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ABSTRACT Electric power dispatch issue mainly consists of two optimization tasks: active and reactive
power dispatches, each of which is a non-linear multi-objective optimization problem with a series of
constraints. Traditional evolutionary algorithms are focused on single-task optimization for active or reactive
power dispatch and they are not able to deal with several (single- or multi-objective) optimization tasks
simultaneously. In this paper, to solve this problem, a multitasking electric power dispatch approach is pro-
posed by introducing the multi-objective multifactorial optimization (MO-MFO) algorithm and integrating
it with the characteristics of power system. The approach exhibits the great potential to be developed as a
cloud-computing solver or platform for future large-scale smart grid applications involving different market
entities because of its implicit parallel computation mechanism. The multitasking approach is thoroughly
tested and benchmarked with IEEE-30-bus and IEEE-118-bus standard systems and exhibits generally better
performances as compared to previously proposed Pareto heuristic approaches for electric power dispatch.

INDEX TERMS Electric power dispatch, multifactorial, multitasking, optimization.

I. INTRODUCTION

Active and reactive power dispatches are two significant tasks
for optimal and safety operations of modern power systems.
As the increasing significance of energy saving and emission
reduction draws more and more attention from the industrial
community, the conventional single-objective electric power
dispatch techniques which simply pursue the minimum cost,
minimum emission, or minimum voltage variation cannot
fulfill the requirements of the modern energy management
system and the smart power grid. In recent years, the elec-
tric power dispatch problem considered as a multi-objective
optimization issue which simultaneously tries to find multiple
incommensurable and contradictory targets under a set of
safety and operation constraints has received much attention.
Optimal active power dispatch (APD) requires minimizing
cost, emission, and transmission loss and reactive power
dispatch (RPD) requires minimizing voltage variation and
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transmission loss and maximizing voltage stability. For a
single dispatch task, because of the mutual contradiction
of those objectives, the target is to find its Pareto-optimal
fronts.

For the multi-objective problem in electric power dispatch,
there exist two categories of optimization techniques:
the first is the traditional linearization math method while
another is the Pareto-based heuristic technique. For high
dimensional multi-objective complex non-linear problems,
the Pareto-based heuristic approach would have advantages
and it includes Niched Pareto genetic algorithm (NPGA) [1],
non-dominated sorting genetic algorithm (NSGA) [1],
NSGA-II [2], strength Pareto evolutionary algorithm (SPEA)
[3], multiple group search optimization algorithm (MGSO)
[4], [5], etc.

The aforementioned optimization approaches are limited
to solve one multi-objective task at a time. In other words,
for one computing engine, they are not able to deal with
more than one optimization tasks simultaneously; instead,
those tasks will be processed serially. A modern power
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grid, as a complex system involving economic/environmental
dispatch, electric transportation planning, communication
network maintenance, electricity market transaction, fault
diagnosis, and condition estimation, etc., generally requires
many computation engines and processors to handle such
enormous and complicated task load in real time. To reduce
the hardware requirements of computation engines and
increase the computation efficiencies, a cloud computing
platform that is capable of handling different kinds of tasks
simultaneously (parallel computation) would be an advan-
tageous alternative. Recently, an evolutionary multitask-
ing technique that harnesses the implicit parallelism of a
population-based search to cope with multiple optimization
tasks simultaneously with a single population was proposed
for cloud-based applications [6] — [8]. It considers each opti-
mization task as an additional factor affecting the total evo-
lutionary process and therefore is named as multi-objective
multifactorial optimization (MO-MFO) algorithm. Currently,
it is designed and explored as a multitasking solver, espe-
cially for multiple optimization problems, while it exhibits
great potential to be developed as a multitasking general
problem-solving engine and applied in the cloud computing
platform for the aforesaid modern power grid with many
complex problems.

In this paper, the multi-objective multifactorial optimization
(MO-MFO) algorithm is creatively applied in the electric
power dispatch problems. And a multitasking electric power
dispatch approach is further developed and proposed by
integrating the MO-MFO algorithm with the characteristics
of power system models in order to optimize both active
and reactive power dispatch tasks concurrently, as well as
reduce the execution time, and improve the performances.
The analysis and design of the approach have been thor-
oughly verified and benchmarked with IEEE-30-bus and
IEEE-118-bus standard systems. As compared to the other
evolutionary techniques for electric power dispatch, includ-
ing NSGA-II, MGSO, and MOEA/D methods, the proposed
approach exhibits much better in terms of the evaluation
metrics, solution qualities, and the computation efficiency.

Il. MULTI-OBJECTIVE MULTIFACTORIAL OPTIMIZATION
A. FRAMEWORK AND PRINCIPLE OF THE ALGORITHM
The essential target of MO-MFO is to solve multiple
multi-objective optimization problems simultaneously by
mining their potential implicit parallelism, and furtherly to
make those multi-objective optimization problems under dif-
ferent environments with shorter execution time and better
optimization performances. The implicit parallel processing
principle is achieved using the unified search space which
contains the design spaces of several different tasks [6] — [8].
The optimal chromosome is searched in the unified search
space and it could be decoded into the corresponding solution
variables associated with the tasks. Therefore, several differ-
ent tasks are optimized with only one search solver. In the
following, the details will be explained with the assistance of
Fig. 1.
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FIGURE 1. The chromosome of the ith individual and its relations with
the variables of different tasks.

For multiple optimization tasks, some of them may be
complimentary with some other tasks, and genetic material
and useful information can be transferred across those tasks,
which may result in speeding up the total optimization pro-
cess. It has been studied and verified that useful knowledge
transferred across different but related tasks, such as CVRP
and CARP problems [9], will help improve the performances
of evolutionary optimization.

Before illustrating the principle of the MO-MFO
algorithm, we firstly make the essential definitions and
notations for the related variables and parameters. In the
theoretical scenario of multi-task, there are K different multi-
objective optimization tasks, that are assumed to be the
minimization problems without loss of generality. For the j
task 7;, the objective function Fj is defined as:

Fj:X; — R™, )

where Xj is the design space (or called as the decision variable
space) of the j" task, RM is the objective function space of
the j task with the dimension of M;. The dimension of the
design space X; is noted as D;. The objective function value
y;j can be expressed as:

yi= 2y (2)
and x; is the design variable of the 7™ task:
xj = (X.1.%2.....X.D;) 3)

Therefore, the objective function F; maps design variables x;
to vectors y;, which is also expressed as:

¥ =Fi(5) = (1 (%) fo (%) Sim (x5)) - (&)
For a single task Tj, the Pareto optimal set PS; is defined as:
PS; = {xj € X;|=3'; € X; : F; (') = Fj (x;)} . (5)
And the Pareto front PF; is defined as:
PFj = {y; = F;(x;) = (fyr (xj) - . fim; (%)) 1x; € PS;} .
(©)

For the multitasking environment, the target is to find the
Pareto sets of all the tasks PSy, PS», ..., PSk.
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However, for the proposed MO-MFO algorithm, the target
is to find one optimal individual that consists of the informa-
tion of all the tasks’ optimal solution. In other words, such an
optimal individual can be translated into the specific solution
of any of the optimization tasks. In the evolutionary process
of the proposed algorithm, there are a number of individuals
existing in the population P, and each individual is defined as
piand

i€{l,2,...,N}, (N

where N is the total number of individuals. Next, a unified
search space Z is defined, which encompasses the design
spaces of all the tasks X1, X», ..., Xg. Every individual p; is
encoded, and its chromosome z; belongs to the unified search
space Z. The dimension of Z is selected as the maximum of
the design spaces’ dimensions:

Dz= max{Dl,Dz,...,DK}. (8)

For the individual p;, as shown in Fig. 1, its chromosome
z; contains the information of K variables (x1;, X2, ..., Xki)
associated with K tasks. Each element of the variables can be
decoded from the corresponding element of the chromosome
of p;. Here in the paper, the element of the chromosome is also
called as random-key, and the variables of different tasks are
called as solution representations. For the continuous case,
note the mh random-key of z; as z; ,, and it is assumed to be
limited in the range of [0, 1]. For the specific jth task, the

th element of xj; is defined as xj; , and box-constrained as
[Lj.m» Ujm], and one sample of the decoding method is shown
as:

—Lim) - ®)

In addition to the aforementioned decoding method,
different representations may apply to other decoding meth-
ods, such as binary decoding, sequence-based decoding, etc.,
according to the specific requirements of different tasks.
Following, there are three essential definitions (factorial rank,
skill factor, and scalar fitness) needed to be illustrated in
detail. The factorial rank rJ‘ of p; for task 7; is defined as the
rank of p;’s effectiveness regarding task T; in the list of P’s
members. The skill factor t; of p; is defined as the task index
number of the one task, with which p; is associated. If p; is
evaluated for all tasks, 7; will be the task index number of the
one task, to which p; is the most effective:

7, = argmin {r;], (10)
jell,2,....K}

Xjim = Ljm + Zim - (Uj.m

The scalar fitness ¢; of p; in the multitasking environment is
based on p;’s best rank amongst all tasks, defined as:

gol:l/r;'i:1/min{r{,r§,...,r;'<}. (11)

The sorting of the factorial rank ri of p; for task T; is
based on the non-dominated front (NF) [10] and crowding
distance (CD) [11] of task T;’s objective functions’ values
with the specific solution representation x;; decoded from
the chromosome z; of p;. Note the aforementioned NF and
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FIGURE 2. Detailed flow chart of the MO-MFO algorithm.

CD as NFj; and CDj;, respectively. For example, when we
compare p; and p;’s factorial ranks (rj1 and rjz) for task Tj,
p1 is considered to be preferred over p;, meaning p; has a
better rank than p» (r < r2) when any one of the following
conditions is satlsfled

NFj1 < NFp, (12)
NFj; = NFj; and CDj; > CDj,. (13)

With the definitions of factorial rank, skill factor, and
scalar fitness, the MO-MFO algorithm is illustrated with
the assistance of the flow chart in Fig. 2. Firstly, a unified
search space Z is initialized, and N individuals are generated
from the space to form the initial population Pg. Next, all
the members p; of the population Py are randomly assigned
their skill factors t; and then evaluated for task T;; with the
decoding procedure and objective functions. The assignment
needs to guarantee that each task is uniformly associated.
Further, the scalar fitness ¢; of every p; is calculated based
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on the NF and CD. To generate offspring, a pool of parent
candidates noted as P’ ¢, is generated from the current pop-
ulation using binary tournament selection method. After that
are the assortative or random mating for offspring creation,
and the skill factor assignment for new offspring, which can
be comprehended as vertical cultural transmission. Then the
new offspring individuals are evaluated for the task associated
with their skill factors and put into the offspring pool C;. The
processes of offspring creation and skill factor assignment are
repeated several times until the parent candidates pool P’ ¢
is empty. When the offspring pool C; is ready, a temporary
candidate pool R; consisting of C; and P; is formed with
all the individuals’ scalar fitness updated. Finally, N fittest
individuals are chosen from R; to form a new population
P, 1. Such evolving processes will be repeated multiple times
until stop conditions are satisfied.

Offspring individuals are created from the parent
candidates pool by assortative or random mating methods.
If two parent individuals, which are randomly selected from
the parent candidates pool, are with the same skill factors,
they will undergo both crossover and mutate processes to
generate two offspring individuals, as explained by the phe-
nomenon of assortative mating. For the condition with differ-
ent skill factors, they still have a probability (random mating
probability, noted as rmp) to undergo crossover and mutate
processes, which is understood as the natural phenomenon
of random mating. For other conditions, they simply undergo
mutation to generate two mutant offspring individuals sep-
arately. The principle of assortative mating indicates that in
nature individuals prefers to mate with those with identical
cultural attribute. However, individuals with different cultural
attributes still have a probability to mate with each other,
which is explained as the principle of random mating. The
random mating probability is estimated roughly according
to the correlation degree of the involved tasks. A higher
correlation degree leads to a larger probability. The detailed
steps of offspring creation are presented in Fig. 2.

Vertical cultural transmission is a natural phenomenon
that illustrates the offspring imitate the cultural features of
their parents according to cultural and biological inheri-
tance theory [12]. The natural phenomenon is applied in the
MO-MFO algorithm where the offspring individuals imitate
any one of the skill factors of their parents randomly. For the
offspring individual generated simply from the only mutation,
it imitates the skill factor of its single parent simply.

The implicit information transfer between different tasks
in the MO-MFO algorithm is achieved by the random mating
probability of two parent candidates with distinct skill factors
and the offspring’s random selection of skill factor from its
parents. Such stochastic processes guarantee the inter-task
knowledge transmission for the multitasking environment.

B. POTENTIAL FOR FUTURE SMART GRID APPLICATIONS

In addition to optimization problems, the MO-MFO
algorithm exhibits large potentials of being developed as a
complex multi-objective multitasking solver, and furtherly,
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FIGURE 3. Example of future smart grid application with multi-objective
multitasking cloud-computing platform.

a cloud-computing platform involving different market enti-
ties including power network, traffic network, information
network, gas network, and so on. For example, the complex
operations of a multi-energy system including electricity,
heating, and natural gas networks [13] can be furtherly
optimized with the aforementioned platform. All the tasks of
those networks can be computed and solved simultaneously
with a shared search space with reduced space require-
ments and improved computing efficiencies. Fig. 3 shows
an example of multi-objective multitasking cloud-computing
platform for future smart grid applications with several rep-
resentative tasks, such as Nash game problem for cooperative
planning, Cournot game problem for capacity expansion, and
cloud framework for users’ transactions, whose phenotypes
may have part of overlaps with each other and enable useful
information sharing and transmission and hence the compu-
tations are accelerated. Originally there are separate search
spaces regarding those tasks respectively. In the platform,
the separate search spaces are integrated into one shared
search space. In the shared search space, each task’s comput-
ing information is shared with others. From the last iteration
to the next iteration, the population is updated with newly
generated and better offspring individuals within the shared
search space. Further, for the sake of using a shared search
space instead of three separate search spaces, space and
memory resources are reduced significantly. The example
in Fig. 3 is simply introduced to show the algorithm’s great
development potentials for future smart grid applications
and will not be discussed in detail in this paper. Instead,
the optimization problem of active and reactive electric
power dispatches is discussed in the following in order to
validate the algorithm’s applicability and advantages. The
tasks of active and reactive electric power dispatches are
related because they rely on the same power system model,
and they have one common objective — transmission loss
minimization. Hence, the algorithm is appropriate.

IlIl. MODELS OF ACTIVE AND REACTIVE POWER
DISPATCHES

Active and reactive power dispatches are considered as two
optimization tasks with respective objectives and constraints.
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A. ACTIVE POWER DISPATCH (APD)

1) OBJECTIVES OF APD

The optimization objectives of active power dispatch consist
of economic objective, emission objective, and transmission
loss objective.

a: ECONOMIC OBJECTIVE
Minimization of total generation (fuel) cost is defined as the
economic objective of APD, with the corresponding objective
function [14] described as:

Ng
F (Pg) = Z {aiPZGi + biPg; + c; + |d; sin [e; (PGi.min

i=1

—Pc)ll}. (14)

where F is total fuel cost in ($/h); Pg; and Pg; min are the
actual output power and minimum output power of the i
generator; (a;, b;, ¢;, d;, e;) are the cost coefficients of the
i generator; and Ng is the total count of generators.

b: EMISSION OBJECTIVE

Minimization of total fossil fuel pollutants (emission) during
generation process is defined as the emission objective
of APD, with the corresponding objective function [15]
described as:

Ng
E (Pg) = Y1072 [aiPy; + BiPai + vi+ &iexp (iPa |
i=1

s)

where E is the total emission in (ton/h) and («;, Bi, Vi, &i» i)
are the emission coefficients of the i generator.

c: TRANSMISSION LOSS OBJECTIVE

Minimization of power losses in transmission lines is defined
as the transmission loss objective of APD. The total transmis-
sion losses [1] can be calculated with the Newton-Raphson
method and expressed as:

N
Pros =Y & [VXZ + V2 =2V, Vycos (8, — 5y)] . (16)

z=1

wherex €{1,2,...,Np} and N, is the number of transmission
lines; g, is the conductance of the z”* line connecting the
x™ and the y™ buses; V,, 8, are the voltage magnitudes and
angles of the x”* bus; and Vy, 8y are the voltage magnitudes
and angles of the y” bus. Voltage magnitudes and angles
at all buses can be obtained by load-flow calculation with
Newton-Raphson method:

Np
Pge — Piy — Vi Z Vy [Gay cos (85 — 8y)
y=1
+Byy sin (8, — 8y)] =0, (17)

Np
ng - le - Vx Z Vy [ny Sin (3x — 8)))
y=1

—By,y cos ((Sx - By)] =0. (18)
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where Np is the number of buses; Pg, and O, are the gen-
erated active and reactive power at the x bus respectively;
Py and Qj, are the load active and reactive power at the X
bus respectively; G,y and By, are the transfer conductance and
susceptance between the x and y” buses respectively.

2) CONSTRAINTS OF APD

During the operation progress of power system, there are
several practical operations, and safety requirements need
to be satisfied, which are modeled as the constraints of the
optimization task.

a: POWER BALANCE CONSTRAINT

The total generated power of generators should be equal to the
load demand power and the total transmission losses, which
can be expressed as:

Ng Np
D PGi— ) P — Pros =0. (19)
i=1 x=1

b: BUS VOLTAGE CONSTRAINT
The constraint of the voltages at all buses is expressed as:

xel{l,2,...,Ng}. (20)

Vimin < Ve < Vi max,

where Vi nin and Vi 4y are the allowable lower and upper
limits of the x”* bus voltage.

¢: TRANSMISSION SECURITY CONSTRAINT

The apparent power flowing through every transmission

line should be smaller than the corresponding maximum

transmission capacity:

Syx|) < Semaxs X,y € {1,2,..., Ng},
ze{l,2,....,NL}. (21)

max (’Sxy

s

where S,y is the apparent power flow from the x™ bus to the
y’h bus while Sy, is that with the opposite direction; S; uax is
the upper limit of the z”* transmission line’s apparent power.

d: SPINNING RESERVE CONSTRAINT

For the safe and stable operation for the system, the spinning
reserve requirement for emergency conditions must be satis-
fied [17]. The generators with prohibited operating zones are
not considered as part of the spinning reserve. The constraint
is expressed as:

Ng )
§ : VieQ

SPGi > SPR, SPG[ = ! (22)
i=1 PGi.max — Pgi  others.

where SPg; is the spinning reserve of the ith generator; SPg
is the spinning reserve requirement; Pg; mqx 1S the maximum
output of the i generator, and € is the set of generators with
prohibited operating zones.

B. REACTIVE POWER DISPATCH (RPD)

1) OBIJECTIVES OF RPD

The optimization objectives of reactive power dispatch are
transmission loss objective, voltage profile objective, and
voltage stability objective.
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a: TRANSMISSION LOSS OBJECTIVE
This objective is to minimize the total power losses
in transmission lines during the RPD progress, whose

expression is the same as the transmission loss objective
of APD.

b: VOLTAGE PROFILE OBJECTIVE

Minimization of the total absolute deviations of voltage
magnitudes at the load buses is defined as the voltage profile
objective and the sum of the absolute deviations is noted as
Vp and described as:

Nip

Vp =Y Vi = Virl. (23)
k=1

where Ny p is the number of buses with loads; V; and V., are
the actual and rated voltages at the k”* load bus, respectively.

c: VOLTAGE STABILITY OBJECTIVE

Voltages at the buses with loads may collapse when
contingency conditions happen, and here a global indicator L
describing the voltage stability of the system is given as [18]:

Ng

. c
Z Fkl . VGi
i=1

— max 1= (24)
kef{1,2,...,Nrg} VLck

where V, and V, are the voltages at the i generator bus
and the k’i’ load bus in complex form, respectively; Fy; is the
element of the matrix Frg, which is calculated by:

Vz _ . Ii . ZL Fi; ) IZ]
[13}‘”” [Vﬁ;}‘[m quc} [vg - (@)

where V; and If; are voltage and current vectors at generator
buses in complex form respectively; V; and I] are voltage
and current vectors at load buses in complex form respec-
tively; Zr1, Frg, Kgr, and Ygg are sub-matrices of the H
matrix which is derived from the nodal admittance matrix
with partial inversion.

2) CONSTRAINTS OF RPD

There are six operational and practical constraints of
reactive power dispatch, including generation constrains, bus
voltage constraint, transmission security constraint, load flow
equality constraint, transformer constraint, and VAR source
constraint.

a: GENERATION CONSTRAINT
Every generator’s active and reactive power outputs are
limited in respective ranges:

PGi.min < PGi < PGi.max> OGi.min < OGi < OGi.max,
ie{l,2,....,Ng}. (26)

where Qgimin and QGimar are lower and upper limits of the
reactive power output of the i generator; Qg; is the actual
reactive power output of the i generator.
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b: BUS VOLTAGE CONSTRAINT
The constraint of RPD is the same as that of APD, expressed
as (20).

c: TRANSMISSION SECURITY CONSTRAINT
The constraint of RPD is the same as that of APD, expressed
as (21).

d: LOAD FLOW EQUALITY CONSTRAINT
The constraint describes the nonlinear equalities of active and
reactive power balance, which is expressed as (17) and (18).

e: TRANSFORMER CONSTRAINT
The tapping configuration of every transformer is limited as:

aefl,2,...,Nr}. (27)

Ta.min = Ta = Ta.max,

where Ty jin and T,y are the lower and upper tapping limits
of the ™ transformer; T, is the actual tapping of the
transformer, and Nt is the number of transformers.

f: VAR SOURCE CONSTRAINT
The reactive power generated by every VAR source is limited
in a practical range:

Och.min < Och < Och.max, be(l,2,...,Nc}. (28)

where Qcp.min and Qcp.max are the lower and upper reactive
power output limits of the b VAR source; Qcy, is the actual
reactive power output of the b VAR source, and N is the
number of VAR sources.

IV. COMPUTATION STUDIES

A. METRICS OF EVALUATION

When solving the multi-objective problems, it is difficult
to obtain the true Pareto front. Therefore, there are sev-
eral metrics proposed to evaluate the performances of the
corresponding algorithm.

1) SPACING

The spacing metric [19], [20] is defined to measure how
evenly the Pareto solutions are distributed along the obtained
Pareto front and calculated as:

1
S= | =3 (di — da)’. (29)

4 i=1

where d; is the Euclidean distance between the i solution
and its nearest solution, and 7y is the number of solutions,
and dg¢ is the mean value of all d; in the obtained Pareto
front.

2) SPAN

The span metric [21] measures the maximum extent of each
objective function to estimate the range to which the obtained
Pareto front spreads out, calculated as:

M
SP= |3 (Fmax —fmin) (30)
i=1
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where M is the number of the objective functions; f; jqx* and
fi.min* are the normalized maximum and minimum function
values of the i objective. For the cases with two objectives,
the span metric is equal to the distance of the two outer
solutions.

3) CONVERGENCE

The convergence metric [10] measures the extent of the
obtained Pareto front’s convergence to a known or true
Pareto-optimal front. For each solution of the obtained Pareto
front, the minimum value of the Euclidean distances of it from
all the solutions of the known or true Pareto front is calcu-
lated. And the average value of those minimum distances is
obtained as the convergence metric.

4) Imax/ Imin

Lnaxc!lmin [20] is defined as the ratio of the maximum
Euclidean distance and the minimum Euclidean distance of
adjacent solutions, which is used to measure the uniformity
of the Pareto solution.

5) CONVERGENCE TIME
This metric refers to the total time needed for the objective
values and other metrics achieving the requirements using the
corresponding algorithm.

B. SETTING OF THE TEST SYSTEM

To test the performances of the proposed MO-MFO
algorithm’s application in multitasking electric power dis-
patch, the IEEE-118-bus and IEEE-30-bus systems [4]
are chosen for the active and reactive power dispatch
tasks, respectively. The IEEE-118-bus system consists of
186 branches and 54 generators. The IEEE-30-bus system
consists of 41 branches and 6 generators and has 12 variables,
including 6 generator voltages, 4 tapping ratios of the OLTC
transformers connected in the branches 4-12, 6-9, 6-10, and
27-28 respectively, and 2 shunt capacitors installed at buses
10 and 24.

To compare different algorithms fairly, the population
numbers of IEEE-118-bus and IEEE-30-bus systems are set
to be 100 and 300 respectively and the maximum number
of iterations is set to be 1000. The computation results of
the proposed and other algorithms are based on 30 runs of
iterations.

C. COMPUTATION RESULTS

In the previous setting, there are two multi-objective
optimization tasks: the first one is the active power dispatch
for the IEEE-118-bus system; and the second one is the
reactive power dispatch for the IEEE-30-bus system.

1) TASK 1-ACTIVE POWER DISPATCH FOR THE
IEEE-118-BUS SYSTEM

In the computations of task 1, the economic and environ-
mental objectives are chosen as the optimization objectives,
and the performance metrics of different algorithms after
30 runs of iterations are shown in Table 1. The proposed
MO-MFO method is verified to be more advantageous as
compared to the NSGA-II, MGSO, and MOEA/D algorithms
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TABLE 1. Performance metrics of different algorithms of task 1.

Metrics | Algorithms Best Worst Average Variance
NSGA-II | 0.093461 0291375  0.186027  3.5419E-5

Spacing MGSO 0.110946  0.341046  0.187109  0.008641
MOEA/D | 0.078954  0.293110  0.157050  0.064736

MO-MFO | 0.073981  0.276890  0.154421  0.063697

NSGA-II | 0991366  0.841553  0.935189  3.1072E-5

Span MGSO 1.241689  0.849138  1.161152  2.4431E-6
MOEA/D | 1.696744  0.978471 1432684  8.8589E-5

MO-MFO | 1.755698  1.079517  1.466831 5.0362E-7

NSGA-II | 0.029108  0.091567  0.055661  0.006152
Convergence MGSO 0.017956  0.089144  0.054183  0.001457
MOEA/D | 0.016974  0.091667  0.055149  0.053179

MO-MFO | 0.016606  0.106417  0.044342  0.021830

NSGA-II | 23.54207  211.6902  68.35971 1561.189

1l MGSO 2245910  52.24871  36.02057  172.3400
maxfimin | MOEA/D | 9.112641 5357920  31.09650  231.3301
MO-MFO | 10.68151  57.26891  29.45010  256.7810

The best values are highlighted in bold.

TABLE 2. Comparisons of best solutions of task 1.

Best Cost Best Emission

NSGA-II MGSO  MOEA/D MO-MFO | NSGA-II MGSO  MOEA/D MO-MFO
Pg; | 0.75494  0.67489  0.71703  0.75698 | 0.77765 0.74196  0.65787  0.69117
Pg> | 0.71812  0.71504  0.62391  0.76722 | 0.79418  0.70828  0.83877  0.72574
Pgz [ 0.79977  0.47088  0.72078  0.67157 | 0.43394  0.87034  0.56071  0.74940
Py | 0.75273  0.60024  0.83358  0.70111 | 0.65115 0.61475 0.70419  0.81953
Pgs | 0.78230  0.36872  0.47811 0.85938 | 0.40965 0.96336  0.35649  0.66948
Pas 1.34860  0.87533  0.72017  0.97457 | 1.13886  0.41487  0.73726  1.11659
Pg; | 0.94474  0.75147 093600 0.83699 | 0.73673  0.88315  0.79363  0.97016
Pgs | 0.73888  0.66675 0.77713  0.79654 | 0.61837  0.64231  0.80874  0.74973
Py | 0.74108  0.74694  0.78735 0.94572 | 0.74284  0.74342  0.65078  0.72566
PGio | 0.70435  0.75390  0.88200  0.67992 | 0.64920  0.77633  0.56824  0.41837
Pgir | 076313 0.34987  1.31146  0.78445 | 1.24344  0.77970  0.44680  0.70791
Pz | 023269  0.39160 0.73090  0.66714 | 0.77708  0.75834  0.57662  0.48125
Pgi; | 0.84789  0.34215  0.85835  0.75268 | 0.45080 0.35755 0.77014  0.76040
Pgis | 0.85726  0.77200  0.78506  0.72016 | 0.87478  0.86034  0.93656  0.93555
Pgis | 087118  0.81081  0.71410  0.92614 | 0.78684  0.73947  0.92936  0.99609
Pgis | 0.96701  0.87893  0.88591  0.98102 | 0.80940  0.90866 0.94158  0.81091
Pgi7 | 0.87420  0.95198  0.83095 0.88707 | 0.997/4  0.85088  0.92984  0.80963
Pgis | 0.91610  0.90080  0.95353  0.92710 | 0.96120  0.91477  0.95964  0.91154
Pgro | 0.93656  0.72710  0.89715  0.81423 | 0.83418  0.95329  0.86336  0.91146
Pco | 0.78435  1.03195 0.98643 0.85771 | 0.64222 1.35824  0.84462  0.94454
Pgar | 1.34208  0.45620  0.79289  1.36188 [ 0.76152  0.43910  0.78689  0.78242
Pgx> | 0.62813  1.31549  0.67021  0.90828 | 0.68875 1.33967  0.98868  0.44481
Pg2; | 0.87103  0.75070  0.70450  0.86982 | 0.89028 0.70274  0.87366  0.90285
Pcae | 0.78646  0.89715 098712  0.86815 | 0.70143  0.97100  0.73531 0.80986
Pgos | 1.45472 131187 1.06196  1.65420 | 1.10608  1.45062  1.24088  1.31979
Pc2s | 0.81714  0.93013  1.04789  0.81906 | 0.90051  1.00616 0.85978  0.95824
Pg27 | 073749 0.61167  0.86887  0.67708 | 0.81081  0.87460  0.88689  0.71433
Pgas | 0.86454  1.09373  0.48234  0.77687 | 0.65978  1.04581  0.36780  0.63059
Pcao | 1.32697  1.25257  0.95420  0.77460 | 0.97021  1.17749  0.79052  0.91716
Pgzo | 0.69558  0.11616  0.09511  0.66470 | 0.79735  0.85755 0.35726  0.27651
P31 | 0.61433  0.87100  0.13531 1.06196 | 0.43816  0.78094  0.77309  0.63795
Pgs: | 040143 0.23555 0.30051  0.65824 | 0.70285  0.98234  0.45875  0.71999
Pgs; | 0.26454  0.55472  0.70143  0.15766 | 0.61979  0.75875  0.75248  0.53004
Pgs+ | 0.86815  0.97687  0.55062  0.89879 | 0.74088  0.97687  0.74581  0.75083
Pgss | 0.75834  0.67335  0.75874  0.87510 | 0.75083  0.96815  0.75835  0.88125
Pgss | 0.81154  0.57662  0.75062  0.79052 | 0.75978  0.77309  0.73418  0.73749
Pgs7 | 1.95257  1.71167  0.81167  0.68201 | 0.43555 1.37118 0.97510  0.98162
Pgss | 0.76470  0.83004  0.75766  0.83269 | 0.87651  0.79289  0.76780  0.90051
Pgso | 048646  0.41714  0.45420  0.49373 | 0.46454 0.42697 0.44088  0.44581
PG | 0.81999  1.01979 0.71716  0.99373 | 0.94722  0.85257 0.91714  0.96196
PGy | 077118 0.88712  0.76034  0.73090 | 0.99715  0.72697  0.73656  0.87749
Pgs> | 0.80051  0.45248  0.75726  0.66470 | 0.77478  0.67021  0.61716  0.59052
Pgss | 0.83004  0.80285  0.79735  0.81906 | 0.65080  0.75766  0.73795  0.88712
Pcss | 0.76887  0.66034 060986  0.65874 | 0.75329 0.61154 0.71187  0.73059
Pgys | 094789 0.93013  1.08094  0.78875 | 0.92710  1.09160  0.81038  0.90274
Pces | 0.35080 0.41038  0.47335  0.41146 | 0.87187  0.39879  0.65248  0.59160
Pgq7 | 0.74215  0.51506  0.78162  0.67366 | 0.45887  0.40608  0.98201  0.71616
Pges | 0.65268  0.68201  0.77014  0.47478 | 0.77200  0.74511  0.91146  0.48234
Pcso | 0.49558  0.60274  0.90608 0.82016 | 0.61999 0.89289  0.57749  0.77366
Pgso | 0.34215  0.73714  0.61506  0.75875 | 0.87014  0.57651  0.64511 0.45268
Pgsi | 048162 0.80986  0.78689  0.76040 | 0.73816  0.76040  0.76714  0.47460
Pgs: | 0.85834  0.45835 0.59735 0.43013 | 0.78094 0.61433  0.31906  0.58875
Pgs; | 0.57200  0.83059  0.92016  0.77662 | 0.51154  0.76780  0.63090  0.25755
Pgsq | 0.83269  0.77309  0.87708  0.68125 [ 0.73418  0.71081  0.97510  0.95329
Cost | 637342 63619.8  63566.1 63346.2 | 73713.0 73833.4 732348 75176.3

Emission| 2.86489  2.87230 2.87745  2.89499 | 2.62146 2.62956  2.62374  2.60813

The best values are highlighted in bold.

Task 1

when applied in electric power dispatches. From Table 1,
the spacing values and the average lqx/liyin of the MO-MFO
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FIGURE 5. Comparison of convergences of emission objective of task 1.

algorithm are the lowest than the others, meaning that its
Pareto solutions are distributed the most evenly. The span
values of the MO-MFO algorithm are the largest among
those algorithms, indicating its largest search ranges. Table 2
presents the best solutions of cost and emission calculated
from the extreme points of the resulting Pareto fronts of the
algorithms. As compared to other algorithms, the MO-MFO
has lower cost and emission objective values of the best
solutions. Besides, the best Pareto fronts obtained from
the algorithms are plotted in Fig. 4. As compared to the other
algorithms, the Pareto front obtained from the MO-MFO
algorithm is closer to the left bottom point and with two better
outer solutions. Moreover, the convergences of the emission
objectives obtained from the different algorithms are given in
Fig. 5, which shows that the MO-MFO has better convergence
time.

2) TASK 2—-REACTIVE POWER DISPATCH FOR THE
IEEE-30-BUS SYSTEM

In the computations of task 2, the transmission loss and the
voltage deviation are selected as the optimization objectives,
and the performance metrics of different algorithms after
30 runs of iterations are shown in Table 3, from which it
can be observed that the average values of spacing, span,
convergence, and I, /lyi, metrics of the MO-MFO algo-
rithm are the best. Table 4 presents the best solutions of
transmission loss and voltage deviation calculated from the
extreme points of the resulting Pareto fronts of the algorithms.
As compared to other algorithms, the MO-MFO has lower
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TABLE 3. Performance metrics of different algorithms of task 2.

Metrics Algorithms Best Worst Average  Variance
NSGA-II | 0.054894 0.215897  0.164860 0.001671

Spacing MGSO 0.041143  0.238460  0.166941  0.009348
MOEA/D | 0.045681 0.247898  0.158871 0.001355
MO-MFO | 0.077689 0226559  0.158102 0.002147

NSGA-II | 0.995784 0.965800  0.986655 5.3293E-4

Span MGSO 1.195864 0.915602  1.011150 6.236E-4
MOEA/D | 1246868 1.020369  1.163159 0.009342

MO-MFO | 1365973 1.126661  1.267674 5.7654E-5

NSGA-II | 0.012332 0.172236  0.106239  0.002317
Convergence MGSO 0.010164 0.154269  0.128675 0.058144
MOEA/D | 0.009412 0.188367  0.087992 0.021170

MO-MFO | 0.009139 0.170440  0.083361 0.057162

NSGA-II | 1195160 57.2198 37.14861 1147.035

1ol MGSO 16.35971 67.69448  33.19799 219.0534
maxftmin | MOEA/D | 7.593311 4295944  20.54897 163.5920
MO-MFO | 7.259866 41.00569  19.57940 130.25527

The best values are highlighted in bold.

TABLE 4. Comparisons of best solutions of task 2.

Task 2 Best Pioss Best Vb
NSGA-II MGSO  MOEA/D MO-MFO | NSGA-II MGSO  MOEA/D MO-MFO
Var 1.0500 1.0500 1.0500 1.0500 1.0429 1.0094 1.0461 1.0354
Va2 1.0443 1.0445 1.0478 1.0442 1.0368 1.0250 1.0070 1.0184
Vas 1.0226 1.0227 1.0229 1.0223 1.0087 1.0162 1.0201 1.0205
Ve 1.0247 1.0265 1.0257 1.0262 1.0057 1.0068 1.0072 1.0056
Vas 1.0950 1.0675 1.0714 1.0676 1.0493 1.0615 1.0670 1.0278
Vas 1.0772 1.0757 1.0788 1.0884 1.0498 1.0461 1.0136 1.0338
Ts9 1.050 1.000 1.070 1.070 1.050 1.050 1.050 1.050
To-10 0.900 0.966 0.900 0.975 0.900 0.900 0.900 0.900
Tsi2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
T27.28 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050
QOcio 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19
QOc2 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Poss 0.0514 0.0512 0.0515 0.0511 0.0579 0.0574 0.0571 0.0573
Vb 0.5929 0.6056 0.5917 0.6351 0.1789 0.1667 0.1761 0.1660

The best values are highlighted in bold.
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FIGURE 6. Comparison of the Pareto fronts of task 2.

transmission loss and voltage deviation objective values of
the best solutions. From Fig. 6, the best Pareto front of the
MO-MFO algorithm is closer to the left bottom point and
with one better outer solution as compared to the other three
algorithms. Fig. 7 shows the convergence processes of the
transmission loss objective of different algorithms, and the
MO-MFO algorithm exhibits fewer iterations.

3) MULTITASKING PERFORMANCE

With regards to the NSGA-II, MGSO, and MOEA/D
algorithms, task 1 and task 2 are solved in series, while the
MO-MFO algorithm solves the two tasks simultaneously.

155909



IEEE Access

J. Liu et al.: Multitasking Electric Power Dispatch Approach With MO-MFO Algorithm

0.057
0.056
| NSGA-II
0.055 [ - MGSO
3 W MOEA/D
=9
00541 MO-MFO
7] !
£ \
S 0.053
z
2
-9
0.052
0.051 |
0.05 L L
0 100 200 300 400 500 600 700 800 900 1000

[terations

FIGURE 7. Comparison of convergences of transmission loss objective of
task 2.

TABLE 5. Comparisons of convergence times of two tasks.

Algorithms NSGA-II MGSO MOEA/D  MO-MFO
Run  Task1 11.104 11.052 12.649 11.148
time  Task 2 1.566 1.506 1.607 ’

(s) Total 12.670 12.558 14.256 11.148

The best values are highlighted in bold.

Their run times are presented in Table 5. It can be observed
that the total run time of the two tasks of the MO-MFO
algorithm is the shortest with at least 1.41s advantage as
compared to the other algorithms. Besides, the aforemen-
tioned computation results, the overall performance metrics
and solution qualities of the MO-MFO algorithm applied in
the multitasking electric power dispatch problem are the best
among the four algorithms.

V. CONCLUSION

In this paper, a multitasking electric power dispatch approach
based on the MO-MFO algorithm is proposed to apply
in complex electric power dispatch problems, specifically,
the active and reactive power dispatches. As compared to the
existing evolutionary techniques for electric power dispatch,
including NSGA-II, MGSO, and MOEA/D methods, the pro-
posed approach performs much better in terms of the evalua-
tion metrics and solution qualities, as well as the computation
efficiency. Moreover, the approach exhibits the great potential
to be developed as a cloud-computing solver or platform for
future large-scale smart grid applications involving different
market entities because of its implicit parallel computation
mechanism.
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