
Received July 14, 2020, accepted August 4, 2020, date of publication August 21, 2020, date of current version September 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3018505

A Hybrid GRASP Algorithm for an Integrated
Production Planning and a Group Layout
Design in a Dynamic Cellular
Manufacturing System
HANANE KHAMLICHI 1, KENZA OUFASKA3, TARIK ZOUADI 2,
AND RACHID DKIOUAK1
1Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Tangier 93030, Morocco
2BEAR Laboratory, Rabat Business School, International University of Rabat, Rabat, Morocco
3TICLAB, International University of Rabat, Rabat, Morocco

Corresponding author: Hanane Khamlichi (hanane.khamlichi@gmail.com)

ABSTRACT Demand fluctuations influence the configuration of manufacturing workshops. Integration
of optimal production planning via the replenishment organization, can significantly reduce the excessive
++reconfigurations number in each period and, thereafter, the global managing costs. In this article,
we discuss the joint machines Group layout design (GLD) and lot-sizing problem (LSP) in a dynamic cellular
manufacturing system (DCMS).We propose a novel multi-period model to determine the best cell formation,
necessary configurations over each period, and optimal production and inventory policy that minimizes
intra and inter-cell material handling, holding costs, and multitasks machines relocation. We propose a
novel mixed-integer programming (MIP) associated model which is then solved by using the commercial
software Optimizer CPLEX. Additionally, we present a hybrid greedy randomized adaptive search proce-
dure (GRASP) enhanced with a path relinking procedure (PR) to solve the problem. Computational results
on several benchmarks and randomly generated instances show the effectiveness and the relevance of the
proposed approach and highlight the integration value.

INDEX TERMS Group layout design, DCMS, lot-sizing, GRASP.

I. INTRODUCTION
Recognizing that many factors must be considered in choos-
ing how to layout a facility, a suitable facility layout planning
is necessary to enhance efficiency and flexibility in any man-
ufacturing environment. Today, the factories are aware that
opting for a layout type has a significant impact on the firm’s
ability to compete in the market and its long-term success.
Also, owing to increasing pressure from customers for shorter
product life cycles, developing flexibility becomes necessary
to many companies. The strategy of adopting one fixed layout
without considering demand changes causes additional man-
ufacturing costs and increases jobs tardiness. The models that
integrate customer order changes are known as the Dynamic
Cellular Manufacturing System (DCMS).
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Cellular manufacturing (CM) is a well-known manufac-
turing technology that helps companies to improve manu-
facturing flexibility and productivity by the maximum use
of available resources. CM is a powerful tool for increas-
ing production and flexibility. In such a system, we group
similar machines in the same machine cells, and prod-
ucts or parts having similar routing and processing in the
same part or product families. Cellular Manufacturing Sys-
tems (CMS) are dedicated to meet the requirements of
modern industries working in highly unstable environments
(Kumar et al. [1], Rensi et al. [2], Delgoshaei et al. [3],
Bortolini et al. [4], Negahban and Smith [5]).

CM concept is used in many companies today to enhance
flexibility, reduce set up, handling, and inventory costs, and
optimize the factories’ layout. The objective is to group a
set of problems; thus, allowing us to find a single solution
to them, which leads companies to save money, and efforts.
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CMS consists of four decisional cycles (Kia et al. [6]) as
follows:
• First decision: It consists of the cell formation problem
that aims to design and form cells according to the parts
production quantities or demand, and routings. The idea
is to group parts according to their processing similari-
ties and machines into machine cells.

• Second decision: It tackles the group layout design
(GLD) that aims to lay grouped machines within cells
and ensures a better intra-cell layout, then to arrange the
formed cells in relation to one another.

• Third decision: it concerns group scheduling problem
eyeing to determine the order of the jobs processing.
The objective is to find the sequence of jobs that min-
imize or maximize a given scheduling criterion.

• Fourth decision: It focuses on the resource allocation
problem. The problem raises when limited resources
among a system should be optimized to meet the pro-
duction objectives.

Except for some few attempts, extant research deals with
these four decisions separately. In this study, we consider
the first and second decisions integrated with Lot-Sizing
Problem (LSP) decisions. The considered LSP consists of
determining a production planning of an N items set (multi-
products) for a planning horizon with T periods that mini-
mizes the reconfiguration and managing costs. Its use aims
to evaluate the impact of inventory and production planning
on cellular manufacturing design and reconfiguration.

The LSP has been widely investigated in prior studies. For
instance, several mathematical programming models on LSP
have been proposed (Bushuev et al. [7], Wörbelauer et al. [8].
Zouadi et al. [9], Zouadi et al. [10]). Apart some papers in
the literature, layout and lot-sizing have always been studied
separately although integrating both decisions could mini-
mize the managing costs significantly. The two problems
have always been treated separately. Guoqing et al. [11]
introduce a new integrated strategy that combines storage
location assignment with a capacitated lot-sizing problem.
The authors developed a dynamic mixed integer program-
ming for the joint problem. Also, Rafiee et al. [12] propose a
mathematical model for integrated cell formation and inven-
tory decisions. However, the authors did not consider produc-
tion planning and Group layout reconfigurations jointly in a
DCMS, nor did they take into account their mutual impacts.

Based on the above discussion, we develop in this research
a novel mathematical programming model to joint machines
Group layout design (GLD) and lot-sizing problem (LSP) in
a DCMS. This model is an extension of Kia et al. [6] model
to the case of lot-sizing with novel constraints. The model
aims to find a dynamic cell formation plan, and a production
planning that minimize costs. Since machines Group layout
design and lot-sizing problem are NP-Hard. Computational
complexities are therefore burdensome. To solve the problem
in an acceptable time especially for large instances, we adapt
a Greedy randomized adaptive search procedure algorithm
(GRASP) embedded with a Path Relinking (PR) procedure.

The remainder of the paper is organized as follows. State
of art is provided in section 2. The problem statement
and the mathematical model are expanded in Section 3.
Then, the developed metaheuristic is explained in Section 4
and the results are discussed in Section 5. Finally, this article
concludes with its main contributions and its future research
avenues.

II. STATE OF THE ART
CM has received much attention in the two last dedicates.
Indeed, many researchers have contributed to the literature
by solving different variations of this problem. In 2009,
Bulgak et al. [13] presented a comprehensive model for the
design of CMS. The model features the presence of alternate
process routings, operation sequence, duplicate machines,
machine capacity, and lot splitting. Three years later, Mah-
davi et al. [14] formulated a new mathematical model to
minimize the exceptional elements and number of voids in
cells. The objective is to ensure higher performance and
optimize cell utilization. In the same year, Egilmez et al. [15]
developed a non-linear mathematical model for the stochastic
CMS. The problem is detected in both machine and labor-
intensive cells, where operation times are probabilistic in
addition to uncertain customer demand. Mahdavi et al. [16]
proposed an integrated mathematical model considering cell
formation and layout simultaneously. The goal of themodel is
to group similar parts and corresponding different machines
in the same cells. Machines sequence in each cell and cell’s
positions are specified in the system. Kia et al. [17] also pre-
sented a mixed-integer programming model for multi-floor
layout design of CMS in a dynamic environment. A novel
aspect of this model is to jointly determine the cell forma-
tion (CF) and group layout design (GLD) as the interrelated
decisions involved in the design of a CMS to achieve an opti-
mal (or near-optimal) design solution for a multi-floor factory
in a rolling planning horizon. In 2017, Raoofpanah et al. [18]
proposed a novel mathematical model considering environ-
mental issues. They investigated the effect of green parame-
ters on optimality. In the same year, Feng et al. [19] present a
comprehensive linear model that is developed for the inte-
grated cell formation, and worker assignment problem to
determine the optimal allocation of machines, parts, and
workers. Specific characteristics of this model include the
simultaneous consideration of production planning, the coex-
istence of alternative process routings, a lot splitting, work-
load balancing between cells, and worker over-assignment to
multiple cells.

In our study, we consider a group layout design with
lot-sizing problem and an inventory management policy in
a DCMS. For an updated state of the art on LSP, read-
ers are referred to Brahimi et al. [20]. In the literature,
there is a dearth of research dealing with these decisions
simultaneously. Safaei et al. [21] presented an integrated
mathematical model of the multi-period cell formation and
production planning in DCMS. Also, in 2016, Aalaei and
Davoudpour [22] proposed a new dynamic CM model in
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supply chain design considering labor assignment. They
considered multiple plan locations, multi markets alloca-
tions with production planning, and various part mix. Dur-
ing the same year, Sakhaii et al. [23] propose a robust
optimization approach for an integrated dynamic cellular
manufacturing system, and production planning with unre-
liable machines. They aim to minimize costs related to
machines, workers, production, and parts movements. In par-
allel, Aghajani et al. [24] proposed a mathematical program-
ming model for CMS controlled by Kanban with rework
consideration. One year after, Paydar et al. [25] tackled
the dynamic virtual cellular manufacturing with the supplier
selection option. They proposed a hybrid metaheuristic algo-
rithm to solve the problem. In sum, it seems that none of
these studies considers the production planning and the inven-
tory policy impact on the DCMS layout and reconfiguration.
Accordingly, this research aims to cover this gap.

Many resolution approaches were developed to solve the
CMS to optimality. Wu et al. [26] proposed a genetic
algorithm for integrating cell formation with machine lay-
out and scheduling. Pillai and Subbarao [27] developed
a genetic algorithm-based solution procedure for form-
ing part families and machine cells, which can handle all
the changes in demands and product mixes without any
relocations. After that, Safaei et al. [21] presented an effi-
cient hybrid metaheuristic based on Mean-Field Anneal-
ing (MFA) and simulated annealing (SA) for solving an
extended version of the DCMS. The objective is to min-
imize the sum of the machine’s fixed and variable costs,
inter- and intra-cell material handling, and reconfiguration
costs. Also, Tavakkoli-Moghaddam et al. [28] design a scatter
search method for a novel multi-criteria group scheduling
problem in a CMS. The detailed results confirm the efficiency
and effectiveness of the proposed algorithm to provide good
solutions, especially for medium and large-sized problems.
Afterwards, Rezaeian et al. [29] proposed a new nonlinear
programmingmodel in a dynamic environment. Furthermore,
a novel hybrid approach based on the genetic algorithm and
artificial neural network is proposed to solve the presented
model. Subsequently, Deep et al. [30] proposed a genetic
algorithm to design a CMS for a dynamic part population con-
sidering multiple processing routes. In the same year, Ulutas
and Islier [31] proposed a clonal selection-based algorithm to
solve the real-life dynamic facility layout problem. Recently,
Prakash et al. [32] analyzed the prioritization of barriers
influencing the improvement in the effectiveness of the man-
ufacturing system. They developed an integrated fuzzy-based
multi-criteria decision-making (F-MCDM) framework to
assist management of the case company in the selection of the
most effective manufacturing system. Also, Imran et al. [33]
used simulation integrated with a hybrid genetic algorithm to
solve the CMSs to minimize work in process. In this study,
a hybrid GRASP is proposed with a path relinking algorithm
to solve the problem due to its efficiency and its ability to
solve NP-hard combinatorial problems.

In summary, the main contributions of this article are the
following. Firstly, we propose a novel integrated model with
main decision variables for the group layout design integrated
with a lot-sizing problem in a DCMS. Secondly, we suggest a
hybrid GRASP embedded within a path relinking algorithm
to solve the problem. Finally, we prove through an exten-
sive numerical analysis the significant difference obtained by
generating layout in DCMS with or without considering the
inventory and production policy, and we highlight by the end
the value of the integration.

III. PROBLEM STATEMENT AND MODEL FORMULATION
A. PROBLEM ASSUMPTIONS
The studied problem integrates lot-sizing problem with an
extended dynamic group layout design, which are both
NP-hard problems (Logendran et al. [34], Chen [35], Sahni
and Gonzales [36]). To formulate this problem, several
assumptions have been considered:
• To reconfigure the cells over each period of the planning
horizon, there is no need to modify buildings. Physical
barriers do not exist between cells.

• The formed cells have an equal area in a multi-row
layout of facilities concept. Also, the number of cells
to form and locations are given in advance. However,
the shape of the cells is not specified. It is flexible with
a maximum and a minimum limit.

• Each product demand is deterministic and known over
the planning horizon T .

• Each product follows all operations prescribed in the
route sheet of parts. An operation could be divided
between several machines. For each product, processing
times of each machine are known over the planning
horizon T .

• Eachmachine has a constant set up cost, which is consid-
ered over each period if the machine is used. Also, each
machine type has a known operation cost depending on
its functionality. In addition, machines have a replace-
ment cost that occurred by moving a machine from a cell
to another one. Replacement cost exactly matches both
installation and uninstallation costs which are equal.

• All machines could process more than one operation,
so they can be used for several purposes without having
extra-costs.

• No capacity constraint is assumed for the machine’s
productivity.

• Set up, and holding costs are fixed and known in
advance, and no inventory capacity is considered in the
model.

• We consider, in this model, a multiperiod finite planning
horizon, multi-products, and multitask machines.

B. NOTATIONS AND DECISION VARIABLES
1) SETS
P = {1, 2, . . . , P} part types index
K(p) = {1, 2, . . . , Kp} parts operations indices
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M = {1, 2, . . . ,M} Machines types index
C = {1, 2, . . . , C} Cells index
L = {1, 2, . . . , L} Locations index
T = {1, 2, . . . , T} Time periods index

2) MODEL PARAMETERS
ESp : Inter-cell material unitary handling cost per part

p per unit of distance
ASp : Intra-cell material unitary handling cost per part

p per unit of distance
θm : Replacement cost for a machine m
hp : Holding cost per part p.
Dpt : Demand for part type p in period t
BU : Upper possible cell size limit
BL : Lower possible cell size limit
tkpm : Processing time of operation k on machine m

per part p
dll′ : Distance between two locations l and l ′

βm : Variable cost of machine type m for each unit
time

akpm : 1 if operation k of part p can be processed on
machine type m, 0 otherwise.

3) DECISION VARIABLES
Xkpmlt : Number of parts of type p produced by

operation k on machine type m
located in location l in period t

∂pt : Binary variable indicating the occurrence
of the production of part type p in period t.

Ipt : Inventory level of parts of type p in period t.
Fmlct : 1 if one unit of machine type m is in location

l and assigned to cell c in period t, 0 otherwise
Zkpmlm′l′t : Number of parts of type p produced by

operation k on machine type m located in
location l and moved to the machine m′

located in location l′ in period t

C. MIP MODEL
The study aims to provide companies with a layout configu-
ration model that minimizes the handling and configuration
costs. Several studies in the literature propose models that
could be used by companies to reconfigure their layout. How-
ever, these models do not consider demand volatility and its
impact on reducing cost. In our study, the model proposed by
Kia et al. [6] is extended to integrate the lot-sizing decision
and inventory management policy according to the demand
changes. Our study aims to have a better understanding of
the inventory impact, and demand fluctuation on the layout
reconfiguration costs. The developed CMS model is now
formulated as non-linear mixed-integer programming:

Min
T∑
t=1

C∑
c=1

M∑
m=1

L∑
l

M∑
m′

L∑
l′ 6=l

P∑
p

Kp∑
kp

Fmlct

×Fm′l′ct × Zkpmlm′l′t × dll′ × ASp × ∂pt (1.1)

+

T∑
t=1

C∑
c=1

C∑
c′ 6=c

M∑
m

L∑
l

M∑
m′

L∑
l′ 6=l

P∑
p

Kp∑
kp

Fmlct × Fm′l′c′t

×Zkpmlm′l′t × dll′ × ESp × ∂pt (1.2)

+
1
2

C∑
c

L∑
l

M∑
m

θm × Fmlc,t=1 +
1
2

T∑
t=1

L∑
l

M∑
m

θm

× |

C∑
c

Fmlct −
C∑
c

Fmlc,t+1| (1.3)

+

T∑
t=1

P∑
p

Kp∑
kp

M∑
m

L∑
l

βm×tkpm×Xkpmlt × ∂pt (1.4)

+

T∑
t=1

P∑
p

hp × Ip,t (1.5)

S.t. Ip,t = Ip,t−1 + (
∑M

m=1

∑L

l
Xk=kp,pmlt )− Dpt

∀p ∈ P, ∀t ∈ T (2)∑M

m=1

∑L

l
Xk=1,pmlt ≤ M × ∂pt ∀p∈P, ∀t ∈ T

(3)

Xkpmlt ≤ M × akpm ∀k ∈ Kp,

∀p ∈ P, ∀m ∈ M , ∀l ∈ L, ∀t ∈ T (4)

Xkpmlt =
∑M

m′

∑L

l′
Zkpmlm′l′t

∀k ∈ Kp, ∀p ∈ P, ∀m ∈ M, ∀l ∈ L, ∀t ∈ T (5)

Xkpm′l′t =
∑M

m

∑′L

l
Zk−1pmlm′l′t

∀k ∈ Kp, ∀p ∈ P, ∀m′ ∈ M , ∀l ′ ∈ L, ∀t ∈ T (6)∑M

m

∑L

l
Fmlct ≥ BU ∀c ∈ C, ∀t ∈ T (7)∑M

m

∑L

l
Fmlct ≤ BL ∀c ∈ C, ∀t ∈ T (8)∑M

m

∑C

c
Fmlct = 1 ∀l ∈ L, ∀t ∈ T (9)

Fmlct , Smt ∈ {0, 1} ∀m ∈ M , ∀c∈C,

∀l ∈ L, ∀t ∈ T (10)

Xkpmlt ,Zkpmlm′l′t , Ip,t ≥ 0 and integer

∀k ∈ Kp, ∀p ∈ P, ∀m ∈ M , ∀l ∈ L, ∀t ∈ T (11)

The objective function (1) minimizes the sum of Inter
and Intra material handling cost, replacement, machines use,
set up, and holding costs over the planning horizon. Con-
straint (2) is the inventory flow conservation equation. Con-
straint (3) guarantee the cancellation of produced quantities
for periods without set up costs. Constraints (4) guarantee
the cancellation of produced quantities if the machine is not
used or if the machine could not process the parts. Con-
straints (5) and (6) are material flow conservation equations
between machines. Constraints (7) and (8) define the cell size
limit. Constraint (9) implies that each machine is in a location
l. Constraint (10) and (11) set the binary and non-negative
decision values.

162812 VOLUME 8, 2020



H. Khamlichi et al.: Hybrid GRASP Algorithm for an Integrated Production Planning and a GLD

D. MODEL LINEARIZATION
The proposed model is a nonlinear mixed-integer program-
ming (MIP) model. A linearization procedure is applied to
convert it into a linearized MIP. The aim is to linearize
equations (1.1), (1.2), and (1.3). Equations (1.1) and (1.2) are
quite similar. We adapt the linearization procedure proposed
by Kia et al. [6]. Thus, two decision variables Hkpmlm′l′ct and
Hkpmlm′l′cc′t are introduced as follows:

Fmlct × Fm′l′ct × Zkpmlm′l′t × ∂pt = Hkpmlm′l′ct (12)

Fmlct × Fm′l′c′t × Zkpmlm′l′t × ∂pt = Hkpmlm′l′cc′t (13)

The introduction of these two variables implies the addition
of the following two constraints (14 and 15) to the model:

Hkpmlm′l′ct = Zkpmlm′l′t −M (3− Fmlct − Fm′l′ct − ∂pt )

∀k ∈ Kp, ∀p ∈ P, ∀m,m′ ∈ M ,

∀c ∈ C, ∀l, l ′ ∈ L, ∀t ∈ T (14)

Hkpmlm′l′cc′t = Zkpmlm′l′t −M (3− Fm′l′c′t − Fm′l′ct − ∂pt )

∀k ∈ Kp, ∀p ∈ P, ∀m,m′ ∈ M ,

∀c, c′ ∈ C, ∀l, l ′ ∈ L, ∀t ∈ T (15)

Concerning the equation (1.3), we adopt the procedure
proposed by many studies in the literature like Ahkioon et al.
[13] and Kia et al. [6]. Two decision variables (NOmlt ,NOmlt )
are proposed to rewrite the absolute term as follows:

|

C∑
c

Fmlct −
C∑
c

Fmlc,t+1| = NOmlt + NOmlt (16)

The following constraint should be added to the model:

C∑
c

Fmlct −
C∑
c

Fmlc,t+1 = NOmlt − NOmlt

∀k ∈ Kp, ∀p ∈ P, ∀m ∈ M , ∀l ∈ L, ∀t ∈ T (17)

This updated model with the added linearized terms was
used to find solutions using the commercial software CPLEX.
Our results are given in section 5. The quality of the solu-
tions depends mainly on the size of the instances. For large
instances, a hybrid approach based on GRASP is proposed to
find near-optimal solutions.

IV. HYBRID GRASP ALGORITHM
To provide approximate resolution approaches to the prob-
lem, we adapt the Greedy Randomized Adaptative Search
Procedure (GRASP) for generating good quality solutions
in a moderate computational time. Moreover, a local search
procedure is provided based on the path relinking algorithm
to ensure the search intensification performance.

The GRASP was introduced first by Feo and Resende
(1989) [37] to solve a set covering problem. Then, many
adaptations of this metaheuristic were used to solve hard
optimization problems. The GRASP is based on two stages.
The first stage is the randomized solution construction to
ensure the search diversification effectiveness, and the second
stage is the local improvement phase that aims to intensify the

Algorithm 1 Pseudo-Code of the GRASP Metaheuristic
procedure GRASP(Max Iterations, starting solution)
1 Read Input();
2 for k = 1, . . . ,Max Iterations do
3 Solution← Greedy Randomized Construction

(starting solution);
4 if Solution is not feasible then
5 Solution← Repair(Solution);
6 endif;
7 Solution← Local Search based on path relinking

(Solution);
8 Update Solution (Solution,Best Solution);
9 end;
10 return Best Solution;
11 End GRASP.

search procedure and to reach local optima. For more surveys
on GRASP, readers are referred to Feo and Resende [38],
Pitsoulis and Resende [39], Zouadi et al. [9] and Resende
and Ribeiro [40]. Algorithm 1 presents the general scheme
of a GRASP with path relinking procedure.

A. SOLUTION ENCODING
Solution encoding is an essential feature for the effectiveness
of the proposed hybrid GRASP algorithm implementation.
The encoding architecture affects convergence and time exe-
cution of the algorithm and facilitates local improvement
strategy based on the path relinking procedure. In this article,
we propose an encoding based on a vector that consists of
three ingredients.

The first ingredient is the matrix [Lot− S]t , which repre-
sents the binary decision variables of the production occur-
rence of the part type p over a period t . While creating this
vector, the first period should be equal to one if the demand
is positive in order to have feasible solutions. Figure 1 cor-
responds to an example of this lot-sizing decision encoding.
The example shows that part type 1 will be manufactured in
period t; however, part type 2 will not be manufactured.

FIGURE 1. Binary lot-sizing decision Matrix in a period t.

The second element, called [M_L]t , is related to the assign-
ment of the required machines to the locations over a period
respecting the requirement of constraint 9. Figure 2 gives an
example of a matrix [M_L]t . We assume that the number
of machines is equal to the number of locations, thus, all
machines should be assigned to a location, which implies that
the sum of values of each line is equal to one.

The last ingredient is dedicated to a matrix [L_C]t repre-
senting the assignment of the location to cells over a time
period. Figure 3 illustrates an example of [L_C]t matrix.
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FIGURE 2. [M_L]t Matrix in a period t.

This generated matrix should respect constraints 7 and
8 defining the size of the cells.

FIGURE 3. [L_C ]t Matrix in a period t.

The solution encoding is thus composed of three elements
that constitute the solution presentation scheme in period t .
However, the general solution presentation over the planning
horizon is formulated and described in Figure 4, where the
three terms of the solution presentation over one period are
generated over the planning horizon.

FIGURE 4. General solution encoding.

B. RANDOMIZED CONSTRUCTION
The implementation of the proposed hybrid GRASP algo-
rithm relies on several restarts. At each restart, a randomly
generated solution is formed using the previous solution
scheme composed of three ingredients, then, it is used as
a starting solution (seed) to run the algorithm. The gener-
ation of the first starting solution follows the hierarchical
approach of the encoding. We start by randomly generating
the lot-sizing decision matrix [Lot− S], then the [M− L]t
matrix and finally the [L− C]t matrix.

The GRASP is based at each iteration on a randomly
generated solution, which is used as a starting solution for the
algorithm. Then, a randomization procedure is proposed to
randomize this solution. The randomized procedure consists
of randomizing the three vectors of the solution presentation[
[Lot− S]t , [M_L]t , [L_C]t

]
at each period sequentially.

Randomizing the vector [Lot− S]t consists of choosing peri-
ods with a positive manufacturing decision of parts type p
having ∂pt equal to 1. Then, we determine the next period s
with positive manufacturing decision of the part type p. The
randomization of the first solution consists of choosing a ran-
dom period to produce product p between t and t + s instead
of the period s. The procedure is applied in each period where
the part type p has a positive production decision which will
allow randomizing all periods with positive manufacturing
decision.

To randomize [M_L]t et [L_C]t , we sweep all the matrix
lines over each period. The randomization procedure con-
sists of exchanging the location of a set of machines with
other machines. The choice of the machine and the set of
machines to exchange between location is made randomly.
The same procedure is adapted to randomize the matrix
[L_C]t by considering the location as machines and cells as
locations.

Finally, at each iteration of the GRASP algorithm, gener-
ated randomized solution decisions are used to calculate the
fitness based on the proposed objective function of the pro-
posed mathematical model. This corresponds to integrate the
randomized solutions binary decisions in the mathematical
model as decision variables and to solve themodel by CPLEX
at each iteration. The solution returned by CPLEX defines
the optimal manufacturing quantities, dynamic machines,
location assignment, and dynamic cells formation over the
planning horizon according to the binary decision of the
solution resulting from the randomization phase.

Regarding the algorithm stopping criterion, once a given
number of iterations without improvement is performed com-
pared to the best-found solution, the algorithm stops the ran-
domization phase and generates randomly a new restart. The
number of restarts and non-improvement iterations related
to the randomization phase are the main two parameters
impacting the convergence of the hybrid GRASP algorithm.
These parameters are tuned based on a statistical design of
experiments procedure to ensure the quality of the generated
solutions. More details about the tuning procedure are given
in the next section.

C. LOCAL SEARCH WITH PATH RELINKING
The proposed GRASP is enhanced with a path-relinking
procedure, which is a local search aiming to intensify the
research and making significant improvements in terms of
solution quality. It was first introduced by Glover [41], [42]
to explore connections with the best solutions found by tabu
search or scatter search. Many applications could be found
on integrating the GRASP with Path relinking and on stating
its relevance on the GRASP in term of solution quality and
computational time (Zouadi et al. [9]). An example of this
technique’s mechanism is shown in Figure 5.

In this implementation, the proposed Path relinking proce-
dure explores the trajectory that links the best solution found
and the randomized solution obtained at each iteration of
the GRASP procedure. The relinking procedure consists of
finding a set of solutions over each movement, eying to form
the path between elite solutions that could enhance the search
significantly. In this study, the relinking procedure consists of
linking the best solution found with the obtained randomized
solution. In each move, the link of the two solutions generates
new solutions in the path which are tested using the objective
function of the mathematical model. If a new solution is
better than the randomized one, the new solution replaces the
randomized one. The procedure is turned on until a stopping
criterion.
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FIGURE 5. Path relinking moves.

The relinking moves follow the hierarchical architecture of
the solution presentation composed of three vectors. At each
iteration, a set of movements is performed to convert the
randomized solution to be as the best solution found. At each
move, we obtain a new solution that is tested using the
objective function of the model. If the solution is better
than the best solution found, the new founded solution
replaces the best solution until a stopping criterion. The
movements on the obtained solution are performed firstly on
the vector [Lot− S]t , then the vector [M_L]t , and finally the
vector [L_C]t .
The stopping criterion used in the path relinking procedure

implementation is based on the non-improvement iterations
compared to the best solution found. The best value adopted
in this implementation was tuned and determined through
a statistical design of experiments procedure described in
section V.

V. NUMERICAL EXPERIMENTS
We summarize in this section the numerical experiments per-
formed on the proposed model and the developed algorithm.
The obtained results from the resolution approaches will be
compared following three different instances classifications:

According to the number of periods of the planning horizon
According to the type of demand
Integration value of the lot-sizing and group layout design

in DCMS
Many tests have been realized to tune the GRASP parame-

ters based on a statistical design of experiments procedure.
The number of restarts is the first parameter to tune, then
the number of iterations without improvement related to
the randomization phase and finally the non-improvement
number of iteration of the path relinking local search. These
parameters are listed in Table 1.

After a large number of runs, differents values of these
parameters were considered and tested. Then, The best
values of these three pameters were selected (λ; κ;9) =
(300; 25; 15). The number of restarts (λ) that offers the best

TABLE 1. Parameters of the Hybrid GRASP.

tradeoff between computational time and solution quality is
set at 300 for each restart. For the parameter related to the
number of iterations without improvement, it is fixed at 25 for
the randomized phase of the hybrid GRASP algorithm (κ),
and 15 for the path reliniking procedure (9).
To show the performance and the features of the proposed

model and the proposed approach, we use randomly gener-
ated instances based on the literature. Further details regard-
ing the examples used to generate these random instances are
provided in Kia et al. [6] and Zouadi et al. [9]. The instances
are generated using different values based on literature exam-
ples (see Table 2). The total number of the generated instances
is up to 1920. The tests are performed by Cplex Version
12.9 with an Intel core i7, 2.4 GHZ, and 8-GB RAM.

TABLE 2. Parameters used to generate the instances.

A. GROUPED ACCORDING TO THE NUMBER OF PERIODS
OF THE PLANNING HORIZON
In the following, we provide a performance analysis of
the proposed hybrid GRASP with path relinking compared
to Cplex. However, when Cplex could not prove optimal-
ity, we compare with the best-found solution. The tested
instances have a planning horizon up to 20 periods to ana-
lyze the performance of the proposed approach on large
instances.The gap used to assess the deviation of the proposed
hybrid GRASP comparing to Cplex is calculated using equa-
tion (18).

Gap =
CPLEX− Hybid GRASP

Cplex
(18)

For table 3, the first column represents the number of peri-
ods in the planning horizon. Columns 2, and 3 respectively
show the average solution obtained by Cplex, and the aver-
age computational time. The last three columns respectively
give the average solution of the hybrid GRASP, its average
computational time and the gap between Cplex and the hybrid
GRASP.
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TABLE 3. Hybrid GRASP with path relinking results.

Results show that when we increase the planning hori-
zon, the complexity of the problem becomes higher, and the
results of the hybrid GRASP are−1,31% of average over the
1920 tested instances. Table 4 shows the gap matrix between
Cplex and the hybrid GRASP following the planning horizon
and the number of parts type.

TABLE 4. Gap between hybrid GRASP and Cplex following Planning
horizon and part type number.

According to Table 4, the gap becomes more important
when the number of periods in the planning horizon or the
part type number increase. However, for small instances,
the hybrid GRASP solutions reach optimality in a reasonable
computational time.

B. GROUPED ACCORDING TO THE TYPE OF DEMAND
We now group the results according to the type of
demand. We propose five types of demands shapes follow-
ing Teunter et al. [43] (Stationary, Positive trend, Negative
trend, Seasonal with a peak and valley in the middle). Each
type of demand, is composed of 384 instances. The aim is
to assess the problem performance under several demand
functions.

In table 5, the first column shows the used type of demand.
The second column gives the Cplex average solution of the
instances with similar demand type, while the last column
presents the average solution of the hybrid GRASP.

TABLE 5. Gap between hybrid GRASP and Cplex following the type of
demand.

This analysis shows that the gap provided by the hybrid
GRASP in comparison with the Cplex is lower when the
demand is stationary, with positive and negative trend. In the
meanwhile, the gap gets higher when we test on the two
seasonal types of demands (Peak and valley in the middle).

C. INTEGRATION VALUE OF THE LOT-SIZING AND GROUP
LAYOUT DESIGN IN DCMS
In the following, we show the impact of the lot-sizing inte-
gration with group layout design in DCMS and how it influ-
ences the nature of the problem. Therefore, we firstly test a
sequential version of the problem on all the instances. This
sequential version starts by solving the lot-sizing problem and
uses its outputs as inputs to solve the group layout problem.
After testing the sequential version, we test the integrated
problem of group layout design and lot-sizing.

As explained before, the reconfiguration of cells (GLD) is
induced by the fluctuations in demands in DCMS. The aim
is to assess the integration value of GLD and lot-sizing, and
how it will lead to minimize the managing costs in DCMS.

The graph presented in Figure 6 gives the number of peri-
ods according to the objective function of the model. The
graph shows that on the instances with a longer planning
horizon, the gap between sequential and integrated resolution
becomes more important, which is explained by the economy
of scale performed by the integrated model. The integration
of the problems gives an average of (6,34%) over the 1920
instances, which represents essential savings and benefits for
companies using DCMS. The coordination between planning
and cells configuration allows us to have a beneficial policy
that will contribute to minimize set up, configuration, and
inventory costs.

FIGURE 6. Value of integration.

VI. CONCLUSIONS AND PERSPECTIVES
In this study, we developed an integrated model that pro-
vides a better understanding of the impact of the inventory
decisions on a group layout problem in a DCMS. Our con-
tribution consists of emphasizing the extent to which pro-
duction planning impacts the group layout problem decisions
in DCMS. Besides, the paper proposes a new mathematical
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model and an extended hybridGRASP to solve the problem in
a reasonable computational time. Results state the relevance
of our approach in terms of solution quality and execution
time and show that the value of integration reaches 6,34%.
These findings constitute a basic assumptions for further
research that could integrate carbon emission impact or would
consider multi-objective functions while solving the group
layout problem in DCMS.
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