
SPECIAL SECTION ON KEY ENABLING TECHNOLOGIES FOR PROSUMER ENERGY MANAGEMENT

Received July 24, 2020, accepted August 4, 2020, date of publication August 21, 2020, date of current version September 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3018484

A Multitasking Electric Power Dispatch
Approach With Multi-Objective
Multifactorial Optimization Algorithm
JUNWEI LIU 1,2, PEILING LI1, GUIBIN WANG 1, (Member, IEEE),
YONGXING ZHA1, JIANCHUN PENG1, (Senior Member, IEEE), AND GANG XU3
1College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
2Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of
Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
3College of Urban Transportation and Logistics, Shenzhen Technology University, Shenzhen 518118, China

Corresponding author: Guibin Wang (wanggb@szu.edu.cn)

This work was supported by the Foundations of Shenzhen Science and Technology Committee under
Grant JCYJ20170817100412438 and Grant JCYJ20190808141019317.

ABSTRACT Electric power dispatch issue mainly consists of two optimization tasks: active and reactive
power dispatches, each of which is a non-linear multi-objective optimization problem with a series of
constraints. Traditional evolutionary algorithms are focused on single-task optimization for active or reactive
power dispatch and they are not able to deal with several (single- or multi-objective) optimization tasks
simultaneously. In this paper, to solve this problem, a multitasking electric power dispatch approach is pro-
posed by introducing the multi-objective multifactorial optimization (MO-MFO) algorithm and integrating
it with the characteristics of power system. The approach exhibits the great potential to be developed as a
cloud-computing solver or platform for future large-scale smart grid applications involving different market
entities because of its implicit parallel computation mechanism. The multitasking approach is thoroughly
tested and benchmarked with IEEE-30-bus and IEEE-118-bus standard systems and exhibits generally better
performances as compared to previously proposed Pareto heuristic approaches for electric power dispatch.

INDEX TERMS Electric power dispatch, multifactorial, multitasking, optimization.

I. INTRODUCTION
Active and reactive power dispatches are two significant tasks
for optimal and safety operations of modern power systems.
As the increasing significance of energy saving and emission
reduction draws more and more attention from the industrial
community, the conventional single-objective electric power
dispatch techniques which simply pursue the minimum cost,
minimum emission, or minimum voltage variation cannot
fulfill the requirements of the modern energy management
system and the smart power grid. In recent years, the elec-
tric power dispatch problem considered as a multi-objective
optimization issuewhich simultaneously tries to findmultiple
incommensurable and contradictory targets under a set of
safety and operation constraints has received much attention.
Optimal active power dispatch (APD) requires minimizing
cost, emission, and transmission loss and reactive power
dispatch (RPD) requires minimizing voltage variation and
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transmission loss and maximizing voltage stability. For a
single dispatch task, because of the mutual contradiction
of those objectives, the target is to find its Pareto-optimal
fronts.

For the multi-objective problem in electric power dispatch,
there exist two categories of optimization techniques:
the first is the traditional linearization math method while
another is the Pareto-based heuristic technique. For high
dimensional multi-objective complex non-linear problems,
the Pareto-based heuristic approach would have advantages
and it includes Niched Pareto genetic algorithm (NPGA) [1],
non-dominated sorting genetic algorithm (NSGA) [1],
NSGA-II [2], strength Pareto evolutionary algorithm (SPEA)
[3], multiple group search optimization algorithm (MGSO)
[4], [5], etc.

The aforementioned optimization approaches are limited
to solve one multi-objective task at a time. In other words,
for one computing engine, they are not able to deal with
more than one optimization tasks simultaneously; instead,
those tasks will be processed serially. A modern power
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grid, as a complex system involving economic/environmental
dispatch, electric transportation planning, communication
network maintenance, electricity market transaction, fault
diagnosis, and condition estimation, etc., generally requires
many computation engines and processors to handle such
enormous and complicated task load in real time. To reduce
the hardware requirements of computation engines and
increase the computation efficiencies, a cloud computing
platform that is capable of handling different kinds of tasks
simultaneously (parallel computation) would be an advan-
tageous alternative. Recently, an evolutionary multitask-
ing technique that harnesses the implicit parallelism of a
population-based search to cope with multiple optimization
tasks simultaneously with a single population was proposed
for cloud-based applications [6] – [8]. It considers each opti-
mization task as an additional factor affecting the total evo-
lutionary process and therefore is named as multi-objective
multifactorial optimization (MO-MFO) algorithm. Currently,
it is designed and explored as a multitasking solver, espe-
cially for multiple optimization problems, while it exhibits
great potential to be developed as a multitasking general
problem-solving engine and applied in the cloud computing
platform for the aforesaid modern power grid with many
complex problems.

In this paper, themulti-objectivemultifactorial optimization
(MO-MFO) algorithm is creatively applied in the electric
power dispatch problems. And a multitasking electric power
dispatch approach is further developed and proposed by
integrating the MO-MFO algorithm with the characteristics
of power system models in order to optimize both active
and reactive power dispatch tasks concurrently, as well as
reduce the execution time, and improve the performances.
The analysis and design of the approach have been thor-
oughly verified and benchmarked with IEEE-30-bus and
IEEE-118-bus standard systems. As compared to the other
evolutionary techniques for electric power dispatch, includ-
ing NSGA-II, MGSO, and MOEA/D methods, the proposed
approach exhibits much better in terms of the evaluation
metrics, solution qualities, and the computation efficiency.

II. MULTI-OBJECTIVE MULTIFACTORIAL OPTIMIZATION
A. FRAMEWORK AND PRINCIPLE OF THE ALGORITHM
The essential target of MO-MFO is to solve multiple
multi-objective optimization problems simultaneously by
mining their potential implicit parallelism, and furtherly to
make those multi-objective optimization problems under dif-
ferent environments with shorter execution time and better
optimization performances. The implicit parallel processing
principle is achieved using the unified search space which
contains the design spaces of several different tasks [6] – [8].
The optimal chromosome is searched in the unified search
space and it could be decoded into the corresponding solution
variables associated with the tasks. Therefore, several differ-
ent tasks are optimized with only one search solver. In the
following, the details will be explained with the assistance of
Fig. 1.

FIGURE 1. The chromosome of the i th individual and its relations with
the variables of different tasks.

For multiple optimization tasks, some of them may be
complimentary with some other tasks, and genetic material
and useful information can be transferred across those tasks,
which may result in speeding up the total optimization pro-
cess. It has been studied and verified that useful knowledge
transferred across different but related tasks, such as CVRP
and CARP problems [9], will help improve the performances
of evolutionary optimization.

Before illustrating the principle of the MO-MFO
algorithm, we firstly make the essential definitions and
notations for the related variables and parameters. In the
theoretical scenario of multi-task, there are K different multi-
objective optimization tasks, that are assumed to be the
minimization problems without loss of generality. For the jth

task Tj, the objective function Fj is defined as:

Fj : X j→ RMj , (1)

whereXj is the design space (or called as the decision variable
space) of the jth task, RMj is the objective function space of
the jth task with the dimension of Mj. The dimension of the
design space Xj is noted as Dj. The objective function value
yj can be expressed as:

yj =
(
yj.1, yj.2, . . . , yj.Mj

)
, (2)

and xj is the design variable of the jth task:

xj =
(
xj.1, xj.2, . . . , xj.Dj

)
, (3)

Therefore, the objective function Fj maps design variables xj
to vectors yj, which is also expressed as:

yj = Fj
(
xj
)
=
(
fj1
(
xj
)
, fj2

(
xj
)
, . . . , fjMj

(
xj
))
. (4)

For a single task Tj, the Pareto optimal set PSj is defined as:

PSj =
{
xj ∈ X j|¬∃x′j ∈ X j : Fj

(
x′j
)
� Fj

(
xj
)}
, (5)

And the Pareto front PFj is defined as:

PFj =
{
yj = Fj

(
xj
)
=
(
fj1
(
xj
)
, . . . , fjMj

(
xj
))
|xj ∈ PSj

}
.

(6)

For the multitasking environment, the target is to find the
Pareto sets of all the tasks PS1, PS2, . . . , PSK .
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However, for the proposed MO-MFO algorithm, the target
is to find one optimal individual that consists of the informa-
tion of all the tasks’ optimal solution. In other words, such an
optimal individual can be translated into the specific solution
of any of the optimization tasks. In the evolutionary process
of the proposed algorithm, there are a number of individuals
existing in the population P, and each individual is defined as
pi and

i ∈ {1, 2, . . . ,N } , (7)

where N is the total number of individuals. Next, a unified
search space Z is defined, which encompasses the design
spaces of all the tasks X1, X2, . . . , XK . Every individual pi is
encoded, and its chromosome zi belongs to the unified search
space Z. The dimension of Z is selected as the maximum of
the design spaces’ dimensions:

DZ = max {D1,D2, . . . ,DK } . (8)

For the individual pi, as shown in Fig. 1, its chromosome
zi contains the information of K variables (x1i, x2i, . . . , xKi)
associated with K tasks. Each element of the variables can be
decoded from the corresponding element of the chromosome
of pi. Here in the paper, the element of the chromosome is also
called as random-key, and the variables of different tasks are
called as solution representations. For the continuous case,
note the mth random-key of zi as zi.m and it is assumed to be
limited in the range of [0, 1]. For the specific jth task, the
mth element of xji is defined as xji.m and box-constrained as
[Lj.m,Uj.m], and one sample of the decoding method is shown
as:

xji.m = Lj.m + zi.m ·
(
Uj.m − Lj.m

)
. (9)

In addition to the aforementioned decoding method,
different representations may apply to other decoding meth-
ods, such as binary decoding, sequence-based decoding, etc.,
according to the specific requirements of different tasks.
Following, there are three essential definitions (factorial rank,
skill factor, and scalar fitness) needed to be illustrated in
detail. The factorial rank r ij of pi for task Tj is defined as the
rank of pi’s effectiveness regarding task Tj in the list of P’s
members. The skill factor τi of pi is defined as the task index
number of the one task, with which pi is associated. If pi is
evaluated for all tasks, τi will be the task index number of the
one task, to which pi is the most effective:

τi = argmin
j∈{1,2,...,K }

{
r ij
}
, (10)

The scalar fitness ϕi of pi in the multitasking environment is
based on pi’s best rank amongst all tasks, defined as:

ϕi = 1
/
r iτi = 1

/
min

{
r i1, r

i
2, . . . , r

i
K

}
. (11)

The sorting of the factorial rank r ij of pi for task Tj is
based on the non-dominated front (NF) [10] and crowding
distance (CD) [11] of task Tj’s objective functions’ values
with the specific solution representation xji decoded from
the chromosome zi of pi. Note the aforementioned NF and

FIGURE 2. Detailed flow chart of the MO-MFO algorithm.

CD as NFji and CDji, respectively. For example, when we
compare p1 and p2’s factorial ranks (r1j and r2j ) for task Tj,
p1 is considered to be preferred over p2, meaning p1 has a
better rank than p2 (r1j < r2j ), when any one of the following
conditions is satisfied:

NFj1 < NFj2, (12)

NFj1 = NFj2 and CDj1 > CDj2. (13)

With the definitions of factorial rank, skill factor, and
scalar fitness, the MO-MFO algorithm is illustrated with
the assistance of the flow chart in Fig. 2. Firstly, a unified
search space Z is initialized, and N individuals are generated
from the space to form the initial population P0. Next, all
the members pi of the population P0 are randomly assigned
their skill factors τi and then evaluated for task Tτ i with the
decoding procedure and objective functions. The assignment
needs to guarantee that each task is uniformly associated.
Further, the scalar fitness ϕi of every pi is calculated based
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on the NF and CD. To generate offspring, a pool of parent
candidates noted as P’ t, is generated from the current pop-
ulation using binary tournament selection method. After that
are the assortative or random mating for offspring creation,
and the skill factor assignment for new offspring, which can
be comprehended as vertical cultural transmission. Then the
new offspring individuals are evaluated for the task associated
with their skill factors and put into the offspring pool Ct. The
processes of offspring creation and skill factor assignment are
repeated several times until the parent candidates pool P’ t
is empty. When the offspring pool Ct is ready, a temporary
candidate pool Rt consisting of Ct and Pt is formed with
all the individuals’ scalar fitness updated. Finally, N fittest
individuals are chosen from Rt to form a new population
Pt+1. Such evolving processes will be repeatedmultiple times
until stop conditions are satisfied.

Offspring individuals are created from the parent
candidates pool by assortative or random mating methods.
If two parent individuals, which are randomly selected from
the parent candidates pool, are with the same skill factors,
they will undergo both crossover and mutate processes to
generate two offspring individuals, as explained by the phe-
nomenon of assortative mating. For the condition with differ-
ent skill factors, they still have a probability (random mating
probability, noted as rmp) to undergo crossover and mutate
processes, which is understood as the natural phenomenon
of random mating. For other conditions, they simply undergo
mutation to generate two mutant offspring individuals sep-
arately. The principle of assortative mating indicates that in
nature individuals prefers to mate with those with identical
cultural attribute. However, individuals with different cultural
attributes still have a probability to mate with each other,
which is explained as the principle of random mating. The
random mating probability is estimated roughly according
to the correlation degree of the involved tasks. A higher
correlation degree leads to a larger probability. The detailed
steps of offspring creation are presented in Fig. 2.

Vertical cultural transmission is a natural phenomenon
that illustrates the offspring imitate the cultural features of
their parents according to cultural and biological inheri-
tance theory [12]. The natural phenomenon is applied in the
MO-MFO algorithm where the offspring individuals imitate
any one of the skill factors of their parents randomly. For the
offspring individual generated simply from the onlymutation,
it imitates the skill factor of its single parent simply.

The implicit information transfer between different tasks
in the MO-MFO algorithm is achieved by the random mating
probability of two parent candidates with distinct skill factors
and the offspring’s random selection of skill factor from its
parents. Such stochastic processes guarantee the inter-task
knowledge transmission for the multitasking environment.

B. POTENTIAL FOR FUTURE SMART GRID APPLICATIONS
In addition to optimization problems, the MO-MFO
algorithm exhibits large potentials of being developed as a
complex multi-objective multitasking solver, and furtherly,

FIGURE 3. Example of future smart grid application with multi-objective
multitasking cloud-computing platform.

a cloud-computing platform involving different market enti-
ties including power network, traffic network, information
network, gas network, and so on. For example, the complex
operations of a multi-energy system including electricity,
heating, and natural gas networks [13] can be furtherly
optimized with the aforementioned platform. All the tasks of
those networks can be computed and solved simultaneously
with a shared search space with reduced space require-
ments and improved computing efficiencies. Fig. 3 shows
an example of multi-objective multitasking cloud-computing
platform for future smart grid applications with several rep-
resentative tasks, such as Nash game problem for cooperative
planning, Cournot game problem for capacity expansion, and
cloud framework for users’ transactions, whose phenotypes
may have part of overlaps with each other and enable useful
information sharing and transmission and hence the compu-
tations are accelerated. Originally there are separate search
spaces regarding those tasks respectively. In the platform,
the separate search spaces are integrated into one shared
search space. In the shared search space, each task’s comput-
ing information is shared with others. From the last iteration
to the next iteration, the population is updated with newly
generated and better offspring individuals within the shared
search space. Further, for the sake of using a shared search
space instead of three separate search spaces, space and
memory resources are reduced significantly. The example
in Fig. 3 is simply introduced to show the algorithm’s great
development potentials for future smart grid applications
and will not be discussed in detail in this paper. Instead,
the optimization problem of active and reactive electric
power dispatches is discussed in the following in order to
validate the algorithm’s applicability and advantages. The
tasks of active and reactive electric power dispatches are
related because they rely on the same power system model,
and they have one common objective – transmission loss
minimization. Hence, the algorithm is appropriate.

III. MODELS OF ACTIVE AND REACTIVE POWER
DISPATCHES
Active and reactive power dispatches are considered as two
optimization tasks with respective objectives and constraints.
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A. ACTIVE POWER DISPATCH (APD)
1) OBJECTIVES OF APD
The optimization objectives of active power dispatch consist
of economic objective, emission objective, and transmission
loss objective.

a: ECONOMIC OBJECTIVE
Minimization of total generation (fuel) cost is defined as the
economic objective of APD, with the corresponding objective
function [14] described as:

F (PG) =
NG∑
i=1

{
aiP2Gi + biPGi + ci + |di sin [ei (PGi.min

−PGi)]|} . (14)

where F is total fuel cost in ($/h); PGi and PGi.min are the
actual output power and minimum output power of the ith

generator; (ai, bi, ci, di, ei) are the cost coefficients of the
ith generator; and NG is the total count of generators.

b: EMISSION OBJECTIVE
Minimization of total fossil fuel pollutants (emission) during
generation process is defined as the emission objective
of APD, with the corresponding objective function [15]
described as:

E (PG) =
NG∑
i=1

10−2
[
αiP2Gi + βiPGi + γi + ζi exp (λiPGi)

]
.

(15)

where E is the total emission in (ton/h) and (αi, βi, γi, ζi, λi)
are the emission coefficients of the ith generator.

c: TRANSMISSION LOSS OBJECTIVE
Minimization of power losses in transmission lines is defined
as the transmission loss objective of APD. The total transmis-
sion losses [1] can be calculated with the Newton-Raphson
method and expressed as:

PLoss =
NL∑
z=1

gz
[
V 2
x + V

2
y − 2VxVy cos

(
δx − δy

)]
. (16)

where x ∈{1, 2, . . . ,NB} andNL is the number of transmission
lines; gz is the conductance of the zth line connecting the
x th and the yth buses; Vx , δx are the voltage magnitudes and
angles of the x th bus; and Vy, δy are the voltage magnitudes
and angles of the yth bus. Voltage magnitudes and angles
at all buses can be obtained by load-flow calculation with
Newton-Raphson method:

Pgx − Plx − Vx
NB∑
y=1

Vy
[
Gxy cos

(
δx − δy

)
+Bxy sin

(
δx − δy

)]
= 0, (17)

Qgx − Qlx − Vx
NB∑
y=1

Vy
[
Gxy sin

(
δx − δy

)
−Bxy cos

(
δx − δy

)]
= 0. (18)

where NB is the number of buses; Pgx and Qgx are the gen-
erated active and reactive power at the x th bus respectively;
Plx and Qlx are the load active and reactive power at the x th

bus respectively;Gxy andBxy are the transfer conductance and
susceptance between the x th and yth buses respectively.

2) CONSTRAINTS OF APD
During the operation progress of power system, there are
several practical operations, and safety requirements need
to be satisfied, which are modeled as the constraints of the
optimization task.

a: POWER BALANCE CONSTRAINT
The total generated power of generators should be equal to the
load demand power and the total transmission losses, which
can be expressed as:

NG∑
i=1

PGi −
NB∑
x=1

Plx − PLoss = 0. (19)

b: BUS VOLTAGE CONSTRAINT
The constraint of the voltages at all buses is expressed as:

Vx.min ≤ Vx ≤ Vx.max, x ∈ {1, 2, . . . ,NB} . (20)

where Vx.min and Vx.max are the allowable lower and upper
limits of the x th bus voltage.

c: TRANSMISSION SECURITY CONSTRAINT
The apparent power flowing through every transmission
line should be smaller than the corresponding maximum
transmission capacity:

max
(∣∣Sxy∣∣ , ∣∣Syx ∣∣) ≤ Sz.max, x, y ∈ {1, 2, . . . ,NB} ,

z ∈ {1, 2, . . . ,NL} . (21)

where Sxy is the apparent power flow from the x th bus to the
yth bus while Syx is that with the opposite direction; Sz.max is
the upper limit of the zth transmission line’s apparent power.

d: SPINNING RESERVE CONSTRAINT
For the safe and stable operation for the system, the spinning
reserve requirement for emergency conditions must be satis-
fied [17]. The generators with prohibited operating zones are
not considered as part of the spinning reserve. The constraint
is expressed as:

NG∑
i=1

SPGi ≥ SPR, SPGi =

{
0 ∀i ∈ �
PGi.max − PGi others.

(22)

where SPGi is the spinning reserve of the ith generator; SPR
is the spinning reserve requirement; PGi.max is the maximum
output of the ith generator, and� is the set of generators with
prohibited operating zones.

B. REACTIVE POWER DISPATCH (RPD)
1) OBJECTIVES OF RPD
The optimization objectives of reactive power dispatch are
transmission loss objective, voltage profile objective, and
voltage stability objective.
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a: TRANSMISSION LOSS OBJECTIVE
This objective is to minimize the total power losses
in transmission lines during the RPD progress, whose
expression is the same as the transmission loss objective
of APD.

b: VOLTAGE PROFILE OBJECTIVE
Minimization of the total absolute deviations of voltage
magnitudes at the load buses is defined as the voltage profile
objective and the sum of the absolute deviations is noted as
VD and described as:

VD =
NLB∑
k=1

|Vk − Vk.r | . (23)

where NLB is the number of buses with loads; Vk and Vk.r are
the actual and rated voltages at the k th load bus, respectively.

c: VOLTAGE STABILITY OBJECTIVE
Voltages at the buses with loads may collapse when
contingency conditions happen, and here a global indicator L
describing the voltage stability of the system is given as [18]:

L = max
k∈{1,2,...,NLB}

∣∣∣∣∣∣∣∣∣1−
NG∑
i=1

Fki · V c
Gi

V c
Lk

∣∣∣∣∣∣∣∣∣ , (24)

where V c
Gi and V

c
Lk are the voltages at the ith generator bus

and the k th load bus in complex form, respectively; Fki is the
element of the matrix FLG, which is calculated by:[

V c
L

IcG

]
= [H] ·

[
IcL
V c
G

]
=

[
ZLL FLG
KGL qYGG

]
·

[
IcL
V c
G

]
. (25)

where VcG and IcG are voltage and current vectors at generator
buses in complex form respectively; VcL and IcL are voltage
and current vectors at load buses in complex form respec-
tively; ZLL , FLG, KGL , and YGG are sub-matrices of the H
matrix which is derived from the nodal admittance matrix
with partial inversion.

2) CONSTRAINTS OF RPD
There are six operational and practical constraints of
reactive power dispatch, including generation constrains, bus
voltage constraint, transmission security constraint, load flow
equality constraint, transformer constraint, and VAR source
constraint.

a: GENERATION CONSTRAINT
Every generator’s active and reactive power outputs are
limited in respective ranges:

PGi.min ≤ PGi ≤ PGi.max,QGi.min ≤ QGi ≤ QGi.max,

i ∈ {1, 2, . . . ,NG} . (26)

where QGi.min and QGi.max are lower and upper limits of the
reactive power output of the ith generator; QGi is the actual
reactive power output of the ith generator.

b: BUS VOLTAGE CONSTRAINT
The constraint of RPD is the same as that of APD, expressed
as (20).

c: TRANSMISSION SECURITY CONSTRAINT
The constraint of RPD is the same as that of APD, expressed
as (21).

d: LOAD FLOW EQUALITY CONSTRAINT
The constraint describes the nonlinear equalities of active and
reactive power balance, which is expressed as (17) and (18).

e: TRANSFORMER CONSTRAINT
The tapping configuration of every transformer is limited as:

Ta.min ≤ Ta ≤ Ta.max, a ∈ {1, 2, . . . ,NT } . (27)

where Ta.min and Ta.max are the lower and upper tapping limits
of the ath transformer; Ta is the actual tapping of the ath

transformer, and NT is the number of transformers.

f: VAR SOURCE CONSTRAINT
The reactive power generated by every VAR source is limited
in a practical range:

QCb.min ≤ QCb ≤ QCb.max, b ∈ {1, 2, . . . ,NC } . (28)

where QCb.min and QCb.max are the lower and upper reactive
power output limits of the bth VAR source; QCb is the actual
reactive power output of the bth VAR source, and NC is the
number of VAR sources.

IV. COMPUTATION STUDIES
A. METRICS OF EVALUATION
When solving the multi-objective problems, it is difficult
to obtain the true Pareto front. Therefore, there are sev-
eral metrics proposed to evaluate the performances of the
corresponding algorithm.

1) SPACING
The spacing metric [19], [20] is defined to measure how
evenly the Pareto solutions are distributed along the obtained
Pareto front and calculated as:

S =

√√√√ 1
nf

nf∑
i=1

(
di − davg

)2
, (29)

where di is the Euclidean distance between the ith solution
and its nearest solution, and nf is the number of solutions,
and davg is the mean value of all di in the obtained Pareto
front.

2) SPAN
The span metric [21] measures the maximum extent of each
objective function to estimate the range to which the obtained
Pareto front spreads out, calculated as:

SP =

√√√√ M∑
i=1

(
f ∗i.max − f

∗

i.min

)2. (30)
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whereM is the number of the objective functions; fi.max∗ and
fi.min∗ are the normalized maximum and minimum function
values of the ith objective. For the cases with two objectives,
the span metric is equal to the distance of the two outer
solutions.

3) CONVERGENCE
The convergence metric [10] measures the extent of the
obtained Pareto front’s convergence to a known or true
Pareto-optimal front. For each solution of the obtained Pareto
front, theminimumvalue of the Euclidean distances of it from
all the solutions of the known or true Pareto front is calcu-
lated. And the average value of those minimum distances is
obtained as the convergence metric.

4) lmax/lmin
lmax /lmin [20] is defined as the ratio of the maximum
Euclidean distance and the minimum Euclidean distance of
adjacent solutions, which is used to measure the uniformity
of the Pareto solution.

5) CONVERGENCE TIME
This metric refers to the total time needed for the objective
values and other metrics achieving the requirements using the
corresponding algorithm.

B. SETTING OF THE TEST SYSTEM
To test the performances of the proposed MO-MFO
algorithm’s application in multitasking electric power dis-
patch, the IEEE-118-bus and IEEE-30-bus systems [4]
are chosen for the active and reactive power dispatch
tasks, respectively. The IEEE-118-bus system consists of
186 branches and 54 generators. The IEEE-30-bus system
consists of 41 branches and 6 generators and has 12 variables,
including 6 generator voltages, 4 tapping ratios of the OLTC
transformers connected in the branches 4-12, 6-9, 6-10, and
27-28 respectively, and 2 shunt capacitors installed at buses
10 and 24.

To compare different algorithms fairly, the population
numbers of IEEE-118-bus and IEEE-30-bus systems are set
to be 100 and 300 respectively and the maximum number
of iterations is set to be 1000. The computation results of
the proposed and other algorithms are based on 30 runs of
iterations.

C. COMPUTATION RESULTS
In the previous setting, there are two multi-objective
optimization tasks: the first one is the active power dispatch
for the IEEE-118-bus system; and the second one is the
reactive power dispatch for the IEEE-30-bus system.

1) TASK 1-ACTIVE POWER DISPATCH FOR THE
IEEE-118-BUS SYSTEM
In the computations of task 1, the economic and environ-
mental objectives are chosen as the optimization objectives,
and the performance metrics of different algorithms after
30 runs of iterations are shown in Table 1. The proposed
MO-MFO method is verified to be more advantageous as
compared to the NSGA-II, MGSO, and MOEA/D algorithms

TABLE 1. Performance metrics of different algorithms of task 1.

TABLE 2. Comparisons of best solutions of task 1.

when applied in electric power dispatches. From Table 1,
the spacing values and the average lmax /lmin of the MO-MFO
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FIGURE 4. Comparison of the Pareto fronts of task 1.

FIGURE 5. Comparison of convergences of emission objective of task 1.

algorithm are the lowest than the others, meaning that its
Pareto solutions are distributed the most evenly. The span
values of the MO-MFO algorithm are the largest among
those algorithms, indicating its largest search ranges. Table 2
presents the best solutions of cost and emission calculated
from the extreme points of the resulting Pareto fronts of the
algorithms. As compared to other algorithms, the MO-MFO
has lower cost and emission objective values of the best
solutions. Besides, the best Pareto fronts obtained from
the algorithms are plotted in Fig. 4. As compared to the other
algorithms, the Pareto front obtained from the MO-MFO
algorithm is closer to the left bottom point and with two better
outer solutions. Moreover, the convergences of the emission
objectives obtained from the different algorithms are given in
Fig. 5, which shows that theMO-MFOhas better convergence
time.

2) TASK 2–REACTIVE POWER DISPATCH FOR THE
IEEE-30-BUS SYSTEM
In the computations of task 2, the transmission loss and the
voltage deviation are selected as the optimization objectives,
and the performance metrics of different algorithms after
30 runs of iterations are shown in Table 3, from which it
can be observed that the average values of spacing, span,
convergence, and lmax /lmin metrics of the MO-MFO algo-
rithm are the best. Table 4 presents the best solutions of
transmission loss and voltage deviation calculated from the
extreme points of the resulting Pareto fronts of the algorithms.
As compared to other algorithms, the MO-MFO has lower

TABLE 3. Performance metrics of different algorithms of task 2.

TABLE 4. Comparisons of best solutions of task 2.

FIGURE 6. Comparison of the Pareto fronts of task 2.

transmission loss and voltage deviation objective values of
the best solutions. From Fig. 6, the best Pareto front of the
MO-MFO algorithm is closer to the left bottom point and
with one better outer solution as compared to the other three
algorithms. Fig. 7 shows the convergence processes of the
transmission loss objective of different algorithms, and the
MO-MFO algorithm exhibits fewer iterations.

3) MULTITASKING PERFORMANCE
With regards to the NSGA-II, MGSO, and MOEA/D
algorithms, task 1 and task 2 are solved in series, while the
MO-MFO algorithm solves the two tasks simultaneously.
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FIGURE 7. Comparison of convergences of transmission loss objective of
task 2.

TABLE 5. Comparisons of convergence times of two tasks.

Their run times are presented in Table 5. It can be observed
that the total run time of the two tasks of the MO-MFO
algorithm is the shortest with at least 1.41s advantage as
compared to the other algorithms. Besides, the aforemen-
tioned computation results, the overall performance metrics
and solution qualities of the MO-MFO algorithm applied in
the multitasking electric power dispatch problem are the best
among the four algorithms.

V. CONCLUSION
In this paper, a multitasking electric power dispatch approach
based on the MO-MFO algorithm is proposed to apply
in complex electric power dispatch problems, specifically,
the active and reactive power dispatches. As compared to the
existing evolutionary techniques for electric power dispatch,
including NSGA-II, MGSO, andMOEA/Dmethods, the pro-
posed approach performs much better in terms of the evalua-
tion metrics and solution qualities, as well as the computation
efficiency.Moreover, the approach exhibits the great potential
to be developed as a cloud-computing solver or platform for
future large-scale smart grid applications involving different
market entities because of its implicit parallel computation
mechanism.
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