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ABSTRACT This paper presents a safe control applied to a reaction wheel pendulum, assuring that the
system satisfies stability objectives and safety constraints. Safety constraints are specified in terms of a set
invariance and verified through control barrier functions (CBFs). The existence of a CBF satisfying specific
conditions implies set invariance. The control framework considered unifies stability objectives, expressed
as a nominal control law, and safety constraints, expressed as a CBF, through quadratic programming (QP).
The work focuses on safety; thus, the nominal control law applied was a simple linear quadratic regulator
(LQR). The safety constraint is considered to guarantee that the pendulum angular position never exceeds
a predetermined value. The control framework was applied and analyzed considering continuous-time and
discrete-time situations. The results from numerical simulations and experimental tests indicate that the
pendulum is well stabilized while satisfying a safety constraint when forced to leave the safe set.

INDEX TERMS Control barrier function, optimal control, quadratic programming, reaction wheel
pendulum, safety.

I. INTRODUCTION
The reaction wheel pendulum is an inverted pendulum
balanced by an actuated rotating reaction wheel (flywheel).
This system can reflect different typical problems in control,
such as nonlinearities, robustness, stabilization, and under
actuation, that make it an attractive and useful system for
research and advanced education. Several engineering prob-
lems can be approximately modeled as an inverted pendu-
lum, such as rocket launch, two-wheeled human transporter
(Segway) and bipedal robot [1].

Reactionwheels are actuators commonly used in aerospace
applications, such as in spacecrafts [2] and satellites [3],
to control the attitude without the use of thrusters. In robotics,
reaction wheel has been also applied in biped walking robots
[4] and to some variations in the reaction wheel pendulum
[5]–[8].

The reaction wheel pendulum has an unstable equilibrium
point on its upright position. Several control strategies pre-
sented in the literature have been applied to stabilize this
system, such as PD control [1], pole placement method [9],
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feedback linearization [10] and sliding mode control [11],
[12]. These works are proposed to satisfy a stability objective,
i.e., to stabilize the system at the equilibrium point, but
safety constraints are not considered. Motivated by several
recent works related to the safety of dynamical systems with
control barrier function (CBF) [13], [14], in this work we
apply a control framework on the reaction wheel pendulum
that simultaneously satisfies stability objectives and safety
constraints.

The safety of dynamical systems can be specified in terms
of a set invariance. The first study to provide necessary and
sufficient conditions for set invariance was conducted by
Nagumo [15] in the 1940s. In the 2000s, barrier certificates
were introduced to prove the safety of nonlinear and hybrid
systems [16]–[18]. The term ‘‘barrier’’ is related to barrier
functions, which, in optimization problems, are added to cost
functions to avoid undesirable regions [19].

Nagumo’s Theorem gives the necessary and sufficient
conditions for set invariance considering set boundaries.
To ensure safety over the entire set, a ‘‘Lyapunov-like’’
approach was proposed in Tee et al. [20], whereby a posi-
tive definite barrier Lyapunov function yields invariant level
sets. If these level sets are contained in the safe set, safety
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can be guaranteed. This methodology has the limitation of
imposing strong and conservative conditions, because it
enforces the invariance of every level set [13]. In Wieland
and Allgower [21], the notion of a barrier certificate was
extended to a ‘‘control’’ version, yielding the first definition
of CBF.

The concept of control Lyapunov barrier function
presented in Romdlony and Jayawardhana [22] combines
CBF and control Lyapunov function (CLF) and simultane-
ously guarantees safety and stability. CLFs utilize Lyapunov
functions together with inequality constraints on their deriva-
tives to establish entire classes of controllers that stabilize
a given system [23]. Several works present applications of
CLFs as feedback controllers, such as [24]. As in Tee et al.
[20] and Wieland and Allgower [21], the work by Romdlony
and Jayawardhana [22] imposes conditions stronger than
necessary [13].

The most recent formulation related to the safety of
dynamical systems is presented in Ames et al. [13] and
Ames et al. [14]. This methodology, also called CBF, ensures
safety over the entire set and imposes new conditions on
CBF, making the problem minimally restrictive, unlike [20],
[21] and [22]. It combines performance/stability objectives,
expressed as a CLF or a nominal control law and safety
constraints, expressed as a CBF. These objectives can be
integrated through quadratic programming (QP) and safety
constraintsmust be prioritized. Several applications using this
methodology are proposed in the literature, such as adap-
tive cruise control [25], [26], bipedal walking robot [27],
robotic manipulator [28], Segway [29], quadrotors [30] and
multi-robot systems [31].

This formulation, initially developed for continuous-time
systems, is extended to discrete-time systems in Takano et al.
[32] andAgrawal and Sreenath [33]. In Agrawal and Sreenath
[33], the performance/stability objectives are expressed as
a CLF, and in Takano et al. [32], as a nominal control
law. In discrete-time, the performance/stability objectives and
safety constraints are integrated through nonlinear program-
ming (NLP), and under certain conditions, the NLP can be
formulated as a QP [32], as shown later on.

In this work, we apply the formulation presented in
Ames et al. [13] and Ames et al. [14] to a reaction wheel pen-
dulum. Since the focus is safety, for stabilizing the pendulum,
a simple linear quadratic regulator (LQR) was considered.
The safety constraint, expressed as a CBF, is considered to
guarantee that the pendulum angular position never exceeds
a predetermined value. The control framework was applied
and analyzed considering continuous-time and discrete-time
situations. Particularly for the discrete-time CBF, we stress
that there are few studies dealing with that in the literature
[32], [33].

The rest of this paper is organized as follows: In section II,
the modeling of the reaction wheel pendulum is described.
The nominal LQR, the concept of CBF and the control frame-
work are presented in section III for the continuous-time
system and, in section IV, for the discrete-time system.

FIGURE 1. Schematic diagram of the reaction wheel pendulum.

Results and conclusions are presented in sections V and VI,
respectively.

II. SYSTEM MODELING
The schematic diagram of the reaction wheel pendulum is
presented in Fig. 1. The system is constituted by an inverted
pendulum that is balanced by an actuated reaction wheel. α is
the pendulum angle, θ is the wheel angle and τ is the torque
acting on the reaction wheel. The angles are measured with
two optical encoders and the reaction wheel is actuated by a
permanent-magnet DC motor.

The equations of motion can be derived using the
Lagrangian method. The Lagrange’s equations are described
as

d
dt

(
∂L
∂ q̇l

)
−
∂L
∂ql
= τl, l = 1, . . . , d, (1)

where L = T − V is the Lagrangian of the system, T is the
total kinetic energy, V is the total potential energy, d is the
number of generalized coordinates or degrees-of-freedom,
ql represent the generalized coordinates and τl the
generalized forces (torques).

For the reaction wheel pendulum, the generalized coordi-
nates are α and θ (d = 2), and the generalized torques are+τ ,
imposed by the DC motor and acting on the reaction wheel,
and−τ , which is the reaction torque acting on the pendulum.
The system kinetic energy T is the sum of the pendulum

kinetic energy and the reaction wheel kinetic energy:

T =
1
2

(
mpl2cp + Jp

)
α̇2 +

1
2
mr l2p α̇

2
+

1
2
Jr (θ̇ + α̇)2, (2)

where mp and mr are the pendulum and the reaction wheel
masses, Jp and Jr are the pendulum and the reaction wheel
moments of inertia, lp is the pendulum length and lcp is the
distance to the pendulum center of mass.

We assume that the system potential energy V is due to
gravity only. Thus,

V = mpglcp cosα + mrglp cosα, (3)

where g is the gravitational acceleration constant.
Applying (2) and (3) in (1), we obtain the following

equations of motion:
(mpl2cp + mr l

2
p + Jp + Jr )α̈ + Jr θ̈

+ (mpglcp + mrglp) sinα = −τ, (4)

Jr (α̈ + θ̈ ) = τ. (5)
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The torque τ generated by the DC motor can be described
by:

τ = Kmim, (6)

where Km is the motor torque constant and im is the motor
current. Neglecting the motor inductance and using Ohm’s
law, we obtain:

im =
Vm − Keθ̇

Rm
, (7)

where Vm is the voltage applied to the motor armature
using PWM (Pulse Width Modulation), Ke is the back EMF
(Electromotive-Force) constant and Rm is the motor internal
resistance.

The system model is represented by:

ẋ = f (x)+ g(x)u, (8)

with states x ∈ D ⊂ Rn, inputs u ∈ U ⊂ Rm and f (x) and
g(x) locally Lipschitz.

In order to design the linear control to stabilize the system,
the nonlinear model is linearized around the equilibrium
point, resulting in:

ẋ = Ax + Bu, (9)

where f (x) = Ax, g(x) = B, x =
[
α α̇ θ̇

]T , u = Vm, A is the
state matrix, B is the input matrix and the equilibrium point
is x∗ = [0 0 0]T .

III. CONTROL FRAMEWORK — CONTINUOUS-TIME
This section presents the nominal LQR, the concept of CBF
and the control framework that unifies the nominal LQR and
CBF through QP, considering the continuous-time system
described in (8).

A. NOMINAL CONTROL - CONTINUOUS-TIME LQR
LQR is an optimal regulator that, given the system
equation (9), determines the matrix K of the optimal control
vector

u = −Kx (10)

so as to minimize the performance index

J =
∫
∞

0

(
xTQx + uTRu

)
dt, (11)

where Q is a positive-semidefinite matrix and R is a
positive-definite matrix. These matrices are selected to
weight the relative importance of the state vector x and the
input u on the performance index minimization [34].
If there exists a positive-definite matrix P satisfying the

Riccati equation

ATP+ PA− PBR−1BTP+ Q = 0, (12)

then the closed-loop system is stable. Thus, the optimal
matrix K can be obtained by

K = R−1BTP. (13)

B. CONTROL BARRIER FUNCTION — CONTINUOUS-TIME
Two dual concepts related to control systems are liveness and
safety. As mentioned in Ames et al. [13], liveness requires
that ‘‘good’’ things eventually happen, such as asymptotic
stability or tracking, while safety requires that ‘‘bad’’ things
do not happen, such as a set invariance. Liveness can be
mathematically related to a CLF or an arbitrary nominal
control law. On the other hand, safety can be related to CBF,
meaning that any trajectory starting inside an invariant set will
never reach the complement of the set [13].

A barrier function h(x) vanishes on a set C boundary,
i.e., h(x) → 0 as x → ∂C . If h(x) satisfies Lyapunov-like
conditions, then the forward invariance of C is guaranteed
[13]. The natural extension of a barrier function to a system
with control inputs is a CBF [21]. In CBFs, we impose
inequality constraints on a derivative to obtain entire classes
of controllers that render a given set forward invariant.

We consider a set C defined as the superlevel safe set of
a continuously differentiable function h(x) : D ⊂ Rn

→ R
yielding [13]:

C =
{
x ∈ D ⊂ Rn

: h (x) ≥ 0
}
,

∂C =
{
x ∈ D ⊂ Rn

: h (x) = 0
}
,

Int(C) =
{
x ∈ D ⊂ Rn

: h (x) > 0
}
. (14)

The definition of safety is given by [13]:
Definition 1: Let u be a feedback controller such that (8)

is locally Lipschitz. For any initial condition x0 ∈ D there
exists a maximum interval of existence I (x0) such that x(t)
is the unique solution to (8) on I (x0). The set C is forward
invariant if for every x0 ∈ C , x(t) ∈ C for x(0) = x0 and ∀
t ∈ I (x0). The system (8) is safe with respect to the set C if
the set C is forward invariant.
Considering Lf h = ∇h(x) · f (x) and Lgh = ∇h(x) · g(x),

the formal definition of CBF is given by [14]:
Definition 2: Consider the control system (8) and the set

C ⊂ Rn defined by (14) for a continuously differentiable
function h(x) : Rn

→ R. The function h(x) is called a CBF
defined on set D with C ⊆ D ⊂ Rn, if there exists an
extended class κ function αcbf such that

sup
u∈U

[
Lf h(x)+ Lgh(x)u+ αcbf (h(x))

]
≥ 0, ∀x ∈ D. (15)

Remark 1: A continuous function αcbf : [0, a) → [0,∞)
for some a > 0 is said to belong to class κ if it is strictly
increasing and αcbf (0) = 0.

Considering a CBF h(x), ∀ x ∈ D, define the set [14]

Kcbf (x)=
{
u ∈ U : Lf h(x)+Lgh(x)u+αcbf (h(x))≥0

}
. (16)

With this definition, we have the following corollary [14]:
Corollary 1: Given a set C ⊂ Rn defined by (14) and let

h(x) be an associated CBF for the system (8), then any locally
Lipschitz continuous controller u : D→ U such that u(x) ∈
Kcbf (x) will render the set C forward invariant.
As previouslymentioned, in this work, the safety constraint

is considered to guarantee that pendulum angle α never
exceeds a predetermined value.
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FIGURE 2. Schematic diagram of the control framework for the
continuous-time system.

C. UNIFYING NOMINAL CONTROL LAW AND CBF
THROUGH QP — CONTINUOUS-TIME
The final control framework unifies the nominal LQR and
CBF through QP in continuous-time.

The nominal controller uno, for the control system (8),
is shown in (10). The idea here is to consider that the safety
constraints modify the nominal controller in a minimal way,
just when the states are approaching the border of the safe
set, so that the final control u satisfies corollary 1. Therefore,
the final controller is formulated as an optimization problem,
minimizing the error [28]

eu = uno − u. (17)

The squared norm of the error

‖eu‖2 = uT u− 2uTnou+ u
T
nouno (18)

is considered as the objective function. The last term of (18) is
neglected, since it is constant in a minimization process with
respect to u. Thus, we can consider the following QP-based
controller [13], [28]:

u∗ = argmin
u∈Rm

uT u− 2uTnou

s.t. Acbf u ≤ bcbf , (19)

where Acbf = −Lgh(x) and bcbf = Lf h(x)+ αcbf (h(x)). It is
important to highlight that the constraint in QP enforces the
condition (15) for CBF.

Fig. 2 shows the schematic diagram of the control
framework for the continuous-time case.

IV. CONTROL FRAMEWORK — DISCRETE-TIME
This section presents the nominal LQR, the concept of CBF
and the control framework that unifies the nominal LQR
and CBF through NLP, considering the discrete-time system.
The system described in (8) is represented in discrete-time
as

xk+1 = fd (xk )+ gd (xk )uk , (20)

with states x(k) = xk ∈ Dd ⊂ Rn and inputs u(k) = uk ∈
Ud ⊂ Rm.
The linearized system is represented as

xk+1 = Gxk + Huk , (21)

where fd (xk ) = Gxk , gd (xk ) = H , xk =
[
αk α̇k θ̇k

]T ,
uk = Vmk , G is the state matrix, H is the input matrix and
the equilibrium point is x∗k = [0 0 0]T .

A. NOMINAL CONTROL — DISCRETE-TIME LQR
The discrete LQR controller has the form

uk = −Kdxk (22)

where the matrix Kd is such that minimizes the performance
index

Jk =
1
2

∞∑
k=0

[
xTk Qdxk + u

T
k Rduk

]
, (23)

where Qd is a positive-semidefinite matrix and Rd is a
positive-definite matrix. These matrices are selected to
weight the relative importance of xk and uk over (23),
respectively [35].

If there exists a symmetric matrix Pd satisfying the discrete
Riccati equation

Pd = Qd + GTPdG− GTPdH (Rd + HTPdH )−1HTPdG,

(24)

thus, the optimal matrix Kd can be obtained by

Kd = (Rd + HTPdH )−1HTPdG. (25)

B. CONTROL BARRIER FUNCTION — DISCRETE-TIME
Such as for continuous-time, we define a set Cd which is a
forward invariant set if it satisfies [33]:

Cd =
{
xk ∈ Dd ⊂ Rn

: Bdk ≥ 0
}
,

∂Cd =
{
xk ∈ Dd ⊂ Rn

: Bdk = 0
}
, (26)

where Bdk = Bd (xk ) : Dd → R is called discrete-time
exponential barrier function.
Proposition 1: The set Cd is invariant along the

trajectories of the discrete-time system (20) if there exists a
map Bdk : Cd → R such that [33]:
1) B0 ≥ 0 and,
2) 1Bdk + γdBdk ≥ 0,∀k ∈ Z, 0 < γd ≤ 1,
where 1Bdk = Bdk+1 − Bdk .
Definition 3: (Discrete-time exponential control barrier

function) AmapBdk : Dd → R is a discrete-time exponential
control barrier function if [33]:

1) B0 ≥ 0 and,
2) there exists a control input uk ∈ Rm such that 1Bdk +

γdBdk ≥ 0,∀k ∈ Z, 0 < γd ≤ 1.

C. UNIFYING NOMINAL CONTROL LAW AND CBF
THROUGH NLP — DISCRETE-TIME
Proceeding similar to the continuous-time case, suppose
we want to guarantee safety for the control system (20),
considering that we have a discrete nominal controller unod ,
shown in (22). Based on Takano et al. [32], the problem for
the constrained state control becomes the following NLP:

u∗k = argmin
uk∈Rm

uTk uk − 2uTnoduk

s.t. Bdk+1(xk , uk )− Bdk + γdBdk ≥ 0, (27)

where Bdk+1(xk , uk ) = Bd (fd (xk )+ gd (xk )uk ).
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FIGURE 3. Schematic diagram of the control framework for the
discrete-time system.

FIGURE 4. Prototype of the reaction wheel pendulum developed at
EPUSP.

Fig. 3 shows the schematic diagram of the control
framework for the discrete-time configuration.

In this work, the discrete CBF Bdk and the discrete-time
system (20) are both linear; so the NLP (27) can be described
as a QP, such as in the continuous-time system.

V. NUMERICAL/EXPERIMENTAL RESULTS
The behavior of the reaction wheel pendulum with the
proposed control framework was verified through numeri-
cal simulations with MATLAB/Simulink and experimentally
using a prototype developed at Escola Politécnica da Uni-
versidade de São Paulo (EPUSP), shown in Fig. 4. It is
powered by a development board Teensy 3.2, based on a
32-bits ARM processor. Pendulum angle α and wheel angle
θ were measured with optical encoders,1 while pendulum
velocity α̇ and wheel velocity θ̇ were obtained by Euler back-
ward approximations. The reaction wheel is actuated by a
permanent-magnet DCmotor, with a motor driver VNH5019.

The numerical values of the parameters are mp =

0.117Kg, mr = 0.119Kg, Jp = 6.2533 × 10−4kgm2,
Jr = 9.4559 × 10−4kgm2, lp = 0.14298m, lcp = 0.0987m,
g = 9.81m/s2, Km = 0.0601Nm/V, Ke = 0.1836V/(rad/s)
and Rm = 2.44�.

1The resolution of the reaction wheel encoder is equal to 2π/237.6
(237.6 pulses/revolution), while for the pendulum encoder, it is equal to
2π/2048 (2048 pulses/revolution).

A. CONTINUOUS-TIME RESULTS
For the continuous-time system, the numerical values of
matrices A and B in (9) are:

A=

 0 1 0
66.7479 0 1.0774
−66.7479 0 −5.8606

, B=

 0
−70.4050
382.9616

. (28)

The LQR in (10) was designed considering

Q =

 4.5837 0 0
0 3.2058 0
0 0 0.0071

, R = 30, (29)

resulting in

K =
[
−3.906 −0.599 −0.0569

]
. (30)

We proposed an experiment whereby pendulum angle α
should tracks a reference input αref composed of short-time
pulses. This was considered in order to verify the effect of
the barrier function, i.e., with the final control framework,
the pendulum is expected not to exit the safe set. Initially,
just LQR was applied. When a reference input is considered,
the control input (10) becomes

u = −Kx + k1αref , (31)

where k1 = −3.906.
Posteriorly, the control framework that unifies LQR and

continuous-time CBF through QP shown in (19) was applied
to guarantee that |α| never exceeds a predetermined value
αmax . For doing so, the CBF must be chosen in order to
satisfy the safe set C (14). This can be solved by applying
the following CBF:

h(x) = c1
[
α2max − α

2
− c2α̇2

]
, (32)

where c1 and c2 are constants determined empirically.
A similar CBF can be found in Taylor et al. [36] applied to a
Segway. The term c2α̇2 scales the importance of velocity α̇.
If a small value is set to c2, so that the velocity exerts little
influence, it can be observed that h(x) ≥ 0 happens just when
|α| < αmax ; so that the safe set C (14) is satisfied.

It is important to highlight that c2α̇2 must necessarily be
added. The constraint in QP (19) shows that the input u
only influences the system for Lgh(x) 6= 0; hence, h(x) has
to be designed such that ḣ(x) depends directly on u. If the
term c2α̇2 is neglected, the CBF will have a relative-degree
greater than one, i.e., Lgh(x) = 0, and the problem cannot be
solved. Nguyen and Screenath [27] andWu and Sreenath [30]
describe this kind of solution to deal with high relative-degree
CBFs. Other solutions are presented in Hsu et al. [37], which
proposes a backstepping-based method, and in Nguyen and
Sreenath [38], whereby the concept of exponential CBF is
introduced as a way to enforce high relative-degree safety
constraints.

The QP of (19) was implemented using Hildreth’s QP
procedure [39], which is solved in polynomial time. The
algorithm was embedded in the Teensy 3.2 platform.
αcbf (h(x)) = γ h(x) was chosen, where γ is a constant,
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FIGURE 5. Numerical simulation — LQR without CBF (continuous-time
system).

as suggested in [14]. Initially, the numerical values consid-
ered for CBF (32) and QP (19) were γ = 55, c1 = 0.5,
c2 = 0.001 and αmax = 0.087rad (5◦). It was observed that
using higher values for γ , the safety constraint determined
by CBF is not respected and, using lower values, the CBF
is more conservative, acting far from the barrier limit αmax .
Constant c1 exerts little influence and it was set based on
Taylor et al. [36]. It was also observed that using higher values
for c2 makes the CBF more conservative, and lower values
have little influence.

Numerical simulations were performed in MATLAB/
Simulink. In order to make the simulation more realist,
the actuator dead-zone and measurement noise was added
to the encoder output. Dead-zone was experimentally iden-
tified equal to 0.13 (in duty-cycle of PWM). The measure-
ment noise was modeled as a random variable uniformly
distributed in (−1/2, 1/2), where 1 is the resolution of
each encoder. With this approach, the measurement noise
represents the quantization noise of the encoders.

Simulation results are presented in Figs. 5 for LQR, and
6 for LQR with CBF. The pendulum is assumed to start at
an initial angular position αini = 0.069rad (4◦). A reference
αref with short pulses (0.2 s) with amplitude ±0.140rad (8◦)
is applied. The results show that LQR is able to stabilize the
system.When LQR is combinedwith CBF, in the final control
framework, it is possible to see that the safety constraint
was respected, i.e., |α| never exceeds αmax and the CBF h(x)
respects the conditions shown in (14).

The experimental results with the prototype are presented
in Figs. 7 and 8. In Fig. 7, just LQR was considered. It is
possible to see that the controller performs well, keeping the
system balanced and trying to track the short pulses. In Fig. 8,
the final control framework was applied. Using the parameter
γ = 55, as in the simulations, the CBF acts very close to bar-
rier limit αmax , and it was observed in previous experiments
that some values of |α| somewhat exceeded αmax , mainly
due to sensor imprecision, unmodeled dynamics, and angular

FIGURE 6. Numerical simulation — LQR with CBF (continuous-time
system).

FIGURE 7. Experimental result — LQR without CBF (continuous-time
system).

speed estimators. Hence, for the experiments, we considered
a more conservative barrier with γ = 1, so that the safety
constraint was respected. In Fig. 8, initially |α| exceeds αmax ,
since the CBF was programmed to act just after the transitory
due to the initial condition. It is possible to see that the
pendulum angle never exceeds the barrier limits, i.e., the
states do not leave the safe set.

B. DISCRETE-TIME RESULTS
The system model was discretized considering a sampling
time Ts = 0.02s. The numerical values of matrices G and
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FIGURE 8. Experimental result — LQR with CBF (continuous-time system).

H obtained were:

G =

 1.013 0.02009 0.0002078
1.327 1.013 0.02043
−1.265 −0.01287 0.8893

 ,
H =

−0.01358−1.335
7.233

 . (33)

In this case, the weighting matrices of the LQR were set as

Qd =

 0.0057 0 0
0 0.0040 0
0 0 0.0001

 , Rd = 0.2800, (34)

such that

Kd =
[
−3.3908 −0.4475 −0.0351

]
. (35)

The same setup of the continuous time experiments are
considered here. Initially, just LQR was applied. When a
reference input is considered, the control input (22) becomes

uk = −Kdxk + kd1αref , (36)

where kd1 = −3.3908.
Thereafter, the control framework that unifies LQR and

discrete-time CBF bymeans of an NLP, as shown in (27), was
applied to guarantee that |α| never exceeds a predetermined
value αmax . The CBF must be chosen in order to satisfy the
safe setCd (26). This can be solved by applying the following
discrete CBF:

Bdk = αmax − αk , αk ≥ 0

Bdk = αmax + αk , αk < 0. (37)

FIGURE 9. Numerical simulation — LQR without CBF (discrete-time
system).

For a discrete-time system, it is not necessary to add the
term related to velocity α̇, because the Lie derivative Lgh(x)
does not play a role in the NLP (27). It can be observed that
Bdk ≥ 0 is satisfied just when |α| < αmax ; so the safe set Cd
(26) is satisfied.

It is important to highlight that the discrete CBF (37) and
the discrete-time system (20) are both linear; the NLP (27)
can therefore be described as a QP, as in the continuous-time
system. Considering

Bdk+1(xk , uk ) = αmax − αk+1, αk ≥ 0

Bdk+1(xk , uk ) = αmax + αk+1, αk < 0, (38)

the NLP (27) can be described as a QP, such that (19):
u∗k = argmin

uk∈Rm
uTk uk − 2uTnoduk

s.t. Acbfdu ≤ bcbfd , (39)

where

Acbfd = H , bcbfd = αmax − 1.013αk − 0.02009α̇k
− 0.0002078θ̇k − Bdk − γdBdk , αk ≥ 0

Acbfd = −H , bcbfd = αmax + 1.013αk + 0.02009α̇k
+ 0.0002078θ̇k − Bdk + γdBdk , αk < 0. (40)

The QP (39) was solved using Hildreth’s QP procedure
again, which was also embedded in the Teensy 3.2 platform.
Initially, the numerical values considered for CBF (37) and
QP (39) were γd = 0.25, αmax = 0.087rad (5◦) again and the
reference input αref was the same used in the continuous-time
system. It was observed that when higher values for γd are set,
the safety constraint determined by CBF is not respected and,
when lower values are considered, the CBF becomes more
conservative.

Numerical simulations with MATLAB/Simulink are
presented in Figs. 9 and 10. In Fig. 9, just LQR was consid-
ered, while in Fig. 10, the final control framework with CBF
was applied. It is also possible to see that the LQR performs
well and when it is used with CBF, the safety constraint
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FIGURE 10. Numerical simulation — LQR with CBF (discrete-time
system).

FIGURE 11. Experimental result — LQR without CBF (discrete-time
system).

was also satisfied, and the CBF Bdk respected the conditions
shown in (26).

Experimental results are presented in Figs. 11 for LQR,
and in 12 for LQR with CBF. Again, the system shown to
be well stabilized and the CBF was able to guarantee the
invariance of the safe set. For the same reasons presented
in the continuous-time case, a more conservative CBF was
used in the discrete-time experiments, with γd = 0.1. In the
discrete-time experiment, the results are somewhat better than
in the continuous-time case. One reason why this happened is
that, in the discrete-time case, the effect of the zero-order hold

FIGURE 12. Experimental result — LQR with CBF (discrete-time system).

in the practical implementation was included in the model of
Equation (21).

VI. CONCLUSION
This paper presented the control of a reaction wheel
pendulum considering stability objectives, expressed as a
nominal control law, and safety constraints, expressed as a
CBF, by means of QP, in continuous-time and discrete-time.
LQR was considered for the nominal control law, and the
safety constraints were considered to guarantee that the angu-
lar position of the pendulum never exceeds a predetermined
value. Results from numerical simulations and experimental
tests indicate that the control framework satisfies the stabil-
ity objectives and safety constraints. Due to some practical
issues, such as measurement imprecision, unmodeled dynam-
ics and angular speed estimator, in order to guarantee the
safety constraints during the experiments, more conservative
CBFs have to be applied in both continuous and discrete-time
practical tests. As suggestions of future work, robust CBFs
can be considered, whereby model uncertainties and distur-
bances are taken into account, as well as the association of
CBF with other control methods, such as sliding mode and
fuzzy Takagi-Sugeno.
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