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ABSTRACT Product-service system (PSS) is an effective solution for service-oriented manufacturing.
In the life cycle of PSS, evaluation decision of PSS alternatives is of great significance for subsequent
implementation. Supported by the big data of stakeholder comments, a PSS evaluation decision technique
is explored. Based on the multi-stakeholder comments of PSS evaluation decision’s influence factors,
the index system considering the environmental effect is constructed through analyzing and summarizing
the co-occurrence matrix and semantic network diagram of high-frequency words. To determine the index
value of PSS alternative, the stakeholders’ vague opinions expressed by trapezoidal fuzzy number are fused.
At last, PSS alternatives are evaluated by Kullback-Leibler divergence (KLD) modified TOPSIS. The case
of PSS evaluation decision for a printer company shows that the explored technique is effective.

INDEX TERMS Multi-stakeholder comments, co-occurrencematrix, semantic network diagram, trapezoidal
fuzzy number, Kullback-Leibler divergence, TOPSIS.

I. INTRODUCTION
With the maturity and application of the new generation of
information technology, a new round of industrial revolution
is in full swing. The strategic position of manufacturing
industry has been attached great importance. In recent years,
many countries have formulated and launched their own
manufacturing development strategies, such as Germany’s
‘‘industry 4.0’’ and ‘‘national industrial strategy 2030’’, EU’s
‘‘2020 growth strategy’’, US’s ‘‘advanced manufacturing
Partnership Plan’’, China’s ‘‘made in China 2025’’, etc.
Among them, intelligent manufacturing has become the main
direction of the industrial revolution and industrial devel-
opment. In addition, sustainable development has become
the consensus of human development. Green development
as the most important subset of the sustainable develop-
ment concept has received special attention. Many countries,
organizations and institutions have actively participated in
various plans, outlines, agreements or initiatives to protect the
ecological environment and promote green economic growth
[1]–[3].Manufacturing industry has a significant contribution
to environmental problems, and a new round of industrial
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revolution will bring profound and lasting changes to the
work and life of employees and users [4].

Service-oriented manufacturing is a new manufacturing
mode of integration of manufacturing industry and service
industry. In service-oriented manufacturing mode, manufac-
turing enterprises provide users with integrated solutions of
personalized products and services. Product-service system
(PSS), which can provide manufacturing enterprises with an
overall solution to create high added value by the concor-
dance of visible products and invisible services, emerges as
the times require in this context. As a new manufacturing
paradigm, the environmental and social impact of PSS is
not clear and needs special attention. In particular, due to
the fuzziness of customer demand and the understanding
deviation of designer to customer demand, the PSS scheme
is not unique in the design stage of PSS. The quality of the
scheme is directly related to customer satisfaction. In order to
better meet the personalized needs of customers and improve
the market share of enterprises, it is particularly important to
evaluate multiple PSS schemes and achieve PSS evaluation
decision optimization.

In recent years, with the emergence of new information
publishing methods represented by social networks [15],
LBS (location-based services) [16], and the rise of cloud
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computing [17], [18], IoT (Internet of things) [19] and
other technologies, data is growing and accumulating at an
unprecedented speed, and the era of big data has come [20].
The rapid development of big data technology has a pro-
found impact on social economy and industrial model [21].
Scholars have also begun to apply big data methodology to
decision-making process [22]–[24]. Open source data analy-
sis software tools (such as web crawler, text analysis, seman-
tic network diagram, etc.) provide more convenient means for
big data mining and reuse. Therefore, these background tech-
nologies make big data supported PSS evaluation decision
optimization possible.

PSS evaluation decision is essentially a multi-criteria
decision-making problem, which mainly includes the steps
of index system construction, index value determination and
alternatives evaluation.

In the aspect of index system construction, the stakeholders
involved in PSS evaluation decision include multiple fields,
such as PSS user, user demand analyst, PSS entrepreneur,
social and environmental researcher and PSS design engineer.
Therefore, the multiple stakeholders should be taken as the
perspective of the problem. The existing studies only consider
one or two aspects of the index evaluation system construc-
tion, and are not comprehensive. It is a common method
to obtain source data by publishing topics in the forum,
inviting various stakeholders to carry out online discussions,
and extracting big data of multi-perspective comments by
web crawler software. Many kinds of stakeholders should
cover the stakeholders of PSS evaluation decision as much as
possible, and can be composed of multiple PSS users, mul-
tiple PSS user demand analysts, multiple PSS entrepreneurs,
multiple social and environmental researchers and multiple
PSS design engineers.

In the aspect of index value determination, multiple
qualitative or quantitative factors need to be considered
respectively, and the process of index value determination is
rather tedious. The mathematical and statistical characteris-
tics of stakeholder scoring method can make the best use of
stakeholder experience, and the calculation process is very
simple. However, stakeholders’ assessment on the relative
merits and demerits of multiple PSS on an index depends
on personal experience and subjective judgment, so it is
unreasonable to express them with accurate values.

In the aspect of alternatives evaluation, the traditional
alternatives evaluation methods include TOPSIS, VIKOR,
AHP, etc. Among these research, TOPSIS is a classic
method for multi-attribute evaluation. In traditional TOPSIS,
object’s closeness, which is calculated by Euclidean distances
between the evaluation object and the two ideal points, is used
as the basis of evaluation [40]. However, the objects on the
perpendicular bisector of two ideal points have the same
closeness and cannot be distinguished by traditional TOPSIS.

To sum up, PSS evaluation decision using general methods
is difficult in service-oriented manufacturing. The research
gaps are mainly reflected as follows. The index system of
PSS evaluation decision is difficult to establish. There are

some problems in the current research, such as the selection
of indexes is too subjective and not comprehensive. The
determination of index weight mainly depends on subjective
or objective weighting method. The former mainly considers
the knowledge, experience and preference of decision mak-
ers. Although the latter can make up for the deficiency of
the former to some extent, it only considers the difference
between index values and ignores the correlation between
indexes. The complexity of index system leads to the solution
of index value is very tedious, and the scalar dimensions of
different indexes are different, which cannot be directly used
for evaluation.

In view of the above gaps, this article aims at the practical
engineering problems in service-oriented manufacturing,
explores a big data supported PSS evaluation decision tech-
nique. Firstly, the index system considering the environmen-
tal effect is constructed through analyzing and summarizing
the co-occurrence matrix and semantic network diagram of
high-frequency words, which are collected from the multi-
stakeholder comments of PSS evaluation decision’s influence
factors. Secondly, the stakeholders’ vague opinions of PSS
alternative’s performance on evaluation index are expressed
by trapezoidal fuzzy number and fused to determine the
index value of PSS alternative. Then, TOPSIS is modi-
fied by replacing Euclidean distance with Kullback-Leibler
divergence (KLD) of information theory, and the modified
TOPSIS is adopted to sequence the PSS alternatives.

The remainder of this article is organized as follows:
Section II proposes the overall research architecture.
Section III constructs the index system of PSS evalua-
tion decision based on big data of stakeholder comments.
Section IV determines the index value using vague opinion
fusion. Section V evaluate the PSS alternatives by KLD
modified TOPSIS. In SectionVI, a case study to test the effec-
tiveness of explored PSS evaluation decision technique is
presented. Final conclusions are summarized in Section VII.

II. OVERALL RESEARCH ARCHITECTURE
To provide a big data supported technique for PSS evalua-
tion decision, we propose an overall architecture as shown
in Fig. 1. The overall architecture is divided into four layers.

The first layer contains multiple stakeholders, which are
divided into several categories, such as PSS user, user
demand analyst, PSS entrepreneur, social and environmental
researcher, PSS design engineer, etc.

The second layer is data layer. By forum topic, online
discussion, telephone interview, random investigation and
other ways, the big data resource from the perspective of mul-
tiple stakeholders is obtained by web crawler tool. By vague
assessment, the opinions of alternatives’ performance on each
index are obtained which are represented by fuzzy numbers.

The third layer is approach layer. To construct the index
system, the concept processing and word segmentation pro-
cessing of the extracted multi-perspective comment big data
are implemented with the text analysis software, and the word
frequency statistics are executed to get the high frequency
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FIGURE 1. Overall research architecture.

TABLE 1. Part of the high-frequency words.

word catalogue. Then, the co-occurrence matrix of high fre-
quency words is formed. The index system is constructed
based on semantic network graph analysis. To determine
the index value, the multiple stakeholders’ vague assessment
opinions expressed by fuzzy numbers are fused and the index
value matrix is obtained. At last, KLD modified TOPSIS is
adopted to evaluate the PSS alternatives.

The fourth layer is alternative layer which is composed
of several PSS alternatives. After PSS evaluation decision,
the best PSS alternative will be obtained, which is of great
significance for later implementation of PSS.

III. INDEX SYSTEM CONSTRUCTION BASED ON BIG
DATA OF STAKEHOLDER COMMENTS
Web crawler is adopted to obtain multi-stakeholder big data
of stakeholder comments about PSS evaluation decision from
forum topic, online discussion, user comment and other
channels. Next, text analysis is adopted to implement the
concept processing and word segmentation processing and
execute the word frequency statistics. After eliminating the
words with no actual meaning or obvious direction, we screen
83 high-frequency words and obtain the real high-frequency
word catalogue. Part of the high-frequency words is shown
in Table 1.

The co-occurrence matrix of high-frequency words is
used to express the relative relationship between two
high-frequency words. The larger the value of the intersection

FIGURE 2. Part of the co-occurrence matrix of high frequency words.

of two high-frequency words is, the stronger the correla-
tion between them is. Next, high-frequency word analysis
is adopted for the matrix analysis of high frequency word
catalogue and the co-occurrence matrix of high frequency
words is obtained. Part of the co-occurrence matrix of high
frequency words is shown in Fig. 2. The values in Fig. 2 are
co-occurrence times.

In addition, social network analysis of high-frequency
words is used to obtain the semantic network diagram of
high-frequency words. The semantic network diagram of top
30 high-frequency words is shown in Fig. 3.

Based on the co-occurrence matrix shown in Fig. 2 and the
semantic network diagram shown in Fig. 3, we summarize
and classify the text data of high-frequency words. Then we
abstract the high-frequency words with the same attribute
according to the logical relationship and mutual relationship,
and continuously attempt to categorize the high-frequency
words. At last, we classify each high-frequency word
into a category. As shown in Fig. 4, the obtained cat-
egory is the second-level index of PSS evaluation deci-
sion. Then we abstract and classify the second-level indexes
again, and obtain the first-level indexes. At last, the index
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FIGURE 3. The semantic network diagram of top 30 high-frequency words.

FIGURE 4. The index system of PSS evaluation decision.

system of PSS evaluation decision is constructed as shown
in Fig. 4.

IV. INDEX VALUE DETERMINATION USING VAGUE
OPINION FUSION
The stakeholder’s assessment opinion of PSS alternative’s
performance on one index is vague, and it is more reasonable
to use fuzzy number to express the assessment value than
accurate value. Two kinds of fuzzy numbers commonly used
in fuzzy theory are trapezoidal fuzzy number and triangular
fuzzy number. The membership function of trapezoidal fuzzy
number is more complex and can simulate the vagueness of
stakeholder’s assessment better than triangular fuzzy num-
ber. Therefore, trapezoidal fuzzy number is applied in this
article to express the stakeholder’s vague assessment on the
index value of PSS alternatives. According to the arithmetic

TABLE 2. Corresponding relation of accurate value and fuzzy value in
nine-level scale assessment.

rules of trapezoid fuzzy number, the commonly used
nine-level scale assessment comments and values are fuzzed
to get the corresponding trapezoid fuzzy number as shown
in Table 2.
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FIGURE 5. Six PSS alternatives (P1, P2, P3, P4, P5 and P6).

There are p PSS alternatives and q stakeholders. According
to Table 1, the assessment value of alternative s (1 ≤ s ≤ p)
given by stakeholder r (1 ≤ r ≤ q) on index Ii is x̃rs,i =
(ars,i, b

r
s,i, c

r
s,i, d

r
s,i), which is in trapezoid fuzzy number form.

Using the arithmetic average method, the group decision
assessment value is calculated as follows:

x̃rs,i = (as,i, bs,i, cs,i, ds,i) = (
q∑

r=1

ars,i

/
q, bs,i

=

q∑
r=1

brs,i

/
q, cs,i =

q∑
r=1

crs,i

/
q, ds,i =

q∑
r=1

d rs,i

/
q)

(1)

Then, through the gravity center form of trapezoid fuzzy
number, the group decision assessment value is converted into
the real number form as follows:

xs,i =
(c2s,i + cs,ids,i + d

2
s,i)− (a2s,i + as,ibs,i + b

2
s,i)

3(cs,i + ds,i − as,i − bs,i, )
(2)

ts,i is the index value of PSS alternative s on index Ii. After
calculating the index values of all PSS alternatives on each
index, the index value matrix is obtained as X =

[
xs,i
]
p×N .

V. ALTERNATIVE EVALUATION BY KLD
MODIFIED TOPSIS
In information theory, the difference degree between two
n-dimensional uncertainty systems θA = (θA1 , θ

A
2 , . . . , θ

A
n )

and θB = (θB1 , θ
B
2 , . . . , θ

B
n ) can be measured by KLD as

follows:

KLDA,B =
n∑

k=1

[
θAk log

θAk

θBk
+ (1− θAk ) log

1− θAk
1− θBk

]
(3)

where θAk and θBk mean the appearance probability of
uncertain status k in systems θA and θB. KLD has the

characteristics as follows: KLDA,B ≥ 0, and only if A = B,
KLDA,B = 0.

According to index value matrix X =
[
xs,i
]
p×N , the index

weight is obtained by standard deviation method. The
standard deviation of index Ii is as follows:

σi =

√√√√1
n

p∑
s=1

(xs,i −
1
p

p∑
s=1

xs,i)2 (4)

Then the weight of index Ii is obtained as follows:

ωi =
σi
N∑
i=1
σi

(5)

Finally, we obtain the weighted index value matrix
T =

[
ts,i
]
p×N . Here, ts,i = ωits,i. Therefore, the positive ideal

point and the negative ideal point are as follows:

T+ =
[
t+1 , t

+

2 , . . . , t
+

i , . . . , t
+

N

]
T− =

[
t−1 , t

−

2 , . . . , t
−

i , . . . , t
−

N

]
(6)

where t+i = max{t1,i, t2,i, . . . , tp,i} and t−i = min{t1,i,
t2,i, . . . , tp,i}.

The index value of PSS alternative s is expressed as
T s =

[
ts,1, ts,2, . . . , ts,i, . . . , ts,N

]
which is the row s of index

value matrix T =
[
ts,i
]
p×N . Therefore, the KLD from T s to

positive ideal point T+ is obtained as follows:

KLDs,+ =
N∑
i=1

[
ts,i log

ts,i
t+i
+ (1− ts,i) log

1− ts,i
1− t+i

]
(7)

And the KLD from T s to negative ideal point T− is
obtained as follows:

KLDs,− =
N∑
i=1

[
ts,i log

ts,i
t−i
+ (1− ts,i) log

1− ts,i
1− t−i

]
(8)
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TABLE 3. The vague comment statistics of P1.

TABLE 4. The index value of P1.

For PSS alternative s, the KLD closeness is as follows:

ϕs =
KLDs,−

KLDs,+ + KLDs,−
(9)

where ϕs has the characteristics as follows: if T s =
T+, ϕs =1; if T s = T−, ϕs =0; if T− 6= T s 6= T+ and
T s→ T+, ϕs→ 1.
As can be seen, KLD between evaluation object and

ideal points fits well with the basic sequencing principles of
TOPSIS, so KLD modified TOPSIS by replacing Euclidean
distance with KLD is reasonable. We can calculate the KLD
closeness between each evaluation object and ideal points
successively, and obtain the final decision result of PSS
alternative evaluation by sequencing PSS alternatives in the
descending order.

VI. CASE STUDY
In order to promote the development of its characteristic
printer and further enter the global market, improve

TABLE 5. The index values of six PSS alternatives.

product competitiveness and achieve sustainable develop-
ment, a printer company wants to evaluate several feasi-
ble PSS alternatives of its characteristic commercial printer
determined in the research and development process, so as
to concentrate multiple resources to ensure the effective
implementation of PSS. Six PSS alternatives (P1, P2, P3,
P4, P5 and P6), which are shown in Fig. 5, are gener-
ated after multi-objective configuration optimization of PSS
scheme.

The stakeholder group (50 persons) consists of 10 PSS
users, 10 user demand analysts, 10 PSS entrepreneurs,
10 social and environmental researchers and 10 PSS design
engineers. They carry out vague assessment on the six printer
PSS alternatives, and use trapezoid fuzzy numbers to express
their assessment opinions on the index value. For exam-
ple, to the performance of P1 on index I1, 3 stakehold-
ers thinks ‘Extremely good (VC1)’, 1 stakeholder thinks
‘Strongly good (VC2)’, 5 stakeholders think ‘Obviously
good (VC3)’, 17 stakeholders think ‘Slightly good (VC4)’,
1 stakeholder thinks ‘Middle (VC5)’, 9 stakeholders think
‘Slightly bad (VC6)’, 10 stakeholders think ‘Obviously
bad (VC7)’, 1 stakeholder thinks ‘Strongly bad (VC8)’
and 3 stakeholders think ‘Extremely bad (VC9)’. The
vague comment statistics of P1 on all 19 indexes is shown
in Table 3.
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TABLE 6. The positive ideal point and the negative ideal point.

TABLE 7. KLD to positive and positive ideal points and KLD closeness.

According to Equations (1) and (2), the index value of P1 in
trapezoid fuzzy number form is calculated and converted into
the real number form as shown in Table 4.

Similarly, the index values of other five PSS alternatives
are calculated and the index values are shown in Table 5.

Then, the weight vector is obtained by standard devia-
tion method as follows: ω = [0.0491,0.0537,0.0693,0.0404,
0.0462,0.0448,0.0755,0.0372,0.0622, 0.0360,0.0447,0.0964,
0.0450,0.0666,0.0431,0.0506,0.0656,0.0357,0.0377].

Next, we obtain the weighted index value matrix
T =

[
ts,i
]
6×19. Therefore, the positive ideal point and the

negative ideal point are obtained as shown in Table 6.
According to Equations (7)-(9), the KLD to positive and

positive ideal points and KLD closeness are shown in Table 7.
Based on KLD closeness shown in Table 6, the evaluation

result of six PSS alternatives is P6 > P1 > P5 > P4 >
P2> P3. P6 is the best PSS alternative. Using the index value
data in Table 5 and weight vector ω, the evaluation result
of six PSS alternatives by traditional TOPSIS is P6 > P1 =
P4 > P5 > P2 > P3. As can be seen, both of the evaluation
results have a same ranking trend. P6 and P1 are better than

P2 and P3, while P5 and P4 are in the middle. This can prove
the effectiveness of the proposed KLD modified TOPSIS.
However, by traditional TOPSIS the closeness values of
P1 and P4 are equal, so there is no distinction between
the two. Therefore, in this case the proposed KLD modi-
fied TOPSIS can overcome the shortcoming of traditional
TOPSIS.

VII. CONCLUSION
PSS is an important way for service-oriented manufacturing
enterprises to meet the diversified needs of users and
improve the competitiveness of enterprises. As a key stage
to ensure the normal subsequent implementation, PSS eval-
uation decision is of great significance for the selection of
PSS alternatives. In this article, a big data supported PSS
evaluation decision technique is explored and the detailed
steps are proposed. The case of proposed PSS evaluation
decision in a printer company is given. Through analysis,
the big data supported PSS evaluation decision technique
explored in this article can overcome the shortcomings of the
existing methods and accurately select the best PSS alterna-
tive. Therefore, it provides a practical tool for PSS evaluation
decision. In future more data and cases should be used to
improve the method’s feasibility and practicality. Addition-
ally, because the indexes of PSS evaluation decision are not
completely independent but related, we will use the theory of
complex networks for reference to build index networkmodel
and determine the index weight in future research.
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