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ABSTRACT In this article, the stabilization issues for probabilistic Boolean Networks (PBNs) with time
delays are discussed. This article’s objective is designing an efficient algorithm to choose suitable nodes to
be pinning controlled for PBNs with time delays. By using the semi-tensor product (STP) of matrices, a PBN
with time delays can be converted into a discrete-time linear system, and the transition matrix also can be
obtained. Then, the necessary and sufficient conditions in the form of algebraic expression are given for the
existence and solvability of the pinning feedback controllers with minimum pinning nodes for PBNs with
time delays. Besides, three algorithms are proposed for designing and solving minimum pinning controllers.

INDEX TERMS Probabilistic Boolean networks, pinning control, time delays, semi-tensor product.

I. INTRODUCTION
Boolean Networks (BNs), which were first proposed by
Kauffman in 1969 [1], are a kind of logical dynamical models
to describe gene regulatory networks (GRNs) [2]. As we
all know, in a gene regulatory network, each gene can be
expressed (1) or not expressed (0), which corresponds to
binary state variables. A BN is a deterministic model to
simulate the evolution of binary state variables. What’s more,
Boolean Networks have been widely studied in state esti-
mation [3], logical networks [4], neural networks [5], etc.
Recently, the STP of matrices was introduced by Cheng’s
team. With the help of STP, a BN can be transformed into a
discrete-time linear system.Moreover, a logic function can be
represented by an algebraic form with STP. This new matrix
product was introduced to the study of BNs in many fields,
such as the controllability, event-triggered control, ect., which
have been studied in [6]–[11].

To better handle of biological system uncertainty, Shmule-
vich etc. in [12] generalized the concept of BNs for applica-
tion to probabilistic Boolean Networks (PBNs). In general,
the PBNs can be seen as a kind of randomly switched BNs
in given sets of BNs. Every BN is chosen with an definite
probability. Many interesting results have been obtained for
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PBNs and probabilistic Boolean control networks (PBCNs),
such as stability and stabilization [13], optimal control [4],
controllability [14], and pinning control [15], etc.

Stability and stabilization are two important problems in
BNs. For example, the apoptotic pathway can be activated
to allow an organism to clear damaged or unwanted cells by
combiningwith tumor necrosis factor (TNF) to death receptor
tumor necrosis factor receptor 1 (TNFR1) [16].Without TNF,
cells can be bistable in two different states: survival and initi-
ation of apoptosis [17]. However, the decision on one state or
the other mainly depends on the initial conditions of random
variation in each cell, and it can be seen as a stability problem
in PBNs. Meanwhile, time delays are unavoidable in many
real world systems, such as biological, physiological systems,
and economic, and so on [18]–[20]. For GRNs, the direction
of gene evolution is uncertain due to the possibility of gene
mutation. Hence, PBNs with time delays can be better to
simulate the real biological systems and GRNs in some cases.
Thus, in this article, we will discuss the stabilization of PBNs
with time delays.

In [21], BNs realize stabilization via state feedback control.
Different from feedback control, only a small part of nodes
are selected to be pinning controlled, which reduce the cost of
the control effectively. A natural question in pinning control
is how to select the nodes to be pinned. In [22], an algo-
rithm is proposed to solve the minimum number of pinning
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controllers. Recently, minimizing controlled nodes to realize
stabilization of BNs has been investigated deeply in [23].
Moreover, the stochastic networks can realize stabilization
via minimum pinning controlled nodes, which has been stud-
ied in [24]. In [25], BNs with time delays realize stabilization
via the pinning control. Thus, for a PBNs with time delays,
how to stabilize via the pinning control and how to solve
the minimum number pinning nodes to stabilize system are
worth considering. Inspired by above works, the stabilization
of PBNs with time delays via pinning control is investigated
in this article.

The difficulties of this article are mainly two folds. 1) How
to select pinning nodes for a PBN with time delays? Since
a PBN with time delays is a dynamics system with random
variables and multiple time delays, which make the pinning
control problem for PBNs with time delays more complicated
and challenging than that of BNs. 2) How to solve the min-
imum number of pinned nodes for a PBN with time delays
through the algebraic method? In [22] and [26], the stabi-
lization issue of BNs via minimum pinned nodes is solved
through the graph theory method, rather than the algebraic
method. Thus, it is a challenge to obtain corresponding results
via the algebraic method. To overcome these difficult prob-
lems, inspired by the work of [24] and [25], we will take three
steps to solve these difficulties. (i) Changing columns of the
structure matrix to obtain the desired structure matrix. Thus,
we propose a new algorithm to obtain the desired structure
matrix. (ii) Selecting the pinning nodes via the columns of
new structure matrix directly. The existence of the pinning
feedback controllers for PBNswith time delays is considered,
and the corresponding necessary and sufficient conditions
in the form of algebraic expression are given. (iii) Choos-
ing the minimal number pinning nodes by an efficient way.
Moreover, an effective algorithm is proposed to calculate the
minimum number of pinning controllers.

Notations: 1h := {δ
k
h | 1 ≤ k ≤ h}, where δkh is the

kth column of the identity matrix Ih. D := {1, 0}. 1n and
0n denote the column vector of length n, where all of the
elements are equal to 1 and 0 respectively. Mr×h stands for
the set of all r × h matrices and M k

r×h stands for the set of
matrix A where Aij = (a1, a2, . . . , ak )T , 1 ≤ i ≤ r and
1 ≤ j ≤ h. We denote Rowf (W )(Colf (W )) stands for the f th
row(column) of matrixWr×h and Row(W )(Col(W )) is the set
of rows(columns) of matrix Wr×h. A matrix W ∈ Mr×h is
called a logical matrix if its columns Col(W ) ⊂ 1r . More-
over, we define the set of r×h logical matrices asLr×h.W =
[δk1r , δ

k2
r , . . . , δ

kh
r ] is denoted by W := δr [k1, k2, . . . , kh].

p = (k1, k2, . . . , kh)T is called a h-dimensional probabilistic
vector if kr ≥ 0, r = 1, 2, . . . , h and

∑h
r=1 kr = 1. we

define the set of h-dimensional probabilistic vectors as Ph.
For a probabilistic vector p = (k1, k2, . . . , kh)T , we denote a
operator 〈p〉 = {δrk | kr > 0, r = 1, 2, . . . , h}. For a matrix
W ∈ Mr×h, if its columns Col(W ) ⊂ Pr , then this matrix is
called a probabilistic matrix. Moreover, we define the set of
r × h probabilistic matrices as Pr×h.

II. PRELIMINARIES
A. STP OF MATRICES
Definition 1: [27] For matricesW ∈ Mr×h andQ ∈ Ms×t .

Then, the STP ofW and Q is

W n Q = (W ⊗ Iq/h)(Q⊗ Iq/s).

Here⊗ is the Kronecker product of matrices and q is the least
common multiple of h and s (q = lcm{h, s}).
Remark 1: Since STP is a generalization of the general

matrix products, this notation n can be omitted in the fol-
lowing discussion if no confusion arises.
Lemma 1: [27]

1) Let X ∈ Rt be a row vector and a matrix A ∈ Mm×n,
we have An X = X n (It ⊗ A);

2) Let X ∈ Rt be a column vector and a matrix A ∈ Mm×n,
we have X n A = (It ⊗ A)n X .

Definition 2: [27] Define a matrix:

Q[r,h] = δrh[1, r + 1, . . . , (h− 1)r + 1,

2, r + 2, . . . , (h− 1)r + 2,

. . .

r, 2r, . . . , rh] ∈ Lrh×rh. (1)

then for column vectors a ∈ Rr and b ∈ Rh, we haveQ[h,r]n
bn a = an b.
Lemma 2: [27] Define a logical matrix

8n = diag(δ12n , δ
2
2n , . . . , δ

2n
2n ) = δ22n [1, 2

n
+ 2, . . . , 22

n
],

and let X ∈ 12n . Then, X n X = 8nX .

B. ALGEBRAIC REPRESENTATIONS OF PROBABILISTIC
BOOLEAN NETWORKS WITH TIME DELAYS
Letting True = 1 ∼ δ12 , False = 0 ∼ δ22 . Then we can express
the logical function by using STP of matrices.
Lemma 3: [27] A logical function h(L1, . . . ,Lr ) with

logical arguments L1, . . . ,Lr ∈ 12 can be expressed in a
multi-linear form as

h(L1, . . . ,Lr ) = MhL1L2 . . . Lr ,

whereMh ∈ L2×2r is unique. Moreover, we define the matrix
Mh as the structure matrix of h.

A PBN with time delays is described as

xh(t + 1) = fh(x1(t), . . . , xr (t), x1(t − 1), . . . , xr (t − 1),

. . . , x1(t − τ ), . . . , xr (t − τ )), h = 1, . . . , r,

(2)

where xh(t) ∈ D is the state of node h at time t , h =
1, 2, . . . , r , and τ is a positive integer.
In system (2), fh is randomly selected from a given finite

set of Boolean functions � = {f 1h , f
2
h , . . . , f

kh
h }, and f sh :

Dr(τ+1) 7→ D, s = 1, 2, . . . , kh.
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We suppose that P(fh = f sh ) = psh, s = 1, 2, . . . , kh, where∑kh
s=1 p

s
h = 1, and x(t) = nr

h=1xh(t). Then, system (2) can
be converted into an algebraic form as

xh(t + 1) = Mhx(t)x(t − 1) . . . x(t − τ ),

where Mh ∈ L2×2r(τ+1) is selected from a matrices’ set
{M1

h ,M
2
h , . . . ,M

kh
h } and M

s
h are logical matrices of f sh , s =

1, 2, . . . , kh, respectively. Then, P(Mh = M s
h) = psh, s =

1, 2, . . . , kh.
Based on the above discussion, the evolution of the state

expectation can be obtained as follows

E[xh(t + 1)]

= E[E[xh(t + 1) | Mh]]

= E[E[Mhx(t) . . . x(t − τ ) | Mh]]

=

kh∑
s=1

E[Mhx(t) . . . x(t − τ ) | Mh = M s
h]P(Mh = M s

h)

=

kh∑
s=1

E[M s
hx(t) . . . x(t − τ )]p

s
h

=

kh∑
s=1

M s
hp

s
hE[x(t) . . . x(t − τ )]

:= M̄hE[x(t) . . . x(t − τ )], h = 1, 2, . . . , r, (3)

where M̄h =
∑kh

s=1M
s
hp

s
h ∈ P2×2r(τ+1) . As a result, the fol-

lowing eauqtion holds

E[x(t + 1)] = ME[x(t) . . . x(t − τ )], (4)

where M = M̄1 ∗ . . . ∗ M̄r ∈ P2r×2r(τ+1) and ∗ is Khatri-Rao
product.
Definition 3: A probabilistic Boolean networks with time

delays is globally stable with probability one to a state
x̄ = δ

q
2r (1 ≤ q ≤ 2r ), for any sequence of initial states

x0, x−1, . . . , x−τ ∈ 12r , if there exists a positive integer T ∈
Z+, such thatP(x(t) = x̄ | x(0) = x0, . . . , x(−τ ) = x−τ ) = 1
for all t ≥ T .
Based on the discussion of remark 1 of [28], for obtaining

the condition of the globally stable to a state with probability
one of PBNs (2), we only need to study the globally stable of
system (4).

III. MAIN RESULTS
In this section, the stabilization of PBCNs with time delays
is considered by designing pinning controllers. We need to
design a algorithm to get some suitable controlled nodes.
In the end, we discuss how to stabilize system (2) to a given
state δq2r by minimum pinned nodes.
Suppose that the first l nodes are pinned and state feedback

controllers are as follows,

us(t) = ϕs(x1(t), . . . , xr (t), x1(t − 1), . . . , xr (t − 1), . . . ,

x1(t − τ ), . . . , xr (t − τ )), s = 1, 2, . . . , l (l ≤ r).

(5)

Then system (2) with controllers becomes the following
system

xs(t + 1) = Fs(us(t), fs(x1(t), . . . , xr (t), x1(t − 1),
. . . , xr (t − 1), . . . , x1(t − τ ), . . . , xr (t − τ ))),
s = 1, 2, . . . , l,
xv(t + 1) = fv(x1(t), . . . , xr (t), x1(t − 1), . . . ,
xr (t − 1), . . . , x1(t − τ ), . . . , xr (t − τ ))),
v = l + 1, l + 2, . . . , r,

(6)

where Fs is a logical function of variables us(t) and fs, us(t)
is the state feedback controller of x(t), . . . , x(t − τ ), s =
1, 2 . . . , l.
According to Lemma 3, there exists a matrix Hs ∈

L2×2r(τ+1) , where us(t) = Hsx(t) . . . x(t − τ ). Furthermore,
since Fs is a logical function of variables us(t) and fs, there
exists a logical matrix Ls ∈ L2×4, where xs(t + 1) =
LsHsx(t) . . . x(t − τ )Msx(t) . . . x(t − τ ) = LsHs(I2r(τ+1) ⊗
Ms)8r(τ+1)x(t) . . . x(t − τ ), where P(Ms = Mq

s ) = Pqs .
From (3), the following formula can be obtained

E[xs(t + 1)]

= E[E[xs(t + 1) | Ms]]

=

ks∑
q=1

E[LsHs(I2r(τ+1) ⊗M
q
s )8r(τ+1)x(t) . . . x(t − τ )]pqs

=

ks∑
q=1

pqsLsHs(I2r(τ+1) ⊗M
q
s )8r(τ+1)E[x(t) . . . x(t − τ )]

= LsHs(I2r(τ+1) ⊗ M̄s)8r(τ+1)E[x(t) . . . x(t − τ )]

:= M̂sE[x(t) . . . x(t − τ )], s = 1, 2, . . . , l. (7)

Hence, systems (6) can be transformed to be
E[xs(t + 1)] = M̂sE[x(t) . . . x(t − τ )]

s = 1, 2, . . . , l.
E[xs(t + 1)] = M̄sE[x(t) . . . x(t − τ )]

s = l + 1, l + 2, . . . , r .

(8)

Therefore, we can get the following results

E[x(t + 1)] = M̂E[x(t) . . . x(t − τ )], (9)

where M̂ = M̂1 ∗ M̂2 ∗ . . . ∗ M̂r , and

M̂s =

{
M̂s, s = 1, . . . , l,
M̄s, s = l + 1, . . . , r .

A. THE PINNED NODES OF PBNS WITH DELAYS
Definition 4: For two probabilistic vectors ψ,ω ∈ Pr ,

where ψ = (ψ1, ψ2, . . . , ψr )T and ω = (ω1, ω2, . . . , ωr )T .
Then,

Rows(ψ ◦ ω) = ψs ⊕ ωs, s = 1, . . . , r,

where

ψs ⊕ ωs =

{
1, ψsωs > 0
0, else.
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Let x̄ = δ
q
2r be the pinning objective state and

τ+1︷ ︸︸ ︷
δ
q
2r n δ

q
2r n . . .n δ

q
2r = δh

2r(τ+1)
. First, we define a sequence

of set {4k | k = 1, 2, . . .} as follows

41(δh2r(τ+1) ) = {δ
s
2r(τ+1) | Mδ

s
2r(τ+1) , s = 1, . . . , 2r(τ+1)}

4k+1(δh2r(τ+1) )= {δ
s
2r(τ+1) | 0 ◦ (12r(τ+1)

−

∑
δi
2r(τ+1)

∈4k (δh2r(τ+1)
)

δi2r(τ+1) ) = 02r(τ+1) ,

0= Yτ+1 n Yτ n . . .n Y1, s=1, . . . , 2r(τ+1)},

(10)

where Y1 = Mδs
2r(τ+1)

, Yi = M

τ+1︷ ︸︸ ︷
Yi−1 . . . Y1δ

a1
2r . . . δ

aτ+2−i
2r , i =

2, . . . , τ + 1, and δs
2r(τ+1)

= nτ+1j=1 δ
aj
2r .

Remark 2: Notice that there are finite state totally and
4k (δh2r(τ+1) ) ⊆ 4k+1(δh2r(τ+1) ). Therefore, there exists a pos-
itive integer T such that 4T+1(δh2r(τ+1) ) = 4T (δh2r(τ+1) ). Then,
the set 4T+1(δh2r(τ+1) ) can not be larger any more and we can
obtain a finial set 4(δh

2r(τ+1)
) = 4T (δh2r(τ+1) ).

Now we can give an algorithm to obtain the desired new
structure matrix M̂ .

Algorithm 1 Obtain the Desired Structure Matrix M̂
Input: q, M
Output: M̂
1: Initialize M̂ = 0
2: If Col(q−1)2rτ+(q−1)2r(τ−1)+...+q(M ) 6= δq2r
3: then change Col(q−1)2rτ+(q−1)2r(τ−1)+...+q(M )
to δq2r .
4: end if
5: for s = 1, 2 . . . , 2r(τ+1) do
6: Calculate 4s(δh2r(τ+1) ).
7: end for
8: Calculate 4(δh

2r(τ+1)
) = ∪2

r(τ+1)

s=1 4s(δh2r(τ+1) ).
9: for s = 1, 2 . . . , 2r(τ+1) do
10: if δs

2r(τ+1)
∈ 12r(τ+1) \4(δ

h
2r(τ+1)

)
11: then change the sth column ofM to δq2r .
12: end if
13: end for
14: M̂ = M
15: return M̂

Theorem 1: Suppose that the structure matrix of (4) is M ,
and M is changed to M̂ by the above algorithm. Then,
the PBNwith delays is globally stabilized to δq2r with probail-
ity one.

Proof: For all initial states n0
i=−τ xi = δ

j
2r(τ+1)

∈

12r(τ+1) , j 6= h, using the above algorithm, such that δj
2r(τ+1)

∈

4(δh
2r(τ+1)

). The result implies that there exist T ∈ Z+ such

that δj
2r(τ+1)

∈ 4T (δh2r(τ+1) ). Next, we will prove that δj
2r(τ+1)

can reach δh
2r(τ+1)

in T steps by mathematical induction.

For T = 1, δj
2r(τ+1)

∈ 41(δh2r(τ+1) ), then M̂δ
j
2r(τ+1)

= δ
q
2r ,

where M̂ is the new structure matrix formM .
Assuming that when T = t − 1, t > 2, the Theo-

rem 1 holds. For T = t , assuming δj
2r(τ+1)

∈ 4t (δh2r(τ+1) ), then

0 ◦ (12r(τ+1) −
∑

δs
2r(τ+1)

∈4t−1(δh2r(τ+1)
)

δs2r(τ+1) ) = 02r(τ+1) ,

where 0 is a 2r(τ+1)-dimensional probabilistic vector and
12r(τ+1) −

∑
δs
2r(τ+1)

∈4t−1(δh2r(τ+1)
) δ

s
2r(τ+1)

is a column vector
with all elements are belonging to D. Thus, 0 can be a linear
combination of δs

2r(τ+1)
∈ 4t−1(δh2r(τ+1) ). Thus, there exists

rs ∈ {0, 1} such that

0 =
∑

δs
2r(τ+1)

∈4t−1(δh2r(τ+1)
)

rsδs2r(τ+1) ,

where
∑
δs
2r(τ+1)

∈4t−1(δh2r(τ+1)
) rs = 1.

Then, it holds that

M̂0 = M̂ (
∑

δs
2r(τ+1)

∈4t−1(δh2r(τ+1)
)

rsδs2r(τ+1) )

=

∑
δs
2r(τ+1)

∈4t−1(δh2r(τ+1)
)

rsM̂δs2r(τ+1)

=

∑
δs
2r(τ+1)

∈4t−1(δh2r(τ+1)
)

rs
∑

δi
2r(τ+1)

∈4t−2(δh2r(τ+1)
)

piM̂δi2r(τ+1) (
∑

δi
2r(τ+1)

∈4t−2(δh2r(τ+1)
)

pi = 1)

=

∑
δi
2r(τ+1)

∈4t−2(δh2r(τ+1)
)

pi
∑

δs
2r(τ+1)

∈4t−1(δh2r(τ+1)
)

rsM̂δi2r(τ+1)

=

∑
δi
2r(τ+1)

∈4t−2(δh2r(τ+1)
)

pi(
∑

δs
2r(τ+1)

∈4t−1(δh2r(τ+1)
)

rs)

M̂δi2r(τ+1)

= M̂
∑

δi
2r(τ+1)

∈4t−2(δh2r(τ+1)
)

piδi2r(τ+1) , (11)

which implies that 0 ∈ 4t−1(δh2r(τ+1) ). That is to say, 0 can

reach δh
2r(τ+1)

in t − 1 steps. From (10), it holds that δj
2r(τ+1)

can reach δh
2r(τ+1)

in t steps.

B. THE DESIGN OF PINNING FEEDBACK CONTROLLERS
From (6), we can get the following expressions:

M̂1 = L1H1(I2r(τ+1) ⊗ M̄1)8r(τ+1)

M̂2 = L2H2(I2r(τ+1) ⊗ M̄2)8r(τ+1)

. . .

M̂l = LlHl(I2r(τ+1) ⊗ M̄l)8r(τ+1).

(12)

Thus, if we can solve Li,Hi, i = 1, 2, . . . , l from (12),
then the logical functions Fi, i = 1, 2, . . . , l and feedback
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controllers ui(t), i = 1, 2, . . . , l can be solved. Consequently,
system (6) can be globally stabilized with probability one to
the desired state δq2r by Theorem 1.
Theorem 2: System of equation (12) is solvable if and only

if the columns of M̂i (i = 1, 2, . . . , l) belong to two sets of
91, 92, 93, 94 at most, where 91, 92, 93, 94 as follows

91 = {Colj(M̂i) | Colj(M̂i) = Colj(M̄i) 6= (0, 1)T or
(1, 0)T },

92 = {Colj(M̂i) | Colj(M̂i) = (1, 1)T − Colj(M̄i)},
93 = {Colj(M̂i) | Colj(M̂i) = (0, 1)T },
94 = {Colj(M̂i) | Colj(M̂i) = (1, 0)T }.

Proof: (Necessity) Assume that

Li = [
η1 η2 η3 η4

1− η1 1− η2 1− η3 1− η4
],

Hi = [
θ1 θ2 . . . θ2r(τ+1)

1− θ1 1− θ2 . . . 1− θ2r(τ+1)
],

M̄i = [
λ1 λ2 . . . λ2r(τ+1)

1− λ1 1− λ2 . . . 1− λ2r(τ+1)
],

M̂i = [
µ1 µ2 . . . µ2r(τ+1)

1− µ1 1− µ2 . . . 1− µ2r(τ+1)
],

where ηs, θq ∈ D = {0, 1}, s = 1, 2, 3, 4, q =
1, . . . , 2r(τ+1) and λs, µs ∈ [0, 1], s = 1, . . . , 2r(τ+1). Then,

LsHs(I2r(τ+1) ⊗ M̄s)8r(τ+1)

= Ls(Hs ⊗ I2)(I2r(τ+1) ⊗ M̄s)8r(τ+1)

= Ls(HsI2r(τ+1) ⊗ I2M̄s)8r(τ+1)

= Ls(Hs ⊗ M̄s)8r(τ+1)

=

[
η1 η2 η3 η4

1− η1 1− η2 1− η3 1− η4

]

×


θ1λ1 θ2λ2 . . .

θ1(1− λ1) θ2(1− λ2) . . .

(1− θ1)λ1 (1− θ2)λ2 . . .

(1− θ1)(1− λ1) (1− θ2)(1− λ2) . . .

θ2r(τ+1)λ2r(τ+1)

θ2r(τ+1) (1− λ2r(τ+1) )
(1− θ2r(τ+1) )λ2r(τ+1)

(1− θ2r(τ+1) )(1− λ2r(τ+1) )


=

[
µ1 µ2 . . . µ2r(τ+1)

1− µ1 1− µ2 . . . 1− µ2r(τ+1)

]
,

s = 1, . . . , l. (13)

Thus, we have

η1θ1λ1 + η2θ1(1− λ1)+ η3(1− θ1)λ1
+η4(1− θ1)(1− λ1) = µ1

η1θ2λ2 + η2θ2(1− λ2)+ η3(1− θ2)λ2
+η4(1− θ2)(1− λ2) = µ2

. . .

η1θ2r(τ+1)λ2r(τ+1) + η2θ2r(τ+1) (1− λ2r(τ+1) )
+η3(1− θ2r(τ+1) )λ2r(τ+1) + η4(1− θ2r(τ+1) )
(1− λ2r(τ+1) ) = µ2r(τ+1)

(14)

Then, these 2r(τ+1) equations can be classified into 3 parts:
(1) : µs = λs
(2) : µs = 1− λs
(3) : µs 6= λs and µs 6= 1− λs

s = 1, 2, . . . , 2r(τ+1)

(15)

For (1), if θs = 0, then η3 = 1, η4 = 0. If θs = 1, then
η1 = 1, η2 = 0.
For (2), if θs = 0, then η3 = 0, η4 = 1. If θs = 1, then

η1 = 0, η2 = 1.
For (3), if θs = 0, then η3λs + η4(1 − λs) = µs. If θs =

1, then η1λs + η2(1 − λs) = µs. Thus, we can obtain the
following results:

θs = 0

{
µs = 0, η3 = η4 = 0,
µs = 1, η3 = η4 = 1,

θs = 1

{
µs = 0, η1 = η2 = 0,
µs = 1, η1 = η2 = 1.

If µs satisfies three conditions, a counter example can be
given as follows: let µs = λs, µj = 1, µk = 0, there’s no
intersection for the solutions in this case, thus η1, η2, η3, η4
can’t be solved.
If µs satisfies two conditions, µs = λs and µj = 1, when

θs = 0 and θj = 1 respectively, then η1 = η2 = η3 = 1, η4 =
0. Therefore, µs satisfies two conditions at most.
(Sufficiency) If (µi, 1−µi)T , i = 1, 2, . . . , 2r(τ+1) belong

to one of {91, 92, 93, 94}, according to the above deriva-
tion, it is obvious that Equations (12) can be solved.
If (µi, 1 − µi)T , i = 1, 2, . . . , 2r(τ+1) belong to two of
{91, 92, 93, 94}, they can be classified into 6 parts:{

(µi, 1− µi)T ∈ 91, θi = 0,
(µj, 1− µj)T ∈ 92, θj = 1,

⇒

{
η1 = 0, η2 = 1,
η3 = 1, η4 = 0,{

(µi, 1− µi)T ∈ 91, θi = 0,
(µj, 1− µj)T ∈ 93, θj = 1,

⇒

{
η1 = 0, η2 = 0,
η3 = 1, η4 = 0,{

(µi, 1− µi)T ∈ 91, θi = 0,
(µj, 1− µj)T ∈ 94, θj = 1,

⇒

{
η1 = 1, η2 = 1,
η3 = 1, η4 = 0,{

(µi, 1− µi)T ∈ 92, θi = 0,
(µj, 1− µj)T ∈ 93, θj = 1,

⇒

{
η1 = 0, η2 = 1,
η3 = 0, η4 = 0,{

(µi, 1− µi)T ∈ 92, θi = 0,
(µj, 1− µj)T ∈ 94, θj = 1,

⇒

{
η1 = 0, η2 = 1,
η3 = 1, η4 = 1,{

(µi, 1− µi)T ∈ 93, θi = 0,
(µj, 1− µj)T ∈ 94, θj = 1,

⇒

{
η1 = 1, η2 = 1,
η3 = 0, η4 = 0,

(16)

where the solutions may have many combinations under the
above conditions. For example, when (µi, 1−µi)T ∈ 91 and
(µj, 1− µj)T ∈ 92, if θi = 1 and θj = 0, then η1 = 0, η2 =
η3 = 1, η4 = 0.
In conclusion, M̂s = LsHs(I2r(τ+1)⊗M̄s)8r(τ+1) is solvable,

s = 1, 2, . . . , l.
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Remark 3: The above Theorem 2 provides a sufficient
and necessary condition for the solvability of the pinning
feedback controllers for PBNs with time delays, which gen-
eralizes the results of [25]. In other words, if the transition
matrix is a determined matrix, Theorem 2 is degenerated to
be Proposition 3.2 of [25]. Once the system of equation (12)
is solvable, then Ls and Hs, s = 1, 2, . . . , l, can be obtained
according to the proof of Theorem 2.

The above results can be summed up as the Algorithm 2 to
design pinning controllers for a PBN with time delays.

Algorithm 2 Design Pinning Controllers
Input: q, M
Output: Fi, ϕi, i = 1, . . . , l
1: Using Algorithm 1 to changeM to the desired
structure matrix M̂ .
2: for i = 1,. . . ,l do
3: Calculate Li,Hi from (12) by using Theorem 2.
4: end for
5: for i = 1,. . . ,l do
6: Reconstruct the PBN with time delays from its
structural matrices Li and Hi to its logical expressions
Fi and ϕi by using the methods in [7].
7: end for
8: return Fi, ϕi, i = 1, . . . , l

C. MINIMUM NUMBER OF PINNING NODES
Based on the above discussion, the elements of set4(δh

2r(τ+1)
)

can be steered to the desired state δq2r . However, we want
to get the minimum number nodes to be pinned. Sup-
pose that 4c(δh

2r(τ+1)
) := 12r(τ+1) \ 4(δ

h
2r(τ+1)

) =

{δ
k1
2r(τ+1)

, δ
k2
2r(τ+1)

, . . . , δ
kl
2r(τ+1)

}. Next we will stabilize ele-
ments in 4c(δh

2r(τ+1)
) by finding minimum number pinning

nodes. Then, we can get a new matrix fromM as follows

C =



[
a1k1

1− a1k1

] [
a2k1

1− a2k1

]
. . .

[
ar(τ+1)k1

1− ar(τ+1)k1

]
[

a1k2
1− a1k2

] [
a2k2

1− a2k2

]
. . .

[
ar(τ+1)k2

1− ar(τ+1)k2

]
...

...
...

...[
a1kl

1− a1kl

] [
a2kl

1− a2kl

]
. . .

[
ar(τ+1)kl

1− ar(τ+1)kl

]


,

where Colj(M ) = nr(τ+1)
i=1 (aij, 1 − aij)

T , aij ∈ [0, 1], j =
k1, k2, . . . , kl , and C ∈ R2l×r(τ+1). The following transfor-
mations are based on matrix C .
For the transition matrixM = M̄1 ∗ . . . ∗ M̄r of system (4),

where Colj(M ) = nr(τ+1)
i=1 (aij, 1− a

i
j)
T , we define two matrix

sets that M?
= M?

1 ∗ . . . ∗M
?
r and M??

= M??
1 ∗ . . . ∗M

??
r ,

where M?
s ,M

??
s ∈ P2×r(τ+1), s = 1, . . . , r(τ + 1). Then,

these matrix sets can be expressed as follows

2[Coli(C)] = {M?
}, (17)

where if δj
2r(τ+1)

∈ 4(1h
2r(τ+1)

), then Colj(M?) = Colj(M ).

If δj
2r(τ+1)

∈ 4c(1h
2r(τ+1)

), then Colj(M?
i ) ∈ 12.

2̄[Coli(C)] = {M??
}, (18)

where if Col(M?
i ) belongs to two of 91, 93, 94, thenM??

=

M?. If Colj(M?
i ) = δ12 , then Colj(M?

i ) ∈ 91, and if
Colj(M?

i ) /∈ 91, then Colj(M??
i ) = Colj(M?

i ).

Lemma 4: If ni−1
j=1(

aj
1− aj

) n (
αi

1− αi
) nr(τ+1)

j=i+1 (
aj

1− aj
)

can be steered to 4(δh
2r(τ+1)

), where αi ∈ (0, 1) ⊆ R, then,

ni−1
j=1(

aj
1− aj

) n (
1
0
) nr(τ+1)

j=i+1 (
aj

1− aj
) or ni−1

j=1(
aj

1− aj
) n

(
0
1
) nr(τ+1)

j=i+1 (
aj

1− aj
) can also be steered to 4(δh

2r(τ+1)
).

Proof: Since ni−1
j=1(

aj
1− aj

) n (
αi

1− αi
) nr(τ+1)

j=i+1 (
aj

1− aj
)

can be steered to 4(δh
2r(τ+1)

), then 〈ni−1
j=1(

aj
1− aj

) n

(
αi

1− αi
)nr(τ+1)

j=i+1 (
aj

1− aj
)〉 ⊆ 4(δh

2r(τ+1)
).

Then, it holds that

〈ni−1
j=1(

aj
1− aj

)n (
1
0
)nr(τ+1)

j=i+1 (
aj

1− aj
)〉

⊆ 〈ni−1
j=1(

aj
1− aj

)n (
αi

1− αi
)nr(τ+1)

j=i+1 (
aj

1− aj
)〉

⊆ 4(δb2r(τ+1) ),

and

〈ni−1
j=1(

aj
1− aj

)n (
0
1
)nr(τ+1)

j=i+1 (
aj

1− aj
)〉

⊆ 〈ni−1
j=1(

aj
1− aj

)n (
αi

1− αi
)nr(τ+1)

j=i+1 (
aj

1− aj
)〉

⊆ 4(δh2r(τ+1) ).

Theorem 3: System (4) can be stabilized via only one
pinning node if and only if there exist j ∈ {1, . . . , r(τ + 1)}
and a transition matrix B, such that B ⊆ 2̄[Colj(C)] where

4(δh
2r(τ+1)

) = 12r(τ+1) and

τ+1︷ ︸︸ ︷
δ
q
2r n δ

q
2r n . . .n δ

q
2r = δ

h
2r(τ+1)

.
Proof: (Necessity)

Suppose system (4) can be stabilized by pinning one
node j. According to Algorithm 1, we can get the set 3 =
{Colj(M ), j = k1, k2, . . . , kl}, the elements of which need to
be changed. By changing the columns in set 3, system (4) is
changed into x(t + 1) = M̂x(t) . . . x(t − τ ) and can realize
globally stable.

Note that M = M̄1 ∗ . . . ∗ M̄r and M̂ = M̄1 ∗ . . . ∗ M̂j ∗

. . . ∗ M̄r . For i = k1, k2, . . . , kl , it holds that Coli(M ) =

nr(τ+1)
m=1

[
ami

1− ami

]
. Hence, Coli(M̂ ) = nj−1

m=1

[
ami

1− ami

]
n[

α
j
i

1− αji

]
nr(τ+1)
m=j+1

[
ami

1− ami

]
, where αji ∈ [0, 1].
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Thus, it holds that M̂j, as shown at the bottom of the next
page.

For all αji, i ∈ {k1, k2, . . . , kl}, they can be classified into
7 parts as follows
(a) αji = 0, i = k1, k2, . . . , kl ,
(b) αji = 1, i = k1, k2, . . . , kl ,
(c) αji /∈ D = {0, 1}, i = k1, k2, . . . , kl,
(d) some αji = 0, some αji = 1,
(e) some αji = 0, some αji /∈ D = {0, 1},
(f) some αji = 1, some αji /∈ D = {0, 1},
(g) some αji = 0, some αji = 1, some αji /∈ D = {0, 1}.

Suppose there is a new matrix Bj ∈ P2×2r(τ+1) . The ele-
ments in Bj not mentioned in the following discussion are the
same as the corresponding elements in matrix M̂j.

For (a), (b) and (c), let Bj = M̂j.
For (d), if i ∈ {1, 2, . . . , 2r(τ+1)}\ {k1, k2, . . . , kl} and a

j
i /∈

D = {0, 1}, then let aji = 1 in matrix Bj.
For (e), if αji /∈ D = {0, 1}, then let αji = 0 in matrix Bj.
For (f), if αji /∈ D = {0, 1}, then let αji = 1 in matrix Bj.
For (g), if αji /∈ D = {0, 1}, then let αji = 1 in matrix

Bj. If i ∈ {1, 2, . . . , 2r(τ+1)} \ {k1, k2, . . . , kl} and a
j
i /∈ D =

{0, 1}, then let aji = 1 in matrix Bj.
Thus, according to Lemma 4, B = M̄1 ∗ . . . ∗ Bj ∗ . . . M̄r

can steer all initial states to the desire state δq2r . It also holds
that B ⊆ 2̄[Colj(C)].

(Sufficiency)
Let the transition matrix B ⊆ 2̄[Colj(C)] and4(δh2r(τ+1) ) =

12r(τ+1) , where B = M̄1 ∗ . . . ∗ Bj ∗ . . . M̄r . Then, Col(Bi)
belongs to two of 91, 93, 94 at most. Thus, there exists a
state feedback control u(t) = Hx(t) . . . x(t − τ ) satisfying
B = H (I2r(τ+1) ⊗ M̄j)8r . Therefore, the one pinned node is
j and the pinning controller with delays can be solved from
(12) by using Theorem 2.

Next, the above results can be further generalized as
follows

2[Coli1,i2,...,it (C)] = {M
?
}, (19)

where the matrix M? satisfies the following conditions: if
δ
j
2r(τ+1)

∈ 4(1h
2r(τ+1)

), then Colj(M?) = Colj(M ), and if

δ
j
2r(τ+1)

∈ 4c(1h
2r(τ+1)

), then Colj(M?
i1
∗M?

i2
∗ . . .∗M?

it ) ∈ 12t ,
j = 1, 2, . . . , r(τ + 1).

2̄[Coli1,i2,...,it (C)] = {M
??
}, (20)

where the matrix M?? satisfies the conditions: if Col(M?
i )

belongs to two of {91, 93, 94} at most and M?
i ∈

2[Coli1,i2,...,it (C)], then M??
i = M?

i , and when i ∈
{i1, i2, . . . , it } and j ∈ {1, 2, . . . , 2r(τ+1)} \ {k1, k2, . . . , kl},

Algorithm 3Calculate the Minimal Number of Pinning Con-
trollers
Input: q, M̂ ,M
Output: 6(N , �)
1: Initialize P = ∅
2: for i = 1, 2, . . . , r(τ + 1) do
3: Calculate 2̄[Coli(C)] for the elements in this
set as M1

i ,M
2
i , . . . ,M

2c
i

4: for j = 1, 2, . . . , 2c do
5: if 4(δh

2r(τ+1)
) = 12r(τ+1) when matrixM j

i is
transition matrix then
6: return 6(1, {i})
7: end if
8: end for
9: end for
10:for t = 2, 3, . . . , r(τ + 1) do
11: choose t nodes: i1, i2, . . . , it as a set
λk = {i1, i2, . . . , it }, k = 1, 2, 3, . . . ,C t

r(τ+1)

12: for j = 1, 2, . . . ,C t
r(τ+1) =

r(τ+1)!
t![r(τ+1)−t]! do

13: Calculate 2̄[Coli1i2...it (C)] for the elements
in this set asM1

i ,M
2
i , . . . ,M

2t+c
i

14: for l = 1, 2, . . . , 2t+c do
15: if 4(δh

2r(τ+1)
) = 12r(τ+1) when matrixM l

j is
transition matrix then
16: return 6(t, {i1, i2, . . . , it })
17: end if
18: end for
19: end for
20:end for

it holds that

Colj(M??
i ) =

{
δ12, if Colj(M?

i ) ∈ 91,

Colj(M?
i ), if Colj(M?

i ) /∈ 91.

Then, the above theorem can be further generalized as
follows.
Theorem 4: System (4) achieves stability via t pinning

nodes if and only if there exists i1, . . . , it ∈ {1, . . . , r(τ +1)}
and a transition matrix M̂ , such that M̂ ∈ 2̄[Coli1,i2,...,it (A)],

where 4(δh
2r(τ+1)

) = 12r(τ+1) and

τ+1︷ ︸︸ ︷
δ
q
2r n δ

q
2r n . . .n δ

q
2r =

δh
2r(τ+1)

.
Proof: Using Algorithm 1, the structure matrix M can

be changed to M̂ , and these matrices can be decomposed
to M̂ = M̂1M̂2 . . . M̂r and M = M1M2 . . .Mr . Comparing
M̂i with Mi, i = 1, 2, . . . , r , we can know that M̂j andMj are
different for j = s1, s2, . . . , st . For j ∈ {s1, s2, . . . , st }, M̂j are
changed by using Theorem 3. The rest of proof is similar to
Theorem 3, and it is omitted here.

M̂j =

[
aj1 . . . α

j
k1

. . . α
j
kl . . . aj

2r(τ+1)

1− aj1 . . . 1− αjk1 . . . 1− αjkl . . . 1− aj
2r(τ+1)

]
.
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From Theorem 3 and 4, the existence of minimum pinning
nodes are discussed, and the necessary and sufficient condi-
tions are obtained about exact number of pinning controllers.
Next, the following Algorithm 3 is given to stabilize sys-
tem (4) to the objective state δq2r via minimum pinning
controllers, which is based on these two theorems, and
the minimum number of pinning controllers is solved by
traversal.

In the following Algorithm 3, we denote the set 6(N , �),
whereN stands for the minimum number and� stands for the
set of pinning controllers. And t of it stands for the number
of pinning controllers. Since there are finite nodes totally, if t
adds to r , then the corresponding results will be returned.

IV. EXAMPLES
Example 1: Consider the following PBNs with time

delays{
ρ1(t + 1) = f1(ρ1(t), ρ2(t), ρ1(t − 1), ρ2(t − 1)),
ρ2(t + 1) = f2(ρ1(t), ρ2(t), ρ1(t − 1), ρ2(t − 1)),

(21)

where f1 ∈
{
f 11 , f

2
1

}
, f2 ∈

{
f 12 , f

2
2

}
, and P(f1 = f 11 ) =

1
2 , P(f1 = f 21 ) =

1
2 , P(f2 = f 12 ) =

2
3 , P(f2 = f 22 ) =

1
3 .

These boolean functions are as follows
f 11 = ρ1(t) ∨ ρ1(t − 1) ∧ ρ2(t − 1)
f 21 = ρ2(t) ∨ ρ1(t − 1) ∧ ρ2(t − 1)
f 12 = ρ1(t) ∨ ρ1(t − 1)∨̄ρ2(t − 1)
f 22 = ρ2(t) ∨ ρ1(t − 1)∨̄ρ2(t − 1),

Then, we can obtain

M1
1 = M∧M∨(I2 ⊗ 1T2 )

= δ16[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2],

M2
1 = M∧M∨(1T2 ⊗ I2)

= δ16[1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2],

M1
2 = M∨̄M∨(I2 ⊗ 1T2 )

= δ16[2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2],

M2
2 = M∨̄M∨(1

T
2 ⊗ I2)

= δ16[2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2].

Hence, we have M̄1, M̄2, andM , as shown at the bottom of
the page.
Next, we use Algorithm 1 to design the pinning feedback

controllers to steer the PBNs (23) to the objective state δ34 in
probability 1, and δ34 n δ

3
4 = δ

11
16 .

Firstly, since Col11(M ) = ( 13 ,
1
6 ,

1
3 ,

1
6 )
T , we change

Col11(M ) to δ34 .
Secondly, calculate 4(δ1116) = ∪

16
i=14i(δ1116). We find that

41(δ1116) = {δ
2
16, δ

4
16, δ

6
16, δ

11
16, δ

14
16, δ

15
16} and

42(δ1116) = 43(δ1116) = {δ
1
16, δ

2
16, δ

3
16, δ

4
16, δ

5
16, δ

6
16, δ

9
16, δ

10
16,

δ1116, δ
13
16, δ

14
16, δ

15
16}.

Hence, it holds that

4(δ1116) = {δ
1
16, δ

2
16, δ

3
16, δ

4
16, δ

5
16, δ

6
16, δ

9
16, δ

10
16, δ

11
16,

δ1316, δ
14
16, δ

15
16}.

Thirdly, change the 7th, 8th, 12th, 16th columns to δ34 .
Then, M is changed into M̂ as follows
Thus, we have M̂ , M̂1, and M̂2 as shown at the top of the

next page.
Since M̂1 6= M̄1 and M̂2 6= M̄2, there exist F1 and F2 such

that ρ1(t + 1) = F1(u1(t), f1) and ρ2(t + 1) = F2(u2(t), f2).

M̄1 =
1
2
M1

1 +
1
2
M2

1

=

 1 0 1 0 1 0
1
2

0 1 0
1
2

0 1 0 0 0

0 1 0 1 0 1
1
2

1 0 1
1
2

1 0 1 1 1

 ,
M̄2 =

2
3
M1

1 +
1
3
M2

1

=

 0 1 0 1 0 1
1
3

2
3

0 1
2
3

1
3

0 1 1 0

1 0 1 0 1 0
2
3

1
3

1 0
1
3

2
3

1 0 0 1

 ,
M = M̄1 ∗ M̄2

=



0 0 0 0 0 0
1
6

0 0 0
1
3

0 0 0 0 0

1 0 1 0 1 0
1
3

0 1 0
1
6

0 1 0 0 0

0 1 0 1 0 1
1
6

2
3

0 1
1
3

1
3

0 1 1 0

0 0 0 0 0 0
1
3

1
3

0 0
1
6

1
3

0 0 0 1


.
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M̂ = M̂1 ∗ M̂2

=


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 .

M̂1 =

[
1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1

]
,

M̂2 =

[
0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0

]
.

Then, according to the proof of Theorem 2, L1 =

δ2[2, 2, 1, 2] and L2 = δ2[1, 1, 1, 2]. Hence, the log-
ical relationship between fj and uj for j = 1, 2 are
F1 = u1 ∧ f1 and F2 = u2 ∨ f2. Furthermore,
H1 = δ2[2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2] and H2 =

δ2[2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1] can be obtained.
Thus, the feedback controllers can be designed as follows
u1 = [ρ1(t) ∧ (¬ρ2(t)) ∧ (¬ρ1(t − 1)) ∧ ρ2(t − 1)]∨
[¬ρ1(t) ∧ ρ2(t) ∧ (¬ρ1(t − 1)) ∧ ρ2(t − 1)]
u2 = [ρ1(t) ∧ (¬ρ2(t)) ∧ ρ2(t − 1)] ∨ [¬ρ1(t) ∧ [(ρ2(t)∧
ρ2(t − 1)) ∨ (¬ρ2(t) ∧ (¬ρ1(t − 1)) ∧ (¬ρ2(t − 1)))]].

(22)

Then, we can use Algorithm 3 to calculate the minimum
number of pinning controllers. It can be found that the mini-
mum number of pinning controllers is 2 for (21).

V. CONCLUSION
In this article, for PBNs with time delays, the stabilization
issue has been discussed. With the help of STP, the transition
matrix of a PBN with time delays can be obtained, and the
model is converted into a discrete-time linear system. Then,
the necessary and sufficient conditions in the form of the alge-
braic expression for the pinning feedback controllers’ exis-
tence and solvability are given. Moreover, the existence of
minimum pinning nodes is discussed and the corresponding
algorithm is designed. In the future, we will extend the results
of this article to PBNs with more communication constraints,
such as impulsive effects, stochastic perturbations, etc.

REFERENCES
[1] S. A. Kauffman, ‘‘Metabolic stability and epigenesis in randomly con-

structed genetic nets,’’ J. Theor. Biol., vol. 22, no. 3, pp. 437–467,
Mar. 1969.

[2] P. Smolen and D. A. Baxter, ‘‘Modeling transcriptional control in gene
networks—Methods, recent results, and future directions,’’ Bull. Math.
Biol., vol. 62, no. 2, pp. 247–292, Feb. 2000.

[3] M. Imani and U. Braga-Neto, ‘‘Optimal state estimation for Boolean
dynamical systems using a Boolean Kalman smoother,’’ in Proc. IEEE
Global Conf. Signal Inf. Process. (GlobalSIP), Dec. 2015, pp. 972–976.

[4] Y. Wu and T. Shen, ‘‘Policy iteration algorithm for optimal control of
stochastic logical dynamical systems,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 5, pp. 2031–2036, May 2018.

[5] M. Hassoun, N. Intrator, S. McKay, and W. Christian, ‘‘Fundamentals of
artificial neural networks,’’ Comput. Phys., vol. 10, no. 2, p. 137, 1996.

[6] F. Li and J. Sun, ‘‘Controllability of Boolean control networks with time
delays in states,’’ Automatica, vol. 47, no. 3, pp. 603–607, Mar. 2011.

[7] D. Cheng and H. Qi, ‘‘Controllability and observability of Boolean control
networks,’’ Automatica, vol. 45, no. 7, pp. 1659–1667, Jul. 2009.

[8] Y. Li, B. Li, Y. Liu, J. Lu, Z. Wang, and F. E. Alsaadi, ‘‘Set stability and
stabilization of switched Boolean networks with state-based switching,’’
IEEE Access, vol. 6, pp. 35624–35630, 2018.

[9] Q. Zhu, Y. Liu, J. Lu, and J. Cao, ‘‘On the optimal control of Boolean
control networks,’’ SIAM J. Control Optim., vol. 56, no. 2, pp. 1321–1341,
Jan. 2018.

[10] C. Ouyang and L. Li, ‘‘Event-based robust synchronization of Boolean
control networks,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, early access,
Aug. 30, 2019, doi: 10.1109/TCSII.2019.2938588.

[11] Y. Li, J. Zhong, J. Lu, Z. Wang, and F. E. Alssadi, ‘‘On robust synchro-
nization of drive-response Boolean control networks with disturbances,’’
Math. Problems Eng., vol. 2018, pp. 1–9, Aug. 2018.

[12] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang, ‘‘Probabilistic
Boolean networks: A rule-based uncertainty model for gene regulatory
networks,’’ Bioinformatics, vol. 18, no. 2, pp. 261–274, Feb. 2002.

[13] R. Li, M. Yang, and T. Chu, ‘‘State feedback stabilization for probabilistic
Boolean networks,’’ Automatica, vol. 50, no. 4, pp. 1272–1278, Apr. 2014.

[14] Y. Zhao andD. Cheng, ‘‘On controllability and stabilizability of probabilis-
tic Boolean control networks,’’ Sci. China Inf. Sci., vol. 57, no. 1, pp. 1–14,
Jan. 2014.

[15] Y. Liu, J. Cao, L. Wang, and Z.-G. Wu, ‘‘On pinning reachability of
probabilistic Boolean control networks,’’ Sci. China Inf. Sci., vol. 63, no. 6,
pp. 232–234, Jun. 2020.

[16] C. Huang, J. Lu, G. Zhai, J. Cao, G. Lu, and M. Perc, ‘‘Stability and
stabilization in probability of probabilistic Boolean networks,’’ IEEE
Trans. Neural Netw. Learn. Syst., early access, Mar. 24, 2020, doi:
10.1109/TNNLS.2020.2978345.

[17] M. Chaves, T. Eissing, and F. Allgower, ‘‘Bistable biological systems:
A characterization through local compact input-to-state stability,’’ IEEE
Trans. Autom. Control, vol. 53, pp. 87–100, Jan. 2008.

[18] G. Marchese, B. Prochazka, and P. Widimsky, ‘‘The importance of time:
Time delays in acute stroke,’’ Cor et Vasa, vol. 58, no. 2, pp. 225–232,
2016.

[19] G. Wei, Z. Wang, H. Shu, and J. Fang, ‘‘Delay-dependent stabilization
of stochastic interval delay systems with nonlinear disturbances,’’ Syst.
Control Lett., vol. 56, nos. 9–10, pp. 623–633, Sep. 2007.

[20] T. Fang and J. Sun, ‘‘Further investigate the stability of complex-valued
recurrent neural networks with time-delays,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 25, no. 9, pp. 1709–1713, Sep. 2014.

[21] D. Cheng, H. Qi, Z. Li, and J. B. Liu, ‘‘Stability and stabilization of
Boolean networks,’’ Int. J. Robust Nonlinear Control, vol. 21, no. 2,
pp. 134–156, Jan. 2011.

[22] E.Weiss, M.Margaliot, and G. Even, ‘‘Minimal controllability of conjunc-
tive Boolean networks is NP-complete,’’ Automatica, vol. 92, pp. 56–62,
Jun. 2018.

[23] J. Lu, R. Liu, J. Lou, and Y. Liu, ‘‘Pinning stabilization of Boolean control
networks via a minimum number of controllers,’’ IEEE Trans. Cybern.,
early access, Oct. 23, 2019, doi: 10.1109/TCYB.2019.2944659.

154058 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCSII.2019.2938588
http://dx.doi.org/10.1109/TNNLS.2020.2978345
http://dx.doi.org/10.1109/TCYB.2019.2944659


P. Liu et al.: Pinning Stabilization of PBNs With Time Delays

[24] Y. Liu, L. Wang, J. Lu, and L. Yu, ‘‘Pinning stabilization of stochastic
networks with finite states via controlling minimal nodes,’’ IEEE Trans.
Cybern., early access, Jul. 13, 2020, doi: 10.1109/TCYB.2020.3002888.

[25] F. Li, ‘‘Stability of Boolean networks with delays using pinning control,’’
IEEE Trans. Control Netw. Syst., vol. 5, no. 1, pp. 179–185, Mar. 2018.

[26] E. Weiss and M. Margaliot, ‘‘A polynomial-time algorithm for solving the
minimal observability problem in conjunctive Boolean networks,’’ IEEE
Trans. Autom. Control, vol. 64, no. 7, pp. 2727–2736, Jul. 2019.

[27] D. Cheng, H. Qi, and Z. Li, Analysis and Control of Boolean Networks:
A Semi-Tensor Product Approach. London, U.K.: Springer, 2011.

[28] S. Zhu, J. Lu, and Y. Liu, ‘‘Asymptotical stability of probabilistic Boolean
networks with state delays,’’ IEEE Trans. Autom. Control, vol. 65, no. 4,
pp. 1779–1784, Apr. 2020.

PENGWEI LIU is currently pursuing the bache-
lor’s degree with the School ofMathematics, Hefei
University of Technology.

LULU LI received the B.S. degree in mathematics
and applied mathematics from Anhui Normal Uni-
versity, Wuhu, China, in 2007, the M.S. degree in
mathematics from Southeast University, Nanjing,
China, in 2010, and the Ph.D. degree from the City
University of Hong Kong, Hong Kong, in 2013.

He is currently an Associate Professor with the
School of Mathematics, Hefei University of Tech-
nology, Hefei, China. His current research interests
include nonlinear systems, collective behavior in

complex dynamical networks, and multiagent systems.

KAIBO SHI (Member, IEEE) received the
Ph.D. degree from the School of Automation
Engineering, University of Electronic Science and
Technology of China. From September 2014 to
September 2015, he was a Visiting Scholar with
the Department of Applied Mathematics, Univer-
sity of Waterloo, Waterloo, ON, Canada. He was a
Research Assistant with the Department of Com-
puter and Information Science, Faculty of Science
and Technology, University of Macau, Taipa, from

May 2016 to June 2016 and from January 2017 to October 2017. He was also
a Visiting Scholar with the Department of Electrical Engineering, Yeungnam
University, Gyeongsan, South Korea, from December 2019 to January 2020.
He is currently a Professor with the School of Information Sciences and
Engineering, Chengdu University. His current research interests include
stability theorem, robust control, sampled-data control systems, networked
control systems, Lurie chaotic systems, stochastic systems, and neural
networks. He is the author or coauthor of over 60 research articles. He is
a very Active Reviewer of many international journals.

JIANQUAN LU (Senior Member, IEEE) received
the B.S. degree inmathematics fromZhejiangNor-
mal University, Zhejiang, China, in 2003, the M.S.
degree in mathematics from Southeast University,
Nanjing, China, in 2006, and the Ph.D. degree in
applied mathematics from the City University of
Hong Kong, Hong Kong, in 2009.

From 2010 to 2012, he was an Alexander von
Humboldt Research Fellow of PIK, Germany.
He is currently a Professor with the School of

Mathematics, Southeast University. His current research interests include
collective behavior in complex dynamical networks and multiagent systems,
logical networks, and hybrid systems. He has published over 90 articles in
refereed international journals. He was a recipient of the Alexander von
Humboldt Fellowship, in 2010, the Program for New Century Excellent Tal-
ents in University by the Ministry of Education, China, in 2010, the Second
Award of Jiangsu Provincial Progress in Science and Technology as the First
Project Member, in 2016, and the First Award of Jiangsu Provincial Progress
in Science and Technology as the Second Project Member, in 2010. He was
named as a Highly Cited Researcher by Clarivate Analytics, in 2018. He was
elected as a Most Cited Chinese Researchers by Elsevier, from 2014 to
2018. He is an Associate Editor of Neural Processing Letters (Springer),
the Journal of the Franklin Institute (Elsevier), and Neural Computing and
Applications (Springer) and a Guest Editor of Science China Information
Sciences, Mathematics and Computers in Simulation (Elsevier), and IET
Control Theory & Applications.

VOLUME 8, 2020 154059

http://dx.doi.org/10.1109/TCYB.2020.3002888

