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ABSTRACT Return orbit design and characteristic analysis are very important issues in manned lunar
missions. In this paper, a three-impulse return orbit scheme is studied. First, a convenient method based on the
conical surface of the hyperbolic excess velocity is proposed, which can effectively perform an approximate
analysis of the velocity increment characteristic. Second, a serial orbit design strategy is presented to
determine the entire return orbit from the lunar parking orbit to the intended landing site. In the initial design,
a three-segment orbit patched method based on the pseudo-perilune parameters is applied. Backward and
forward calculations are conducted in the hybrid orbit model and the patched-conic model respectively, with
the perilune of the lunar escape orbit as the dividing point. In the accurate design, a two-segment orbit
patched method is employed in the high-fidelity model. Finally, numerical simulations are used to verify the
effectiveness and feasibility of the orbit design strategy. According to many simulation results achieved by
this strategy, the characteristics of fixed-point return window and velocity increment are further analyzed.

INDEX TERMS Manned lunar mission, return orbit, conical surface of the hyperbolic excess velocity,
pseudo-perilune parameters, orbit characteristic analysis.

I. INTRODUCTION
Many countries are focusing on manned deep space
exploration, and the moon is regarded as the next goal [1].
The White House has recently demanded that the National
Aeronautics and Space Administration (NASA) send people
back to the lunar surface by 2024 [2]. Russia is expected to
complete its first manned lunar landing in 2031 and begin
the establishment of the first lunar base [3]. The European
Space Agency (ESA) has repeatedly proposed the idea of
building a ‘‘lunar village’’ [4]. The Japanese government has
clearly stated that Japan has joined the American ‘‘Gateway’’
project [5]. With the success of the ‘‘Chang’E-4’’ mis-
sion [6], [7], increasingly people are also looking forward to
realizing a Chinese manned lunar landing as soon as possi-
ble [8]. The lunar landing areas of the early American Apollo
missions were mainly concentrated near the lunar equator.
Due to the special environment of the lunar polar region and
the discovery of water ice [9], [10], the lunar polar region
has irreplaceable value for scientific exploration and applica-
tion development. Therefore, humans are paying increasing
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attention to the lunar high-latitude region and taking it as a
hot spot [11], [12], even considering the establishment of a
lunar base in the lunar polar region in the future. Manned
lunar missions are large systematic projects, of which the
orbit scheme is an important component. The design and
characteristic analysis of the orbit are of great significance to
the mission. As one of the requirements of the manned lunar
landing, the spacecraft must have the capability to safely
return to the intended landing site from any lunar parking
orbit at any time in case the mission fails and must be aborted.

Many scholars have conducted research on the design
and analysis of the lunar return orbit scheme. Wooster pro-
posed three orbit schemes of moon-to-Earth transfer and
compared the relationship between the velocity increment
required by different orbit schemes and the angle of orbit
plane change [13]. Jones and Ocampo used nonlinear pro-
gramming algorithms to optimize impulsive escape orbits
from a circumlunar orbit to a given hyperbolic excess veloc-
ity vector and compared single-impulse and three-impulse
maneuver schemes [14]. Wang et al. introduced an opti-
mization design procedure for a two-impulse maneuver
scheme based on a single-impulse maneuver scheme and
discussed different schemes [15]. Ocampo and Saudemont
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developed an analytical procedure to generate an initial fea-
sible solution of the multi-maneuver moon-to-Earth orbit
based on the two-body model by adopting the differential
correction algorithm [16]. Li et al. derived an analytical
design method for determining the moon-to-Earth orbit of
a single-impulse maneuver to support the lunar exploration
requirement of anytime return [17]. Edelbaum presented an
approximate analytical model to achieve minimum impulse
transfer between a given circumlunar orbit and a given hyper-
bolic velocity vector by fixing the transfer time between
the first and last impulses [18]. Zheng and Zhou provided
a search strategy of the return window for moon-to-Earth
orbits [19]. Gavrikova andGolubey applied the Lambert algo-
rithm to solve the problem of three-impulse return orbit from
the lunar parking orbit in the three-body problem model [20].
Park et al. investigated the fuel-optimal moon-to-Earth orbit
design in the restricted four-body problem. A nonlinear con-
strained fuel-optimal control problem was formulated and
solved by using the Legendre pseudospectral method [21].
Liu et al. studied a three-impulse orbit control strategy based
on the elliptical four-body model, which could effectively
guarantee the re-entry point accuracy of the low energy return
orbit, but was unsuitable for the manned return missions [22].
Shen et al. adopted the multi-start algorithm to optimize the
single-impulse return orbit and analyzed the orbit characteris-
tics such as the selenocentric orbit parameters, the geocentric
orbit parameters and the velocity increment [23]. He et al.
established a mathematical model for finding the landing
window and designing the return orbit for the manned lunar
missions, and investigated the coupling mechanism from
the spatial geometric relationship [24]. Some scholars have
also performed studies on the return orbit for lunar polar
exploration missions. Some orbit schemes for a lunar South
Pole Aitken basin sample return mission have been pro-
posed [25], [26]. Feng and Zhang outlined a return window
search strategy departing from the lunar polar orbit consider-
ing various constraints and an improved multi-conic method
was devoted to the generation of initial return orbits [27].

It can be concluded that the previous studies have the
following limitations: First, the analytical models proposed
by some scholars can provide good initial values for
high-fidelity optimization, but as preliminary analysis tools
for orbit characteristics, they appear that the derivation pro-
cesses are complex. Second, many scholars adopted the tradi-
tional patched-conic method to design the initial fixed-point
return orbit, which takes the orbit parameters of the outbound
point of the lunar sphere of influence as the design vari-
ables and computes the geocentric return orbit parameters by
iteration. This case tends to result in more errors.

The objective of our research is to overcome the above
shortcomings. The main contributions of this paper are sum-
marized as follows. We propose the conical surface of the
hyperbolic excess velocity and establish a convenient model
as a preliminary analysis tool for the velocity increment
characteristic analysis of three-impulse return orbit. We also
present a serial design strategy to determine and optimize

the entire three-impulse return orbit considering the con-
straint of the landing point location. The method proposed
in the initial design takes the departure parameters as the
design variables and performs forward calculation in the lunar
escape segment without iteration. In addition, we analyze
the fixed-point return window characteristic and velocity
increment characteristic by this design strategy.

This paper is structured in six sections, including this
introductory section. The second section begins by presenting
a return orbit scheme of the three-impulse maneuver. In the
third section, a model is established to preliminarily ana-
lyze the velocity increment characteristic. The fourth section
describes a serial solution strategy applied to design the
entire return orbit. In the initial design, a three-segment
orbit patched method based on the pseudo-perilune param-
eters is used. In the accurate design, the two-segment orbit
patched method is constructed in the high-fidelity model. The
fifth section is devoted to extensive numerical simulations,
in which the validity and feasibility of the orbit design strat-
egy are examined. Further detailed analysis of orbit character-
istics is demonstrated based on a large amount of simulation
results by this strategy. This paper ends with the sixth section
which briefly summarizes the conclusions and implications
on this topic.

II. RETURN ORBIT SCHEME OF THREE-IMPULSE
MANEUVER
When manned lunar missions are intended for lunar
high-latitude regions, the characteristic of the lunar parking
orbit is significant. In this case, the return orbit starting
from the lunar parking orbit has a higher requirement for
the spacecraft’s return capability. Since it is difficult to
adopt the conventional return orbit scheme of the tangential
single-impulse maneuver, performing an out-of-plane orbit
change is necessary [28]. Methods for out-of-plane orbit
change generally include the single-impulse maneuver and
the three-impulse maneuver [29]. When the angle of the
orbit plane to be adjusted is large, the velocity increment
required for the single-impulse maneuver is excessive [30],
which is difficult to achieve in engineering practice. However,
the three-impulse maneuver can effectively reduce the veloc-
ity increment for adjusting the orbit plane, especially when
the angle of the orbit plane adjustment is large. It can be
known that the three-impulse maneuver method is more
suitable for the design of the return orbit scheme for lunar
high-latitude region missions.

According to the above analysis, this paper proposes a
return orbit scheme of a three-impulsemaneuver. The specific
process is described as follows: as shown in Fig. 1, first,
the spacecraft enters the first large elliptical transition orbit
(ETO1) by applying the first impulse in the tangential direc-
tion of point A of the lunar polar orbit (LPO). The second
impulse is applied at point B of ETO1 to adjust the orbit plane
into the second large elliptical transition orbit (ETO2). The
position of point B is determined by the intersection of the
LPO plane and the ETO2 plane, and the point of intersection
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FIGURE 1. Return orbit scheme of three-impulse maneuver.

that is closer to the apolune of ETO2 is selected. Finally,
the spacecraft enters the lunar escape orbit (LEO) by applying
the third impulse in the tangential direction of point C, which
is the perilune of ETO2.

III. METHOD FOR THE PRELIMINARY ANALYSIS OF
VELOCITY INCREMENT CHARACTERISTIC
For the return orbit scheme of the three-impulse maneuver,
this section presents a convenient method for the preliminary
analysis of the velocity increment characteristic, regardless of
the Earth’s terminal constraints. Based on the conical surface
of the hyperbolic excess velocity, this method can effectively
perform an approximate analysis of the velocity increment
required during the three-impulse maneuver by intuitively
and succinctly utilizing the angular relationship of the related
vectors in space.

A. CONICAL SURFACE OF THE HYPERBOLIC EXCESS
VELOCITY
In the sphere of the influence model, the spacecraft’s orbit in
the lunar sphere of influence is a hyperbolic orbit. The veloc-
ity of the spacecraft at the boundary of the lunar sphere of
influence can be regarded as the velocity in infinity, which is
the excess velocity of the hyperbolic orbit. It can be expressed
by the velocity and the distance from the centre of the moon
of the spacecraft at the perilune of the hyperbolic orbit:

v∞ =

√
v2p −

2µm

rp
(1)

where µm is the gravitational parameters of the moon, rp is
the distance of the perilune of the hyperbolic orbit from the
centre of the moon, and vp is the perilune velocity.
The magnitude of the velocity at the injection point of the

lunar sphere of influence v∞in is the same as the magnitude
of the velocity at the outbound point of the lunar sphere of
influence v∞out, and they can be considered as being along
the direction of the asymptote. When v∞in and rp are given,
the distribution of all possible v∞out forms a conical surface

FIGURE 2. Conical surface of the hyperbolic excess velocity.

whose axis direction is along v∞in. As shown in Fig. 2,
the conical surface is defined as the conical surface of the
hyperbolic excess velocity. The half-cone angle of the cone
is (π − 2δ), where δ = arccos 1

e , and e is the eccentricity
of the hyperbolic orbit. The end points of all v∞out vectors
constitute a circle with a radius of v∞ sin (2δ).

B. VELOCITY INCREMENT CALCULATION
The moon is the central celestial body. The normal unit
vectors of the LPO plane and the LEO plane are denoted by
h1 and h2, respectively. The position vectors at which the
first impulse, the second impulse and the third impulse are
applied are denoted by rA, rB and rC, respectively. The angu-
lar relationship of the related vectors in space is given below.
As shown in Fig. 3, when the target hyperbolic excess velocity
vector v∞out is specified, the distribution of all possible rC
vectors forms a conical surface whose axis direction is along
v∞out. The half-cone angle of the cone is denoted by η. Taking
the plane determined by v∞out and h1 as the reference plane,
the rotation angle of rC around v∞out is denoted by σ . When
σ is determined, rC can be determined accordingly and the
LEO plane can be determined by v∞out and rC. In addition,
when rC is given, the distribution of all possible rB vectors
forms a conical surface with rC along the axials direction,
and the half-cone angle of the cone is denoted by α. The angle
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FIGURE 3. Illustration of the spatial geometric relationship.

between h1 and v∞out is denoted by β. The angle between the
orbit planes of the LPO and the LEO is denoted by ξ , which
is also the angle between h1 and h2.
According to the spatial geometric relationship, the

following angular relationships can be obtained:

sin(
π

2
− ξ ) = sinβ sin σ (2)

cos(
π

2
− ξ ) cos(

π

2
− η − α) = cosβ (3)

The calculation of the velocity increment during the
three-impulse maneuver is performed below. The orbit period
of ETO1 is denoted by Ttra, and the semi-major axis of
ETO1 is expressed as

atra = (
µm

4π2 T
2
tra)

1
3 (4)

The velocity increment of the first maneuver can be
computed by

1v1 =

√
µm(

2
rA
−

1
atra

)−
√
µm

rA
(5)

The semi-major axis of LEO is

aLEO =
µm

v2∞out
(6)

In the preliminary analysis, assuming that the second
impulse is used only to change the out-of-plane difference
without adjusting the size of the transition orbit, the semi-
major axis of ETO1 remains unchanged. The velocity
increment of the third maneuver can be calculated by

1v3 =

√
µm(

2
rC
+

1
aLEO

)−

√
µm(

2
rC
−

1
atra

) (7)

The eccentricity of LEO eLEO and the half-cone angle of
cone η are given by

eLEO =
rC
aLEO

+ 1 (8)

η = arccos
1

eLEO
(9)

FIGURE 4. Total velocity increment versus plane difference ξ and
half-cone angle α.

The velocity increment of the second maneuver can be
obtained by the equation of the out-of-plane maneuver:

1v2 = 2vτ2 sin
ξ

2
(10)

where vτ2 is the lateral velocity at rB before the second
impulse is applied, which can be expressed as

vτ2 =
µm

htra
(1+ etra cos fB) =

µm

htra
(1− etra cosα) (11)

where htra is the angular momentum of ETO1, etra is the
eccentricity of ETO1, and fB is the true anomaly at the point
of ETO1 where the second impulse is applied.

When v∞out is specified, β and η are determined
accordingly. α and ξ can be expressed in terms of σ by
combining (2) and (3). Hence, 1v2 can be expressed as a
function with respect to σ .

The total velocity increment is expressed as

1v = 1v1 +1v2 +1v3 (12)

C. EXAMPLES AND ANALYSIS
In this subsection, based on the above method, the velocity
increment characteristic of the return orbit scheme of the
three-impulse maneuver is analyzed with examples. The
parameters of the example are set as follows by referring
to the previous study [28]: the radius of LPO is 1938 km,
the orbit period of ETO1 is 24 h, the magnitude of v∞out is
1000 m/s, and β is 45◦. Fig. 4 shows that 1v is a function
of ξ and α. It can be seen that 1v is greatly affected by ξ
and α. The larger ξ is, the greater 1v is. The larger α is,
the greater1v is. Fig. 5 presents the variation of1v versus σ .
As indicated in the figure, 1v appears to decrease first and
then increase with increasing σ . When σ is 51.7◦,1v reaches
a minimum of 1119.91 m/s, while 1v reaches a maximum
of 1271.30 m/s when σ is 90◦.
The corresponding 1v is optimally calculated with

different orbit periods of ETO Ttra and with the other
parameters unchanged. The effect of Ttra on the total
velocity increment is analyzed. The variation of 1v for
the range in Ttra from 12 h to 48 h is shown in Fig. 6.
A noticeable characteristic of the curve is that 1v decreases
with increasing Ttra, but the extent of the change is not
large, and the maximum and minimum values differ by
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FIGURE 5. Total velocity increment versus rotation angle σ .

FIGURE 6. Total velocity increment versus orbit period of ETO.

FIGURE 7. Total velocity increment versus angle β.

approximately 220 m/s. This characteristic is consistent with
the conclusion obtained in [28].

The corresponding 1v is optimally calculated with
different β and other parameters hold constant. As illustrated
in Fig. 7, it is observed that as β gradually increases, 1v is
gradually reduced, with a maximum of about 1600 m/s and
a minimum of less than 900 m/s. This characteristic can be
explained by the spatial geometric relationships of orbits. For
example, when β is 90◦, the plane of LPO coincides with the
plane of LEO, which means that there is no need to adjust the
orbit plane, so 1v is at its minimum.
The corresponding velocity increment is calculated with

different magnitudes of v∞out and other parameters held con-
stant. As indicated by Fig. 8, with increasing themagnitude of
v∞out, 1v1 is unchanged, 1v2 decreases, and 1v3 increases.

FIGURE 8. Velocity increment versus hyperbolic excess velocity.

In addition, 1v is plotted as a function of the magnitude
of v∞out, which differs from the characteristics illustrated
in Fig. 6 and Fig. 7. It is clear that1v increases with increas-
ing magnitude of v∞out. Thus, it is clear that the magnitude
of v∞out mainly influences 1v3.

Some conclusions about the velocity increment characteristic
can be drawn from the preliminary analysis. The total velocity
increment of the return orbit scheme has a maximum of
approximately 1600 m/s and a minimum of less than 900 m/s.
Since the engineering specifications require the velocity
increment of the return process to be reduced as much as
possible, a smaller v∞out can be selected to be targeted and the
ETO with a longer period can be selected for the maneuver.

IV. ORBIT DESIGN STRATEGY
For the return orbit scheme of the three-impulse maneuver,
this section proposes a serial solution strategy from the initial
design to the accurate design to determine the entire return
orbit, considering Earth’s terminal constraints.

A. CONSTRAINT CONDITIONS
Compared with unmanned lunar missions, manned missions
are more demanding in terms of the orbit design. Thus,
the return orbit design for manned lunar missions shouldmeet
many complex constraints, including engineering and orbital
constraints. The main engineering constraint is the flight time
constraint. The flight time is restricted to ensure the safety of
the astronauts in manned missions, so the orbit design must
meet the following condition

T ≤ Tmax (13)

where Tmax is the maximum flight time allowed for returning
to Earth.

Orbital constraints mainly include the lunar parking orbit
constraints, Earth’s terminal constraints and the fixed-point
return window constraint. The lunar parking orbit constraints
comprise the orbit height, the right ascension of the ascending
node and the orbit inclination:

hA = hLPO
�A = �LPO

iA = iLPO

(14)
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FIGURE 9. Feature point location of the terminal orbit.

where hLPO, �LPO, and iLPO are the orbit height, the right
ascension of the ascending node and the orbit inclination of
the lunar polar orbit, respectively. iLPO is equal to 90◦.

To enable the spacecraft to return to the designated landing
site, Earth’s terminal constraints are primarily used to meet
the requirements for the re-entry corridor and the location of
the landing point: 

hep = hvcp
iE = ise
λf = λrp

φf = φrp

(15)

where hvcp is the altitude of the vacuum perigee which can
be equivalent to the re-entry angle and the radius of the re-
entry point [23]; ise is the geocentric return orbit inclination;
and λrp and φrp are the longitude and latitude of the re-entry
point, respectively.

The longitude and latitude of the re-entry point can be
obtained from the longitude and latitude of the landing point
by the laws of spherical trigonometry. The positional rela-
tionship between the re-entry point and the landing point is
shown in Fig. 9. The right ascension λ′L and the declination
φ′L of the landing point can be computed by the given lon-
gitude and latitude of the landing point and the return time.
The angle between the ascending node and re-entry point is
expressed as

ψNR = arcsin(
sinφ′L
sin ise

)− ψRL (16)

where ψRL is the range angle in the re-entry orbit phase.
The difference in the right ascension between the

ascending node and the landing point is expressed as

ψNL = arctan(cos ise · tan(arcsin(
sinφ′L
sin ise

))) (17)

The right ascension λ′rp and the declination φ′rp of the
re-entry point can be computed as

λ′rp = λ
′

L − ψNL + arctan(tanψNR cos ise) (18)

φ′rp = arcsin( sinψNR sin ise) (19)

Hence, the longitude and latitude of the re-entry point can
be obtained.

The fixed-point return window constraint refers to the
declination of the moon’s inverse vertical point −φ′m satisfy-
ing the condition of the fixed-point return at the return time:

φ′vcp < −φ
′
m < φ′L (20)

where φ′vcp is the declination of the vacuum perigee which
can be obtained by laws of spherical trigonometry:

φ′vcp = arcsin(sin(ψNR + ψRV) sin ise) (21)

where ψRV is the angle between the re-entry point and the
vacuum perigee, which can be calculated by the following
nonlinear equation:

tan γ =
−ese sinψRV

1+ ese cosψRV
(22)

where γ is the re-entry angle and ese is the eccentricity of the
geocentric return orbit.

B. INITIAL DESIGN
In the initial design, a three-segment orbit patched method
based on the pseudo-perilune parameters is proposed, which
can improve the overall efficiency of the orbit design by
decoupling the three-impulse maneuver and the lunar escape.
The entire return process is divided into three segments,
which are shown in Fig. 1: the three-impulse maneuver seg-
ment from departure point A to the perilune C of LEO,
the selenocentric escape segment from point C to outbound
point D of the lunar sphere of influence, and the geocen-
tric return segment from point D to re-entry point E. Four
orbit elements at point C are selected as design variables:
the pseudo selenocentric longitude λprl, the pseudo seleno-
centric latitude ϕprl, the velocity azimuth angle iprl and the
selenocentric orbit eccentricity eprl [31]. When the perilune
time tprl and the orbit height hprl at point C are specified,
the whole return orbit can be determined immediately by a
set of pseudo-perilune parameters (λprl, ϕprl, iprl, eprl). The
first segment is generated in a backward hybrid orbit model,
while the forward patched-conicmodel is adopted to calculate
the second and third segments.

1) BACKWARD HYBRID ORBIT MODEL
The duration of three-impulse maneuver segment is long,
and it is difficult for the high-fidelity solution to converge
quickly by employing the two-body model for the initial
calculation. Thus, a backward hybrid orbit model that com-
bines the two-body model with the high-fidelity orbit extrap-
olation model is introduced to improve the accuracy of the
initial calculation and convergence speed of the accurate
calculation.

The orbit period of ETO2 after the second impulse is
applied is denoted by Ttra2, and then the semi-major axis atra2
and the eccentricity etra2 of ETO2 are expressed as

atra2 =
( µm

4π2 T
2
tra2

) 1
3

(23)

etra2 = 1−
rC
atra2

(24)

VOLUME 8, 2020 154261



L. Lu, H. Li: Three-Impulse Return Orbit Design and Characteristic Analysis for Manned Lunar Missions

The third impulse vector is

1v3 =
h2 × rC
|h2 × rC|

√
µm

rC

(√
1+ eprl −

√
2−

rC
atra2

)
(25)

Since the orbit planes are always changing under the influ-
ence of perturbation during the transfer between different
planes, the intersection of LPO and ETO2must be determined
by interpolation. The orbit states of ETO2 and LPO at the time
when the third impulse is applied are backward extrapolated
for a period in the high-fidelity model, and the position and
velocity vector of LPO and ETO2 at each moment can be
obtained. The angle between the normal vector of the LPO
plane and the position vector of ETO2 at each moment is

θ (t) = arccos(h1(t)
rtra2(t)
|rtra2(t)|

) (26)

According to the change in the positive and negative values
of the angle, the stopping condition of the extrapolation is
determined, and the specific position of the intersection is
further determined by interpolation. If the true anomaly fB of
the intersection on ETO2 is less than 90

◦

, which indicates that
the intersection is near the perilune of ETO2, it is necessary
to continue the extrapolation until the intersection is near the
apolune of ETO2. Hence, the orbit elements of ETO2 and
LPO at the intersection can be obtained, and then the posi-
tion vector rB and the velocity vector vBtra2 of point B on
ETO2 can be calculated.

The second impulse includes the component that changes
the out-of-plane difference 1v21 and the component that
changes the orbit in plane 1v22. The flight path angle κ and
out-of-plane difference ξ are computed by

κ = arctan
(

etra2 sin fB
1+ etra2 cos fB

)
(27)

ξ =


arccos (cos(�tra2 −�A) sin itra2 sin iA

+ cos itra2 cos iA) , utra2 ≥ 0
− arccos (cos(�tra2 −�A) sin itra2 sin iA

+ cos itra2 cos iA) , utra2 < 0

(28)

where �tra2 and itra2 are the right ascension of the ascending
node and the orbit inclination of ETO2, respectively, and utra2
is the argument of point B on ETO2.

Thus, in the selenocentric local vertical local horizon coor-
dinate system of ETO2, 1v21 and 1v22 are respectively
expressed as

1v21 =

 0
(1− cos ξ ) cos κ

sin ξ cos κ

 vBtra2 (29)

1v22 =


vBtra2 sin κ

vBtra2 cos κ cos ξ −

√
2µmrA

rB(rB + rA)
cos ξ

−vBtra2 cos κ sin ξ +

√
2µmrA

rB(rB + rA)
sin ξ

 (30)

Hence, the second impulse vector is expressed as

1v2 = 1v21 +1v22 (31)

The velocity vector of point B on ETO1 can be calculated
by rB, vBtra2 and 1v2, and then the orbit elements can be
obtained. In the ideal case, point B is the apolune of ETO1,
and then the first impulse vector is

1v1 =
h1 × rB
|h1 × rB|

√
µm

(√
2rB

rA(rB + rA)
−

√
1
rA

)
(32)

2) FORWARD PATCHED-CONIC MODEL
The second and third segments are calculated by the
patched-conic method. The semi-major axis of the
selenocentric escape orbit is given by

aprl =
hprl + rm
eprl − 1

(33)

where rm is the radius of themoon. The selenocentric perilune
velocity can be expressed as

vprl =

√
µm

1+ eprl
hprl + rm

(34)

Given iprl, the perilune position vector and velocity vector
in the perilune coordinate system are expressed as

rprl =
(
hprl + rm, 0, 0

)T (35)

vprl =
(
0, vprl cos iprl, vprl sin iprl

)T (36)

Given λprl and ϕprl, the perilune position vector and
velocity vector in the selenocentric local vertical local
horizon coordinate system are expressed as

rLVLHprl = M3(−λprl)M2(ϕprl)rprl (37)

vLVLHprl = M3(−λprl)M2(ϕprl)vprl (38)

where M3(−λprl) and M2(ϕprl) are the transition matrixes
indicating rotating about the Z axis and Y axis through angles
of −λprl and ϕprl.

The perilune position vector and velocity vector in the
selenocentric inertial coordinate system are obtained by

rMJ2
prl = M3(−�m)M1(−im)M3(−um)rLVLHprl (39)

vMJ2
prl = M3(−�m)M1(−im)M3(−um)vLVLHprl (40)

where�m, im and um are the right ascension of the ascending
node, the orbit inclination and the argument of the moon,
respectively. The lunar orbit elements can be calculated by
the Jet Propulsion Laboratory (JPL) ephemeris.

The transfer time of the second segment is calculated by

T2 =

√
a3prl
µm

(
eprl sinhH − H

)
(41)

whereH is the hyperbolic anomaly that can be obtained from
the true anomaly fLSO at point D:

tan
H
2
=

√
eprl − 1
eprl + 1

tan
fLSO
2

(42)

Hence, the position vector and the velocity vector at
point D in the selenocentric inertial coordinate system can
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be obtained. The state vectors of point D in the geocentric
inertial coordinate system can be acquired from the state
vectors of the moon calculated by the JPL ephemeris, and the
orbit elements can be transferred accordingly. The transfer
time of the third segment is then expressed as

T3 =

√
a3DE
µe

(E − sinhE) (43)

where µe is the gravitational parameters of Earth, aDE is
the semi-major axis of the geocentric return orbit, and E is
the eccentric anomaly which can be calculated by the true
anomaly fRE of point E:

E = 2 arctan

(√
1− ese
1+ ese

tan
fRE
2

)
(44)

fRE is defined as

fRE

=

2π−arccos
(

1
ese

(
rvcp
rE

(1+ ese)− 1
))

, rvcp ≤ rE

2π, rvcp > rE
(45)

where rvcp and rE are the radii of the vacuum perigee and
the re-entry point, respectively. The position vector and the
velocity vector of the re-entry point can then be acquired. The
longitude and latitude of the re-entry point can be obtained
from the orbit elements of the re-entry point. The departure
time is adjusted to satisfy the constraint of the longitude of the
re-entry point. Then, the range angle is adjusted to satisfy the
constraint of the latitude of the re-entry point. By this method,
the location of the landing site with a higher accuracy can be
obtained.

In the initial calculation, the sequential quadratic
programming sparse nonlinear optimizer (SQP_SNOPT)
algorithm is adopted to generate the initial orbit. To improve
the convergence speed, the equality constraints are set to the
objective function [32]:

JI =
∣∣i′ − ise∣∣+ψ ∣∣h′ − hvcp∣∣+ ∣∣λ′ − λrp∣∣+∣∣φ′ − φrp∣∣ (46)

where ψ is the relative weight factor, which is calculated
according to the angle and distance unit, combined with the
magnitude of Earth’s radius. i′, h′, λ′ and φ′ are the variation
values of the geocentric return orbit inclination, the vacuum
perigee altitude, and the longitude and latitude of the re-entry
point in the iteration process, respectively.

C. ACCURATE DESIGN
In the accurate design, the return orbit is divided into
two segments: the three-impulse maneuver segment and the
lunar escape segment. The backward and forward integral
calculations are performed in the high-fidelity model. The
SQP_SNOPT algorithm is used to optimize the two segments.

In the geocentric J2000 coordinate system, considering
the relevant perturbation factors, the accurate force model

is expressed as

d2R
dt
= −

µeR
R3
+AN+ANSE+ANSM+AR + AD+AP (47)

where R is the position vector with respect to the geocentric
J2000 coordinate system; AN is the gravitation perturbation
of the N-body, where only the solar and lunar perturbations
are considered and the relative positions between the stars are
obtained by JPL ephemeris;ANSE is the Earth’s non-spherical
perturbation;ANSM is theMoon’s non-spherical perturbation;
AR is the solar pressure perturbation; AD is the atmospheric
drag perturbation; and, AP is the thrust acceleration. The
perturbation of Jupiter, Venus and other large planets, Earth’s
tides, and the relativistic effect are ignored.

Regarding the LEO segment, the initial design result serves
as the initial value in the high-fidelity model, with the opti-
mization objective and constraint conditions consistent with
the initial design.

For the three-impulse maneuver segment, the following
parameters are selected as optimization variables: the first
impulse vector1v1, the second impulse vector1v2, the third
impulse vector 1v3, and the time interval of the first two
impulses T12. The orbit elements of the departure point can
be obtained by backward extrapolation in the high-fidelity
model. The constraint conditions are expressed as

iHP = iA
�HP = �A

eHP = 0
hHP = hA

(48)

where iHP, �HP, eHP, and hHP are the orbit inclination,
the right ascension of the ascending node, the eccentricity and
the orbit height of the circumlunar orbit obtained by backward
high-fidelity extrapolation, respectively.

The objective of optimization is to minimize the sum of
three impulse magnitudes:

J = min(1v1 +1v2 +1v3) (49)

In conclusion, the flow chart of the orbit design strategy is
shown as Fig. 10.

V. SIMULATION VERIFICATION AND ANALYSIS
This section is devoted to numerical simulations to verify the
feasibility and validity of the orbit design strategy proposed in
the previous section, and to analyze the related characteristics
of the return orbit.

A. SIMULATION VERIFICATION
The parameters of the simulation example are set as follows:
in the moon’s fixed coordinate system, the longitude of the
ascending node, the height, the inclination and the eccen-
tricity of the LPO are 70◦, 300 km, 90◦ and 0, respec-
tively. The perilune time is searched between 2028-01-18
and 2028-01-19. The LEO perilune altitude is 200 km, and
the period of ETO2 is 21.6 h. The geocentric return orbit
inclination is 43◦, the maximum range angle is 70◦, and
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FIGURE 10. The flow chart of the orbit design strategy.

the vacuum perigee altitude is 51 km. The location of the
landing point is (100◦E, 41◦N), and the maximum flight time
is 3.5 days.

To verify the feasibility of the proposed fixed-point return
method and highlight its characteristic, a comparison between
it and the existing method in the reference is firstly given.
Owing to the decoupling of the three-impulse maneuver and
the lunar escape, the comparison is performed for the lunar
escape segment. According to the parameters setting, the pro-
posed method is adopted to generate the fixed-point return
orbit. At the same time, the fixed-point return method in the
reference [23] is adopted to solve the same problem. The
results are shown in Table 1.

As shown in Table 1, the proposed method in this paper has
a little higher accuracy. However, compared to the method
in the reference [23], the calculation time of the proposed
method in this paper is obviously shorter. Thus, the proposed
method has a higher efficiency of calculation than the method
in the reference.

Then, the results of the initial design and the accurate
design by this strategy are depicted in Table 2. The three
impulse vectors are described in the moon J2000 coordinate
system.

TABLE 1. The results of different methods.

TABLE 2. The results of the orbit design.

As shown in Table 2, the results of the initial design and
accurate design have small differences. In the simulation
process, the result of the accurate design can converge quickly
by taking the result of the initial design as the initial value
of the accurate design. The accurate orbit in space is shown
in Fig. 11.

B. ORBIT CHARACTERISTIC ANALYSIS
In the orbit scheme design stage, more attention is paid to
the rules and characteristics of a class of orbits in terms of
engineering, but less attention is paid to the design of one
specific orbit. Because of the advantages of high precision
and good convergence, the serial design strategy proposed in
the previous section is applied in this subsection. Based on a
large number of simulations, the characteristic analysis of the
three-impulse return orbit is discussed.

1) FIXED-POINT RETURN WINDOW CHARACTERISTIC
For manned lunar missions, successfully returning to the
intended landing site is an important task and a basic require-
ment of the missions. The analysis of the fixed-point return
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FIGURE 11. Accurate orbit in space.

FIGURE 12. Monthly fixed-point return window in 2025-2043.

window is of great significance to the return orbit design and
the selection of the mission implementation time. The range
angle in the re-entry process is set to 45◦-70◦, the geocentric
return orbit inclination is 43◦, the vacuum perigee altitude is
51 km, and the location of the landing point is (100◦E, 41◦N).
It is known that the variation period of the declination of the
moon is 18.6 years. Fig. 12 depicts the monthly fixed-point
return window for 19 years from 2025 to 2043. It is noted
that the monthly return window displays a periodic change
of approximately nine months as a whole, but there are some
differences in each period. Assuming that the manned lunar
mission will be carried out in 2028, the monthly fixed-point
return window in 2028 is shown at the top of Fig. 12.
As shown in the partial enlargement figure, the fixed-point
return window in each month from June to September has
two phases, both longer than 10.5 days. Among them, the
fixed-point return window of July is the longest, which is
over 13.5 days. All other months have one fixed-point return
window of approximately 10 days.

Taking January 2028 as an example, the influence on the
fixed-point return window by ise and the latitude of landing
site φL are analyzed. ise is varied while holding the other
parameters constant, and the fixed-point return window is
calculated. As illustrated in Fig. 13, the fixed-point return
window increases with increasing of ise. The relationship
between φL and the fixed-point return window is shown

FIGURE 13. Fixed-point return window versus geocentric return orbit
inclination.

FIGURE 14. Fixed-point return window versus the latitude of the landing
site.

in Fig. 14. An interesting finding is that the whole figure is
nearly centrosymmetrical about the point (19◦N, January 19).
The landing site is between 12◦N and 26◦N; there are three
return windows in January and only two return windows at
other latitudes. The number of fixed-point return days corre-
sponding to different latitudes of the landing site is displayed
in Fig. 15. It can be observed that when the landing site is
between the equator and 11◦N, the number of fixed-point
return days grows gradually with increasing φL, and vice
versa between 27◦N and 41◦N. In addition, a small change
in the range of fixed-point return days occurs between 12◦N
and 26◦N.
Therefore, from the perspective of the security of the

mission implementation, it is necessary to ensure that the
fixed-point return window is as long as possible. From
2025 to 2043, the fixed-point return window is longer
in 2026 and 2043. With φL fixed, ise can be set as large as
possible. When ise is 43◦, the landing site can be set at 27◦N.

2) VELOCITY INCREMENT CHARACTERISTIC
Another indicator necessary for engineering is the velocity
increment consumption. The parameters in the simulation
example are set as follows: in the moon fixed coordinate
system, the height, the orbit inclination and the eccentricity
of the LPO are 200 km, 90◦ and 0, respectively. The period
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FIGURE 15. Fixed-point return days versus the latitude of the landing
site.

FIGURE 16. Total velocity increment versus the longitude of the
ascending node of LPO.

of ETO2 is 24 h. The perilune time is searched between
2028-01-18 and 2028-01-19. The perilune altitude is 200 km,
the geocentric return orbit inclination is 43◦, the range angle
is 70◦, and the vacuum perigee altitude is 51 km. The position
of the landing site is (100◦E, 41◦N), and the maximum flight
time is 5 days. The variation of 1v for the range in the
longitude of the ascending node of LPO from 0◦ to 180◦ is
depicted in Fig. 16. A noticeable characteristic of the curve is
that when the longitude of the ascending node is 100◦, 1v
achieves a minimum of approximately 830 m/s, while 1v
achieves a maximum of approximately 1650 m/s when the
longitude of the ascending node is 180◦. It can be concluded
that when the direction of the connection between the ascend-
ing node and the descending node of LPO is nearly vertical
to the direction of the moon-Earth connection, the impulse
consumption is small and can be selected as the optimal
departure position, while the impulse consumption is large
when the direction of the connection between the ascending
node and the descending node of LPO is close to the direction
of the Moon-Earth connection. The above variation rule is
consistent with the results obtained by the indirect method
in [33], but the impulse consumption is relatively large due
to the consideration of the constraint of the landing site in
this paper. In addition, the result of numerical optimization
is compared with that of the preliminary analysis using the

FIGURE 17. Total velocity increment versus flight time.

FIGURE 18. Total velocity increment versus the geocentric return orbit
inclination.

convenient method described in Sect. 3. The difference in
magnitude between them is small, which proves the correct-
ness of the result. However, because Earth’s terminal con-
straints are considered, the numerical result is slightly larger
than that of the preliminary analysis.

Given the longitude of the ascending node of LPO as
111.25◦, the effect of T on1v is analyzed. It is clear that1v
decreases with increasing T from Fig. 17. This characteristic
is consistent with the conclusion obtained by the indirect
method in [33]. As observed in Fig. 18, 1v is plotted as a
function of ise. When ise increases from 43◦ to 88◦, 1v has
a slight increase by approximately 40 m/s. It is noted from
Fig. 19 that 1v is decreases with increasing hprl, but the
change in the magnitude is small.

Therefore, from the perspective of engineering application,
it is essential to guarantee that the velocity increment con-
sumption is as small as possible. A three-impulse maneuver
can be started fromLPO, in which the direction of the connec-
tion between the ascending node and the descending node is
close to the vertical direction of the moon-Earth connection,
and an LEO with a higher perilune altitude can be selected
to return to the Earth landing site with a smaller geocentric
return orbit inclination. On the premise of ensuring astronaut
safety, the flight time can be as long as possible.
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FIGURE 19. Total velocity increment versus the perilune altitude.

VI. CONCLUSION
Aiming at manned lunar return missions intended for
high-latitude regions, a return orbit scheme of the
three-impulse maneuver is studied. A convenient method is
proposed for the preliminary analysis of the velocity incre-
ment, which is based on the conical surface of the hyperbolic
excess velocity and uses the angular coupling relationship
of the related vectors in space. A serial orbit design strategy
from the initial calculation to the accurate calculation is
employed, considering the constraint of the Earth landing site.
In the initial design, a three-segment orbit patched method
based on the pseudo-perilune parameters is adopted to gener-
ate the initial value. In accurate design, a two-segment orbit
patched method is applied in the high-fidelity model. The
effectiveness and feasibility of the strategy are examined by
numerical simulation, and the fixed-point return window and
the velocity increment characteristics are further analyzed by
the sum of the simulation calculations. The research results
are summarized as follows:

1). The results of the convenient method for preliminary
analysis of the velocity increment indicate that the maximum
1v required for this orbit scheme is approximately 1600 m/s,
and the minimum1v is less than 900 m/s. Targeting a smaller
v∞out and selecting the ETO of a longer period for the maneu-
ver are both beneficial in reducing the velocity increment
consumption.

2). The results of the fixed-point return window character-
istic analysis show that the monthly fixed-point return win-
dow changes periodically approximately every nine months.

3). Considering the lower velocity increment, the
three-impulse maneuver can be started from LPO, in which
the direction of the connection between the ascending node
and the descending node is nearly vertical to the moon-Earth
connection, and an LEO with higher perilune altitude can be
selected to return. The flight time can be longer to ensure
astronaut safety.

4). The increase in the geocentric return orbit inclination is
conducive to expanding the fixed-point return window, but
also increases the consumption of the velocity increment.
Hence, the selection of the geocentric return orbit inclination
must be considered comprehensively.

In summary, this paper designs and analyzes the
three-impulse return orbit scheme for manned lunar missions
and the research conclusions can provide a valuable reference
for them.
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