To begin with, while the
randomized RRT seeds generation guarantees its complete-
ness, the bad positioning of the seeds may lure the tree
growth into narrow passages, significantly slowing down
the planning. To overcome this issue, in [18] the authors
proposed RRT-VF; only the tree nodes with higher viability
are extended. In [19] MARRT was formulated. The RRT
tree grows along the medial axis of the working space.
In [20] Skilled-RRT was proposed. Local seeds were gen-
erated uniformly within a neighborhood along the skeleton
of the work space. In [21] the seeds generation was biased
to the Voronoi Graph of the work space. Lastly, in [22]
the authors followed the new thrust force of Deep Learning
and adopted expert knowledge-trained conditional variational
autoencoder (CVAE) in biasing the seeds. Similar to these
researches, we summarize the optimal parking paths that
originate from random start poses in different parking spaces.
We then cluster these paths and use it as pre-knowledge in
generating the seeds.

Other researches focused on the extend function of RRT,
which is used to navigate the vehicle from a certain tree node
to the generated seed. In [23] a fixed-final-state-free-final-
time controller that optimally connects the tree node and seed

was proposed. In [24] a modified controller that manipulates
both lateral heading and longitudinal speed was adopted.
Other works include [25] wherein clothiod curves are used
to fit the vehicle’s trajectory. In our solution we follow [26],
and use the pure-pursuit controller to navigate the vehicle.
We also adopt Reeds-Shepp curves [27] to greedily connect
every newly added node to the goal pose directly.

Works that alter the tree growth direction in RRT also exist.
Apart from the reversed tree in [17], other efforts along this
line include [25], [28], wherein two trees are rooted in start
and goal poses, respectively. The two trees are simultaneously
grown till a certain node on one tree falls close enough to a
node on the other tree. We adopt similar approach in our solu-
tion; via tests, however, it is found that reversed single-tree
growth is faster than bidirectional dual-tree growth. Test
results are detailed in following contents.

C. OVERVIEW OF THIS PAPER
See Fig. 1 for an illustration of our RRT-based solution for the
automated parking problem. The contributions in this paper
are summarized as:
• We propose several algorithmic tweaks to the baseline
RRT, i.e., seeds biasing using the expert parking knowl-
edge in different parking spaces, Reeds-Shepp curves
directly connecting the tree node and goal pose, and
reversed tree growth that originates from the parking
pose.

• We perform mathematical analysis for the proposed
algorithm, and prove that it retains the completeness as
well as feasibility claims of the baseline RRT.

• We examine the proposed solution’s performance via
batched simulations. We prove that all the three tweaks
help to elevate the algorithm’s performance. We com-
pare the proposed algorithm to two other RRT variants,
and show that it claims shorter planning time, higher
success rate, and better convergence to the optimal
path. Lastly we justify our algorithm’s scalability to
different vehicles. We also prove its applicability via
a realistic parking problem using a real self-drivable
vehicle.
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FIGURE 2. Layout for one-way (left, 45o) and two-way (right, 90o)
parking; CW: car width.

TABLE 1. Parking spaces standards in the municipal documents.

The remainder of this paper is organized as follows:
Section II illustrates the general problem formulation.
Section III details the algorithm we propose. We also present
the associated mathematical analysis. Section IV examines
and analyzes the performance of the proposed algorithm.
Finally in Section V a general conclusion of this paper is
delivered.

II. PROBLEM FORMULATION
A. PARKING SPACES
The problem formulation starts with defining the parking
spaces. We review municipal documents from several cities,
and allocate 6 most common cases, i.e. 0o, 30o, 45o, 60o,
75o, and 90o parking. The characterization of these parking
spaces involves 3 variables: stall width (SW), stall depth
(SD), and aisle width (AW), see Fig. 2. We summarize the
standards for each variable in the documents, and list them
in Table 1. We then specify the parking space sizes by
randomly sampling from between these listed thresholds.

Vehicle’s goal pose (position, heading) and aisle length
(AL) also needs to be specified. We put the vehicle’s goal
position in the center of the parking spot. As for heading,
for parking below 75o, the aisle is usually one way. We thus
consider head-in parking only. For 75o and 90o parking,
two-way aisle may exist. We specify the heading as, if the
vehicle starts with pointing into the spot, a head-in parking is
defined, otherwise reverse parking. For AL, in 75o and 90o,
we assign 10m on both sides of the spot. For other cases,
the spot is put at a certain distance (CW) to the far end of
AL=20m.

B. AGENT VEHICLES
Three agent vehicles are used in our studies, see Table 2.
We use all three in batched simulation studies. We also adopt
Sedan for the realistic test. All the three vehicles are front

TABLE 2. Agent vehicle specifics.

wheel steerable. Given that the speed in parking is relatively
low, we adopt the non-slip kinematic bicycle model:

ẋ = vcosθ
ẏ = vsinθ
θ̇ = vtanδ/L

(1)

wherein x and y denote position of the vehicle’s rear
axle center (anchor point), θ heading (counter-clockwise
positive), v speed (forward positive), δ the steering angle
(counter-clockwise positive), and L the wheel base. In (1),
δ is subject to the maximum angle δmax , i.e. |δ| ≤ δmax . Also
we use v = 2m/s throughout our studies, and the steering
command is sent to the vehicle at a frequency of 25Hz.

C. PROBLEM STATEMENT AND RESEARCH OBJECTIVES
We denote the parking space as χ ∈ Rd ( _ABCD ), µ ∈ Rm

the control space of the vehicle, χobs the obstacles ( _A′adD
∪
_bB′Cc ), and χfree = χ/χobs the free space. The kine-

matics (6) of the vehicle is described in (1). Following
[29], the vehicle is small-time controllable from χ if for any
moment T , the states reachable from χ before T contains a
neighbourhood of χ . We take the assumption that the vehicle
is small-time controllable. Our research objectives are then
summarized as:
• Completeness and feasibility: In the real parking prob-
lem, a path τ ⊂ χfree that connects from the start xstart ∈
χfree to goal xgoal ∈ χfree exists. Our solution must be
able to find one. The vehicle motion is also subject to
both geometrical and kinematic constraints (χobs, 6).
The algorithm must consider such and yield a path that
is executable.

• Improved performance: We are focused on finding a
feasible path. We hope it be fast and reliable (time short
and success rate high). We also hope this path converges
better to the optimal one (shorter length).

• Scalability: Lastly, we hope the above claims hold for
all parking spaces (χ and xgoal at different angles/sizes),
different vehicles, and any potential start poses (xstart ∈
χfree), in both simulation and real environments.

III. SAMPLING-BASED PARKING SOLUTION
A. THE RRT-BASED SCHEME
We adopt RRT algorithm as our solution, see Algorithm 1.
The overall algorithmic flow involves 3 stages, i.e. initializa-
tion (lines 1-2), RRT tree growth (lines 3-13), and path con-
nection/optimization (lines 14-15). The baseline RRT hinges
on the randomized seeds-biased exploration of the environ-
ment, which is asymptotically complete if the tree nodes
number approaches infinity. We also adopt CL-RRT [26],
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Algorithm 1 RRT-Based Solution
Input: 6,χ, xstart , xgoal
Output: τ
1: (qroot , qgoal)← Initialize(xstart , xgoal)
2: ζ.AddNode(qroot )
3: �RS ← RSConnect(ζ .AddNode, qgoal)
4: while not �RS and ζ .AddNode /∈ �(qgoal, ε) do
5: xrand ← GenerateSeed(χ)
6: qnear ← NearNode(ζ, xrand )
7: qnew← Navigate(6, qnear , xrand ,1q)
8: ζ.AddNode(qnew)
9: ζ.AddNavigate(qnew)

10: �RS← RSConnect(ζ .AddNode, qgoal)
11: end while
12: ζ.AddNode(qgoal)
13: ζ.AddRSConnect(qgoal)
14: τ̃ ← LinkFeasiblePath(ζ )
15: return: τ ← OptimizedPath(τ̃ )

FIGURE 3. Pure-pursuit controller; left: forward drive, right: reverse drive.
RP is the desired reference point, and red dashed line the expected
vehicle trajectory.

feasibility is thus guaranteed. In this part we first briefly
introduce the baseline functions in RRT.

NearNode(ζ, xrand ) selects from RRT tree (ζ ) and returns
the closest node qnear to xrand (the generated random seed).
In our studies, we use 2D Euclidean distance metric.

Navigate(6, qnear , xrand ,1q) expands the tree by driving
the vehicle from qnear to xrand till a collision is encountered,
or the predefined maximum expansion step 1q is reached.
We adopt pure-pursuit controller in the vehicle navigation,
see Fig. 3. The steering command is given by:{

δ = −tan−1(2Lsin(η)/Lla) :forward
δ = −tan−1(2Lsin(η̂)/Lla) :reverse

(2)

wherein Lla is the look-ahead distance, η and η̂ the angular
biasing of RP with respect to the vehicle, and R the turning
radius. All angles defined are counter-clockwise positive.

To guarantee stability of the controller, Lla must be larger
than vτa, wherein τa is the time constant of the steering actua-
tor. Through extensive simulations and field tests, we specify
Lla = 1.0m in our studies. The defining of 1q denotes how
large each stride is taken in expanding the RRT tree. If it is
too large, the connected paths may all end up with colliding
with the obstacles, or too small a slow planning. We adopt
batched simulation-based studies in specifying 1q. Details
are illustrated in next section.

AddNode(qnew) and AddNavigate(qnew) add the nodes
and branches onto the tree. In our work, we encode the
agent’s position and heading in the nodes. We also store
the previous and immediate next node. The added branch is
the navigated path subject to collision-check and kinematic
constraints.

LinkFeasiblePath(ζ ) links and returns the feasible path
(τ̃ ) based on the grown RRT tree. In lines 3-4, the tree expan-
sion may be terminated via checking �, wherein �(qgoal, ε)
represents a close neighborhood of qgoal , ε a predefined small
value, and �RS indicates if a direct Reeds-Shepp connec-
tion exists (detailed in following contents). After the tree
growth is terminated, all tree nodes are added subject to the
kinematic/collision constraints. We concatenate from the last
node (qgoal) backwards to the root (qroot ). We also link each
two consecutive nodes via the tree branches, which is the
navigated path in each step of the tree expansion.

B. REVERSED RRT TREE GROWTH
Line 1 in Algorithm 1 initializes the RRT tree growth. For
the parking problem, the logical flow demands growing a tree
from xstart to xgoal . Based on our studies, the last part of this
path finding (squeezing into the spot) is a narrow passage
problem, which slows down the planning. We thus adopt a
reversed tree growth, i.e. we assign xgoal to qroot , and grows
the tree reversely from the parking spot to the wider aisle, till
xstart is connected onto the tree.
Claim 1: Via the reversed RRT tree growth, the algorithm

is still complete, i.e. it is able to find a path that connects from
xgoal to xstart .

Proof 1: The proof is obvious as the completeness in
[13] does not depend on qroot or qgoal , i.e. the algorithm is
complete for any qroot = xgoal ∈ χfree and qgoal = xstart ∈
χfree.
Claim 2: After the tree is grown, the returned path τ̃ that

connects from qroot (xgoal) to qgoal (xstart ) is reversed. This
reversed path (τ ) is also feasible.

Proof 2: We discuss geometrical and kinematic
feasibility separately. For geometrical feasibility, the path τ̃ is
connected from xgoal to xstart . Essentially, τ̃ = {xi}i=1,...,n ⊂ ζ ,
wherein n is the number of discrete vehicle poses in τ̃ . The
geometrical feasibility claim holds at ∀xi ∈ τ̃ which is per-
formed via collision checking between vehicle body and χobs.
Concatenating the {xi} forward or backward does not affect
the pointwise collision checking results. The geometrical
feasibility thus still holds in τ . �

Proof 3: For kinematic feasibility, given that the speed
in parking is low, we neglect the vehicle’s dynamic con-
straints. We also adopt the assumption that the vehicle is
small-time controllable (following [29]). For a certain point
xi ∈ τ̃ , there exists a next point xi+1 which is located at
neighborhood of xi, and reachable from xi given a certain
progressive time −→t . Considering a retrospective time←−t , xi
is also reachable from xi+1, given that one simply needs to
opposite the time differentials in Equation (1). Repeating this
reachability check from xstart to xgoal , all xi ∈ τ̃ are reachable
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from its previous/next neighbor. Reversing τ̃ thus does not
change its kinematic feasibility claim.1 �

C. DIRECT CONNECTION VIA REEDS-SHEPP CURVES
In the baseline RRT, the tree is expanded till a node reaches
into �(qgoal, ε). However this navigation-based expansion
is usually slow. In our studies, we propose to use Reeds-
Shepp (RS) curves [27] to connect to qgoal directly, see
lines 3, 10, and 13. Given Table 2, we establish the RS
curves using the vehicle’s minimum turning radius. Each
time a node is added, we connect it to qgoal via RS curves
directly. We perform collision checking throughout this
curve. If any collision is found, we continue to expand the tree
(lines 4-10) till a certain node (qrs) is able to connect to qgoal
with a collision-free RS curve. We add qgoal as the last tree
node, and the RS curve as the branch linking the last two
nodes.
Claim 3: The RS curve-based connection does not change

the completeness and feasibility claim of the RRT algorithm.
Proof 4: Completeness of the RRT still holds as

in line 4 we continue to use the original terminate rule
(ζ .AddNode /∈ �(qgoal, ε)). The connection via RS curve
hence expedites the tree growth as the computation for RS
curve is faster than the navigation-based expansion. For fea-
sibility, we separate τ̃ into two parts, i.e. from qroot to qrs
(τ̃1), and qrs to qgoal (τ̃2). In τ̃1, the tree expansion follows
the original RRT. The feasibility claims holds naturally. In τ̃2,
we note that we consider minimum turning radius as the
kinematic constraints. As the RS curve is established using
this radius, it thus represents a shortest-distance connection
in the vehicle’s (kinematic) configuration space from qrs to
qgoal , which justifies the kinematic feasibility. We also per-
form collision checking throughout the RS curve to guarantee
the geometrical feasibility. Combining the analysis for both
τ̃1 and τ̃2, feasibility claim of the path (τ̃ ) therefore holds. �

D. KNOWLEDGE-BIASED SAMPLES GENERATION
In line 5 of Algorithm 1, GenerateSeed(χ) generates the
probing samples xrand which guides the growth of the RRT
tree. In the baseline RRT,most of these samples are uniformly
distributed in the work space [13]. While this guarantees
the feasibility and completeness, the cost is the planning
unnecessarily slow, and tree growth may be stuck in narrow
passages/corners. In real parking problems, the sizes, angles,
and kinematic constraints of both environments and vehicles
are usually regulated. Following previous studies [18], [20],
[22], we extract these knowledge to bias the RRT seeds
generation.

We summarize the parking knowledge via expert
demonstrations. For different parking angles, we uniformly
sample from between the thresholds in Table 1, and assign
different sizes to the 6 parking spaces.We then investigate the
parking starting from a randomized xstart ∈ χfree. We adopt
RRT to solve this problem till a feasible path is found.

1This is also verified by the realistic parking test–the reversely grown RRT
path is successfully executed by the vehicle.

We run post-processing to find the optimal path. For each
parking angle, we repeat this for 2,000 times, see the clustered
heatmap in Fig. 1 and 5. There are certain ‘‘hot’’ areas
wherein the optimal path occurs more (e.g. in front of the
spot), and ‘‘cold’’ areas wherein the path barely goes into
(e.g. corners of the aisle). We hope to generate more samples
from the hot areas, and less in the cold.

We adopt Gaussian Mixture Model (GMM) in abstracting
the heatmap knowledge. The GMM distribution is written as:

9 (xi|2) =
K∑
k=1

αk · ψk (xi|µk , 6k) (3)

wherein xi ∈ R2 are the parking paths. TheGMM is expressed
as a linearly weighted combination of K Gaussian Compo-
nents (GC) ψk , wherein αk is the weighted coefficients for
the k-th GC subject to αk > 0 and

∑K
k=1 αk = 1. Also

2 = {(αk , µk , 6k)}
K
k=1 is the parameters set for the GMM,

wherein µk ∈ R2 and 6k ∈ R2 are the mean and covariance
matrices of the k-th GC component, respectively.

Given xi, GMM is typically solved via Expectation
Maximization (EM) algorithm. Essentially, the EM algo-
rithm is an iterative procedure which converges to a
maximum-likelihood estimation of the parameter set 2
in (3). This process consists of the expectation step (E-step)
and maximization step (M-step). In E-step, the posterior
probability is defined as:

Pik (xi|2) =
αkψk (xi|µk , 6k)

K∑
j=1
αjψj

(
xi|µj, 6j

) (4)

The M-step then proceeds to update 2 via:

αk =
1
n

n∑
i=1

Pik (xi|2)

µk =

n∑
i=1

[Pik (xi|2) xi]

n∑
i=1

Pik (xi|2)

6k =

n∑
i=1

[
Pik (xi|2) (xi − µk) (xi − µk)T

]
n∑
i=1

Pik (xi|2)

(5)

till the log-likelihood function L (X |2) defined in below
converges to a local maximum value:

L (X |2) = log5n
i=19 (xi|2)

=

n∑
i=1

log
K∑
k=1

αkψk (xi|µk , 6k) (6)

In (6), X = {xi}i=1,2,...n is the parking paths.
We need to specify an initial value for 2 and K in solving

the GMM. In our studies we adopt randomized initial values
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FIGURE 4. GMM components number selection based on AIC.

for 2. For K , we fully regress the GMM at different K ,
see Fig. 4. In vertical axis we plot AIC values [30]. Note
that we hope the GMM to be both accurate (AIC low) and
computationally economic (K small). We thus select K = 6
for all parking angles. The regressed GMM is then adopted in
generating the seeds, see Fig. 1 and 5, wherein the magenta
seeds locate closely to the hot areas in the heatmap. Also on
our computational platform, it takes 6E-4 seconds to generate
these (2,000) samples, which is considered computationally
efficient.

To guarantee completeness of the algorithm, following
[13], [22], we include a small portion of seeds that follow the
original randomized generation manner in RRT. Prior to the
tree expansion, we generate N samples, wherein λN follows
the GMM, and the rest (1 − λ)N are generated randomly.
Following [22] we adopt λ = 95%.
Claim 4: The biased seeds generation does not change

completeness and feasibility claim of the RRT algorithm.
Proof 4: Note the navigation-based tree expansion and

geometric-based collision checking remain the same. This
seeds biasing therefore does not affect the feasibility claim.
In the biased seeds, we refer to [22], and note that we adopt
(1− λ)N samples which follows the original RRT. Given the
proof in [13], we thus adjust any references to n (the number
of the randomized samples in the original RRT) to (1− λ)N
(the number of the randomized samples in our algorithm).

Referring to [22], adjusting these samples will only improve
the solution or lower the randomness in the RRT exploration,
and will not jeopardize the completeness claim. �

E. POST-PROCESSING FOR OPTIMIZATION
Following [2], [31], we perform optimization after the
feasible path is found. We randomly select two indexes on
the path, and connect them via a RS curve. If the curve is
collision free, it is used to replace the original path. Or if
not, we mark this RS connection as a failure, and continue
to check another two random indexes. This optimization
repeats till a predefined maximum continuous failure number
is reached. Given that we are always trying to tune the path
via RS curve, the length is being refined in a non-increasing
manner. We then adopt the final path as the optimized result.

IV. EXPERIMENTAL TESTS AND ANALYSIS
A. EXPERIMENTAL SETUP
In Algorithm 1 the RRT tree is grown till a collision free
RS curve is connected to the goal point, or a certain branch
on the tree reaches into a neighborhood of the goal. In our
studies, we define this neighborhood as distance and head-
ing difference both lower than 0.01 (unit meter or radius).
We also define success as planning being completed within
30 seconds. We perform batched simulation-based analysis
to specify 1q, see Fig. 6. We randomly sample from Table 1
to characterize the parking spaces. We then start from a
randomized pose, and deploy the RRT (with RS connection)
to find the parking path. The results in Fig. 6 are averaged
from a batch of 100 simulation runs. Fig. 6 corresponds
to the physical understanding of 1q, i.e., it represents the
‘‘resolution’’ in exploring the environment. Too large1qwill
cause the tree to collide onto obstacles (hence longer time
and lower success rate), and too small 1q may render the
exploration too slow. Certainly in our algorithm we adopt
RS curves which expedites the planning. Planning time and
success rate at lower 1q remains steady as most of the RRT
tree growth may be completed via RS connections. Based on
Fig. 6, we select 1q = 0.48m throughout our studies.

FIGURE 5. Optimal path heatmap (top) and samples generations (bottom) for 0o, 30o, 45o, 60o, and 70o parking (left to right).
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TABLE 3. Comparative study of the algorithms in different parking environments.

FIGURE 6. To decide 1q based on planning time and success rate.

B. PERFORMANCE OF THE PROPOSED ALGORITHM
Batched simulations are conducted, see Table 3. We run
these tests on our platform (i7-8700 CPU, 16GB RAM)
in MATLAB 2019b using Sedan, results averaged from
100 runs. The algorithm is executed till a feasible path is
found, of which the mean time and success rate are allocated.
Normalized time is defined asmean time divided over success
rate. We run post-optimization to acquire the optimized path,
and define optimality as feasible path length normalized by
the optimized one. All values in Table 3 are lower the better
except success rate, which is higher the better.

1) THE ADOPTION OF RS CONNECTION
The effects of RS connection are concluded by comparing the
results of baseline RRT and F-RRT-RS/R-RRT-RS, wherein
‘‘R’’ represents reversed tree, and ‘‘F’’ the normal. The
average time drops in the RS-connected RRT, and suc-
cess rate higher. As direct RS connection is shorter than
navigation-based tree growth, optimality of RS-connected
path is also better.

2) REVERSED TREE GROWTH
Comparing F-RRT-RS and R-RRT-RS, in 30o − 90o the
reversed tree claims better results. Moreover, optimality of
R-RRT-RS is better: the vehicle firstly moves out of the
narrow passage, which renders it easier to connect the shorter
RS curves. Although the performance in 0o parking is not
excessively better, given the results in other cases we show
the reversed tree growth improves the algorithm.

3) GMM-BASED BIASING
The last tweak we adopt is the GMM biasing,
i.e. GMM-F-RRT-RS/GMM-R-RRT-RS. Note that in the
discussion of reversed tree growth, both normal and reversed
tree show fair results. We thus keep both in this round of com-
parison. As shown in the table, GMM successfully improves
both time and success rate. Also as GMM biases the tree
growth close to the optimal paths, it claims an overall better
optimality. Lastly, the reversed algorithm in 0o parking is
better: the GMM helps to regulate (suppress) the randomness
in the RRT, and the algorithm’s performance for all cases
tends to be unified.

4) EFFECTS OF GMM TO OPTIMALITY
GMM also improves the optimality of the path, see
GMM-R-RRT-RS and GMM-R-RRT*-RS, wherein the latter
adopts RRT* in tuning the tree branch. The GMM-baised
RRT solution claims better optimality over other base-
line algorithms, which is the closest to the RRT*-based
scheme. Time of GMM-R-RRT-RS, however, is faster than
the RRT*-based scheme.

5) COMPARISON TO TWO OTHER RRT VARIANTS
Via the aforementioned discussion, we conclude that reversed
RRT tree growth enhanced with RS connection and GMM
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TABLE 4. Performance of the proposed algorithm for different vehicles.

biasing yields the best results. To further examine its per-
formance, we compare the algorithm with two other RRT
variants, i.e. BiRRT* [28] and POSQ-RRT* [24].

BiRRT* adopts the RRT* scheme, which is slower
than the baseline RRT. However the dual tree growth in
BiRRT* may expedite the planning, and in some cases
BiRRT* is indeed faster than the baseline RRT (in 60o,
75o, and 90o parking angles). Compared to our solution
(GMM-R-RRT-RS), however, BiRRT* is slower and success
rate lower in all cases. Optimality of GMM-R-RRT-RS is also
better than BiRRT* in all parking angles.

In POSQ-RRT*, the major improvement is the POSQ
extension function. It manipulates the steering (heading) in
the lateral plane, and also creates a smoother speed profile
in navigating the vehicle. However, this controller needs
heuristics-based tuning (which was not clarified in [24],
the authors simply list their choice of the parameters). In our
work we adopt Kρ = 4, Kφ = −2, Kα = 2, Kv = 3.8 and
γ = 0.15 (see [24] for the parameters definition).
POSQ-RRT* is generally slower even than the baseline RRT
as it adopts the RRT* scheme, and POSQ controller is not
designed to expedite it. Overall, compared to both our solu-
tion and the baseline RRT, POSQ-RRT* is slower, success
rate lower, and optimality not excessively better.

C. SCALABILITY: TO DIFFERENT VEHICLES
We adopt Sedan to generate the optimal parking path in
regressing the GMM knowledge. In this part we check
this Sedan-based GMM’s scalability to other vehicles, see
Table 4. Compact and Truck are used, and results averaged
from 100 simulation runs. Comparing Table 4 to Table 3,
the algorithm yields similar performance with respect to both
time, success rate, and optimality. Scalability of the proposed
algorithm to different vehicles is considered acceptable.

D. SCALABILITY: FEASIBILITY IN REAL PARKING
PROBLEMS
Due to briefness we present one realistic test for 90o parking.
We adopt a self-drivable Lincoln MKZ in our test. This
vehicle is equipped with RTK GPS to provide accurate
positioning information. ROS middleware is installed to
communicate with the vehicle’s CAN bus (to send and
receive steering/throttle/brake messages). We adopt PI con-
troller to manipulate throttle and brake for the longitudi-
nal speed control. Lateral steering angle is updated via the

FIGURE 7. Illustrative results for the realistic test. Green thick: path from
our algorithm; blue dashed: vehicle’s real trajectory. Both corresponds
well, which justifies the feasibility of the planned path. We also mark
6 milestones. See the associated video frames in Fig. 8.

FIGURE 8. Recorded milestone video frames in the realistic parking test.
From top to bottom, left to right: 1-6 as shown in Fig. 7.

aforementioned pure-pursuit controller (for both forward and
backward motion).

In the test, we measure the size of a realistic parking spot,
we then build up thework space in Fig. 7. Note the two lines to
the port/starboard sides of the parking spot are not in parallel,
which does not follow the standards in Table 1 and reflects the
challenges in realistic parking. We deploy GMM-R-RRT-RS
to find the feasible path, post-optimization is then adopted.
See Fig. 7, the vehicle is driven from milestone 1, moves
through 2 and 3 till 4, wherein the vehicle slows down to
halt. It then reverses through 5 to the parking spot at 6.
Associated video frames are listed in Fig. 8, vehicle response
history is also plotted in Fig. 9. The path yielded from
our parking solution presents itself feasible. Also although
the parking space is not regulated (parking lines not in
parallel) and differs from the standards (Table 1) that our
GMM knowledge roots in, our solution still proves to be
applicable.

E. RESULTS SUMMARY
To summarize, the simulation and realistic test results in this
chapter present the superiority of our parking solution as:
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FIGURE 9. Vehicle response history in the realistic parking test.

• Improved performance: Via Table 3 we show that
the algorithmic tweaks we propose are effective. Our
proposed parking solution exhibits better performances
(planning time shorter, success rate higher, path optimal-
ity better) when compared with both the baseline RRT,
and two other RRT variants.

• Scalability to different environments and vehicles:
Implicitly in Table 3, we consider different (randomized)
vehicle start poses and parking environments. We show
that the proposed algorithm yields better performances.
Via Table 4, we check the algorithm’s scalability to
different vehicles, which is also promising.

• Scalability to realistic parking problems: We
lastly justify the algorithm’s applicability via a real
self-drivable vehicle in a realistic parking test.

V. CONCLUSION
In this paper we propose an unified solution for the
automated vehicles parking problem. To guarantee the com-
pleteness and feasibility in different parking environments,
we adopt RRT-based scheme. To overcome some deficiencies
of the baseline RRT algorithm, we propose several algo-
rithmic tweaks, i.e. reversed RRT tree growth, direct tree
branch connections via Reeds-Shepp curves, and regulated
knowledge-based RRT seeds biasing. We prove that under
these tweaks, the algorithm is still complete and feasible.
We then perform batched simulation-based comparative stud-
ies to examine its performance. We also check its scalability
to different vehicles, and testify the applicability to real vehi-
cles in realistic parking problems. Via the presented results,
we show that our algorithm is better and promising for real
applications.
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