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ABSTRACT With the increasing demand for multidimensional data processing, Geometric algebra (GA)
has attracted more and more attention in the field of geographical information systems. GA unifies and
generalizes real numbers and complex, quaternion, and vector algebra, and converts complicated relations
and operations into intuitive algebra independent of coordinate systems. It also provides a solution for
solving multidimensional information processing with a high correlation among the dimensions and avoids
the loss of information. Traditional methods of computer vision and artificial intelligence (AI) provide
robust results in multidimensional processing after being combined with GA and give additional feature
analysis facility to remote sensing images. In this paper, we provide a detailed review of GA in different
fields of AI and computer vision regarding its applications and the current developments in geospatial
research. We also discuss the Clifford–Fourier transform (CFT) and quaternions (sub-algebra of GA)
because of their necessity in remote sensing image processing. We focus on how GA helps AI and
solves classification problems, as well as improving these methods using geometric algebra processing.
Finally, we discuss the issues, challenges, and future perspectives of GA with regards to possible research
directions.

INDEX TERMS Geometric algebra, Clifford algebra, geometric algebra, computer vision, artificial intelli-
gence, quaternions.

I. INTRODUCTION
Geographic information is an important part of the infor-
mation industry and has much importance all around the
world. Geospatial information has both social and market
value as it has a strong correlation with economic, social,
and humanistic information, especially the different types
of information obtained through technology and integrated
using a spatial coordinate system [38]. From the perspective
of urban development, the demand from governments and
enterprises for spatial information is huge. Management use
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information-based softwares to deal with and analyze the
problems of the entire city. The urban basic geospatial infor-
mation platform will lay the foundation for the construction
of urban e-government and build a spatial information plat-
form for enterprise management, decision making, service
industry informatization, and e-commerce, for the construc-
tion of digital communities and public information query for
the community and the public provide spatial information
support [39]. The application of spatial information will drive
a number of industry chains and promote a new information
industry.

Geographical information systems (GIS) are important
support platforms for geographic information and assist
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regional disaster planning, environmental monitoring, disas-
ter prevention, electricity, urban planning, education, national
defense, and other fields. With more big-data features in
geographic information data andmore wide-ranging services,
the spatial data and geographic information calculations faced
by traditional GIS are more complicated and diverse [40].
Existing GIS software provides services to application sys-
tems but is failing to meet the needs of fast and efficient
intensive space computing. The current mainstream GIS
application software programs, such as ArcGIS, MYGIS,
and GeoStar, are based on server or desktop mode in the
application architecture, which use single calculation, and
also the computing power of GIS can no longer meet the com-
plex, highly computationally intensive geographic computing
needs. Different applications and types of algorithm are being
used in the processing of different types of geospatial data,
such as 2D and 3D data (see Fig 1). Therefore, a new com-
puting architecture is needed for the intensive computations
carried out in GIS.

Geospatial data processing problems are another challenge
to information technology (IT) due to geospatial scientific
research and its applications. In the field of geospatial sci-
ence, computationally intensive problems are needed for
spatial data mining, feature extraction, geospatial object
simulation etc.:
• Earth is a huge and complicated dynamic system. It is
composed of many interdependent subsystems, includ-
ing the ecosystem, the atmospheric system, the rock
system, the social and economic systems, etc. The mod-
eling and geospatial analysis of the Earth’s systems in
geographic science are inherently computationally com-
plex. The interaction between any two systems in the
space–time dimension makes the research and calcula-
tion problems more complicated, including spatial data
mining, object extraction, physical data simulation and
multimodel simulation. Many highly computationally
intensive applications are used to study the interactions
and relationships between different earth subsystems
in time series and spatial relationship, e.g. the global
carbon cycle and climate and the Hybrid Single Particle
Lagrangian Integrated Trajectory Model (HYSPLIT).

• Remote sensing images have particular geometric fea-
tures and specific geometric properties. The extraction
of elements in geographic scientific research usually
requires the implementation of complex geospatial algo-
rithms with large amounts of geographical observation
data to obtain the relevant geographical elements. The
implementation of such complex geospatial algorithms
makes the extraction of elements highly computationally
intensive, e.g. objects from satellite images, the denois-
ing of high-resolution satellite images, the storage and
processing of water, and energy and land-use data. These
types of data come from different sensors and time-data
sources, and the traditional single-service processing
model struggles to meet the associated data storage and
processing demands.

• Geospatial simulation of the dynamic changes in the
Earth’s systems has a high degree of computational com-
plexity. For example, simulation of the surface-water
cycle includes a variety of complex system calculations,
such as measuring ocean tide softness, earthquakes, dust
storms, and rivers. This periodic simulation requires
multiple iterations according to the performance of the
data in different time series and often requires a long
calculation time. Therefore, researchers often need high-
performance computing methods to speed up geospa-
tially computationally intensive problems. Calculation
of the model, which obtains the calculation result within
an acceptable time.

Geometric algebra (GA) provide a unified and concise homo-
geneous algebra framework based on advanced geometric
invariants, projection geometry, affine geometry, etc., [1],
[30]. It can efficiently solve the geospatial data processing
problems described above due to its advanced geometrical
vector-based data processing. GA has extremely important
applications in many fields, including geometry, theoretical
physics, and digital image analysis. It is at the forefront of
international geometric algebra research and its applications
are growing in every field of science, including physics, geog-
raphy, electronics, and computing [2], [30]. Hildenbrand et al.
developed GAALOPWeb for Matlab which is helpful for
industrial applications of serial robotic arms [49]. In field of
electronics, Lin et al. shows the advantage of GA in which the
rotor formalism shows how complex coordinate transforma-
tions can be obtained intuitively and directly. Another exam-
ple from his formulates the Maxwell’s equations, in which
the electric and magnetic fields can be represented as part
of a ‘Faraday bivector’ and the four equations reduced to
one [50].

In the field of computer science field, GA is an emerging
powerful tool, the applied research in computer graphics,
computer-aided design, computer vision, animation, robotics,
and other high-tech fields has become important for future
developments [3], [30]. Its feature of multidimensional-
unified representation makes GA a hot research in geogra-
phy. Yuan et al. proposed a multidimensional-unified data
model based on GA and developed a prototype software sys-
tem based on unified spatial–temporal analysis (CAUSTA)
for investigating and modeling the distribution charac-
teristics and dynamic processes of complex geographical
phenomena [41], [43].

GA has been widely employed as a new mathematical
tool for multidimensional-unified representation and compu-
tation. For example, Luo et al. developed a new data structure
to support the unified organization and computation of geo-
metrical primitives. This can reduce the complexity of data
architecture and improve the processing ability of computer
graphic software, however, the extra two dimensions in con-
formal geometric algebra could lead to low efficiency [44].
Yu et al. implemented multidimensional representation for
3D vector data and calculated the intersection relations
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FIGURE 1. Geospatial data processing issues and needs.

between Delaunay triangulated irregular networks (DTINs)
with a meet operator. They conducted parallel computation
using a graphics processing unit (GPU) to improve computing
efficiency [42].

Feature extraction of a given image is a key step in many
computer vision and image analysis tasks, such as satellite-
image denoising, remote sensing image object identifica-
tion, image fusion, super-resolution reconstruction, and target
recognition [4]. At present, there are many solutions, but due
to mathematical limitations, these methods mostly deal with
grayscale images, and the matching of color images is rarely
studied. The common method used for color image matching
is to convert the images into a grayscale images and then use
the gray image method to match them. Converting a color
image into a grayscale image leads to the vector attributes of
the color and some important color information being lost,
however, which can cause matching failures. GA provides
a solution for this via its sub-algebra quaternions [5], [30].
Fig 2 shows the overall architecture of the features of GA that
help process multidimensional data.

In this review, we provide an overview of the theory
and applications of GA, mainly in the areas of geospatial
artificial intelligence, satellite image and signal processing,
and computer and robot vision. The enormous range of
applications that have been developed during the past few
decades makes a complete overview next to impossible,
therefore, we restricted the review to the fields that are most
focused in the last few years: image processing and artificial
intelligence (AI).

The paper is organized as follows: Section II gives a
brief introduction of GA, quaternions, and basic geometric
operations. Starting from the expansion of vector algebra,
it introduces the basic concepts and basic operations in GA
before introducing the geometric points, such as points, lines,
and surfaces, and the geometric relations of the intersection,

union, and duality in the geometric algebra of homogeneous
space. Section III gives a brief introduction of the modern
implementations of GA in image processing and AI, and
the final section discusses the importance of CA, the latest
development, and the future perspectives.

II. BACKGROUND
Clifford Algebra (CA) was introduced by W. K Clifford as
a mathematical tool [7] that can be used for both theoret-
ical research and practical engineering. CA is also called
Geometric Algebra and since its appearance, many physi-
cists have applied it to physics to deal with time and
space problems. After over 100 years of hard work by
physicists and mathematicians, GA evolved into a more
mature geometric theory [8]. With the development of
computer technology, some researchers have applied GA
to the field of information processing, including com-
puter vision, robotics, image processing, etc., and achieved
significant results. In this section, we provide the basic
mathematical operations of Clifford-based algebra with the
Fourier transform and the implementation of sub-algebra
quaternions.

Before explaining geometric operations, we need to intro-
duce bivectors, trivectors, and k-blades to better understand
GA. In GA, there is a geometric operator called an outer
product, which is different from the product extending from
one vector to another. This operator is represented by ∧
(wedge product). The outer product a ∧ b of the two vectors
is shown in Fig 3.

The result of the outer product operation is a two-
dimensional subspace, also called a bivector or a plane
quantity. The area of the plane quantity is the size of the
parallelogram. This parallelogram has ‘a’ and ‘b’ as sides and
a clockwise arc along the way and ‘b’ as the direction. The
plane quantity has no shape. The reason why it is described
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FIGURE 2. GA model for solving high dimensional data.

FIGURE 3. The vector a extends to b.

as a parallelogram is to make this area more visual and easy
to understand. Mathematically, if the ‘b’ vector extends to
the ‘a’ vector, the area of the resulting planar quantity is the
same but the direction is opposite (counterclockwise). The
outer product is anticommutative, that is:

a ∧ b = −b ∧ a (1)

Further, get:

a ∧ a = 0 (2)

Also, the outer product also has some properties:

(λa)∧b = λ(a ∧ b) (3)

λ (a ∧ b) = (a ∧ b)λ (4)

a ∧ (b+ c) = (a ∧ b)+ (a ∧ c) (5)

A. CLIFFORD ALGEBRA SPACE
A set of substrates is generated in all spaces. These substrates
constitute the GA subspace, and the symbol is denoted as Gn.
First, take the base of G2 as an example:{

1, e1e2, I
Bases calar Base vector Base double

}
Here, 0 and 1 are based scalar, and I is a representation of
basis bivector. In Clifford algebra, any element of G2 can
be represented as a linear combination of these substrates.

TABLE 1. Comparison table of the total number of substrates.

The total number of substrates of a geometric number is the
sum of the number of all substrate k products:∑n

k=o

(
n
k

)
= 2n (6)

Using eq. (6), the following are the geometric numbers gen-
erated in Table 1:

B. GEOMETRIC PRODUCT, MULTIPLE VECTORS,
AND INNER PRODUCT
The geometric product of any two vectors a and b can be
calculated as follows:

ab = a • b+ a ∧ b (7)

We know that complex numbers consist of real and imaginary
numbers. Similarly, it can be seen from the above formula
that ab is composed of a number and a bivector, and product
combination becomes multiple vectors.

Multiple vectors are linear combinations of different kinds
of k-slice products. For example, in a two-dimensional space,
it contains a bivector of numbers and vector traces:

α1︸︷︷︸
Scalar part

+α2e1 + α3e2︸ ︷︷ ︸
vector part

+ α4I︸︷︷︸
bivector part
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αi is a real number and i=1,2,3,4: 4 real numbers are
needed to represent complete multiple vectors in 2D space.
Three-dimensional and four-dimensional space can refer to
the above Table 1

Multiple vectors as a linear combination of subspaces have
derived many different concepts in the geometric product.
Generally speaking, geometry is an operator of multiple vec-
tors, which has the following characteristics:

(AB)C = A(BC)

λA = Aλ

A (B+ C) = AB+ AC (8)

What needs to be said is that there is no commutative law,
that is, AB 6= BA, nor anti-commutative. Select any multiple
vectors A and B in G2:

A = α1 + α2e1 + α3e2 + α4I (9)

B = β1 + β2e1 + β3e2 + β4I (10)

The geometric product of A makes B multiplied by:

AB = (α1 + α2e1 + α3e2 + α4I )B (11)

By the law of distribution:

AB = α1B+ α2e1B+ α3e2B+ α4IB (12)

Substitute B and arrange the order of multiplication to get:

AB = α1β1 + α1β2e1 + α1β3e2 + α1β4I

+α2β2 + α2β2e1e1 + α2β3e1e2 + α2β4e1I

+α3β1 + α3β2e2e1 + α3β3e2e2 + α3β4e2I + α4β1I

+α4β2Ie1 + α4β3Ie2 + α4β4II (13)

It can be seen that the linear combination of the geomet-
ric product of the substrates can represent any multivectors
because the geometric product is enough. The following is
the geometric product operation for different combinations:

e1e1 = e1 • e1 + e1 ∧ e1 (14)

According to the previous description of the outer product,
we can know e1 ∧ e1 = 0, and the dot product of a vector
and itself is equal to the square of its size. If the size of
e1 and e2 is 1, the result of the previous calculation can be
simplified to:

e1e1 = e1 • e1 + e1 ∧ e1
= 1+ 0

= 1 (15)

Another combination of e1e2, because e1 and e2 are perpen-
dicular, so the dot product is 0, so:

e1e2 = e1 • e2 + e1 ∧ e2
= 0+ I

= I (16)

There is also a more complicated combination, the geometric
product of e1 and I. The previous example has shown that
I = e12 is equal to e1e2, so e1I is calculated:

e1I = e1e12
= e1(e1e2)

= (e1e1)e2
= (1)e2
= e2 (17)

Because the substrate is vertical, neither dot product nor
outer product is meaningful, so this produces certain rules
for simplifying the result of the geometric product as shown
in Table 2:

TABLE 2. Comparison table of substrate products in G2.

C. COMMON GEOMETRIC OPERATIONS OF CA
In CA, to operate rotation, we can use the spin. Taking a
bivector object as an example, suppose there is a bivector B
so that it is around an axis a or a bivector a∗ = A related to
a, then it is expressed as follows.

The spin is:

R = cos
θ

2
+ sin

θ

2
A (18)

The spin can not only rotate vectors and bivectors but also
apply to arbitrary multivectors such as trivectors and qua-
trivectors and so on. It is also convenient to use it to rotate
a plane.

III. GA AS A REPRESENTATION STRUCTURE FOR
GEOSPATIAL DATA
With the advancement of geographic data collection, geo-
graphic phenomenon observation, and geographic modeling
methods, more and more attention has been paid to the
expression, analysis, andmodeling of geographic phenomena
and processes. GIS should be able to express and analyze dis-
crete space and continuous space and discrete processes and
continuous processes uniformly and realize the reproduction
and simulation of geographic objects’ own characteristics, the
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FIGURE 4. Geospatial data analysis model using GA.

relationship between geographic objects, and their spatiotem-
poral changes. The complexity, diversity, and continuity of
real-world geographic entities and geographic phenomena
have led to the complexity of GIS data models, however. It is
now important to determine a way to strengthen the ability
of GIS spatial data models to express and analyze complex
geographic objects and continuous geographic phenomena,
and develop corresponding GIS spatial methods on this basis,
to better reveal the evolution process and characteristics of
geographic phenomena.

The scope of GIS applications continues to expand,making
the expansion from 2D GIS to 3D GIS and temporal GIS
an inevitable trend of GIS development. The transformation
from processing 2D objects to 3D and even high-dimensional
objects not only means an increase in the amount of data, but
has also led to changes in object type and spatial relation-
ships. The existing GIS data model cannot directly expand
the dimension, or at least finds it difficult to do this. When
facing multidimensional spatio–temporal analysis, the model
has to deal with the complexity of dimensional expansion,
the inconsistency and asymmetry of different dimensional
operations, the ambiguity of spatio–temporal features, and
the inconsistency of semantics.

Moreover, most of the existing GIS spatial data models
only focus on the expression of geometric objects, such
as measurement, orientation, and topological relationship,
which need to be obtained through real-time calculations and
make the query, analysis, and calculation efficiency relatively
low in complex scenarios. Innovating on the basis of the
underlying mathematics, establishing a unified expression
and calculation framework of different dimensions is a pos-
sible way of GIS data model innovation at this stage.

Yuan et al. [43] proposed a solution for geospatial data
analysis using GA. The study indicated that GA can pro-
vide a new mathematical tool for the development of GIS

characterized asmultidimension-unified expression and com-
putation. For the development of geographical analysis
methods, GA can conveniently represent multidimensional
spatio–temporal changes. The effective integration of GIS
spatial analysis and the geographic model is an important
direction of the current development.

The lack of an underlying mathematical theoretical foun-
dation is an existing bottleneck in spatial analysis and geo-
graphic model integration. Existing data models lack unity
in terms of multidimensional object expression, storage, and
maintenance of topological relationships. The separation of
the expression and operation of objects of different dimen-
sions not only increases the complexity of data models,
analysis algorithms, and system architectures but also makes
it difficult to support the computational needs of complex
geographic temporal models.

On the other hand, due to the spatial and temporal multi-
scale characteristics of geographic phenomena and processes,
complex geographic phenomenon expression and model
analysis often need to deal with multiple coordinate systems,
e.g. Cartesian coordinates, spherical coordinates, and polar
coordinates. The existing processing of objects in different
coordinate systems is mostly achieved through complex coor-
dinate system conversion, however, which increases process-
ing complexity and uncertainty.

IV. GA AS A FEATURE EXTRACTION TOOL FOR
GEOSPATIAL
Most of our reality exists in high data volume, high dimen-
sionality, non-equilibrium, non-linear, unstructured informa-
tion systems. Therefore, finding a way to discover and learn
the inherent regularity in a large amount of data has become
a problem in the field of machine learning research [6].
We generally think of models as vectors or points in
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FIGURE 5. GA formalization of the geographical space into mathematical space.

finite-dimensional Euclidean space and the entire dataset as
represented by a data matrix.

With the deepening development of research topics in
pattern recognition, the problem of feature representation
has been given more and more attention. The key to solving
this problem is finding a mathematical model that can effec-
tively represent the correlation between pattern features and
higher-order structures. GA mainly uses two core concepts,
geometric product and multivectors, to perform subspace
representation and geometric calculations. This paper also
reviews the advantages of GA for pattern classification and
feature extraction of pattern recognition. AI applications
in pattern recognition technology are to express a certain
pattern to be classified as a computer language, which is a
form acceptable to computing. The process uses computer
processing and data description to encode objects in the
objective world.

Every geographical scene can be classified as a geometric
structure, as shown in Fig 5. From that structure, data analysis
based on the features of each subset can be easily achieved.
GA provides a unique way of transforming geographical
scenes into vector-based data structures to process objects and
extract information. Most of our reality exists in high data
volume, high dimensionality, non-equilibrium, non-linear,
unstructured information system. Therefore, how to discover
and learn the inherent regularity from a large amount of data
set information has become a difficult problem in the research
process of the field of machine learning research.

During the last 15 years, new algorithms for pattern recog-
nition, classification, and object extraction have been devel-
oped in the AI field. Tuan et al. proposed a face-detection
algorithm that used AdaBoost with GA to identify the geo-
metric features of human faces [45]. This small subset of
features can be used to achieve accurate results and to
develop a strong classifier with comparable performance and
accuracy.

Principal component regression (PCR) is useful for extract-
ing features of hyperplanes [47]. If the data is not distributed
along hyperplanes (e.g. it is distributed on hyperspheres like
rotation objects), however, the PCR cannot extract the good
features to solve the classification problems. Combining PCR
with GA can solve this problem, and a new feature extraction

method is proposed by calculating the conformal eigenvec-
tors in conformal geometric algebra (CGA) space to find the
approximated hyperplanes or hyperspheres that fit the data
using the least squares approach [47]. Another approach uses
entropy theory for feature extraction in 3D flow fields using
GA [46]. Feature extraction is also helpful for extracting
geometric invariant features with GA from spatial vector data
[48]. Minh et al. developed a semi-supervised kernel to mea-
sure the similarity between two series of spatial vectors based
on hidden Markov models and used it to find the patterns in
online handwritten digits.

We generally think of models as vectors or points in finite-
dimensional Euclidean space and the entire dataset as rep-
resented by a data matrix. With the deepening development
of research topics in pattern recognition, the problem of
feature representation has been paid more and more attention.
The key to solving the problem is to find a mathematical
model that can effectively represent the correlation infor-
mation between pattern features and higher-order structures.
GA mainly uses two core concepts: geometric product and
multi-vector to perform subspace representation and geomet-
ric calculation. GA is being used in AI to solve the traditional
classification problems for vectors and multiple inputs.

A. QUATERNION
Hamilton invented the Quaternion which is a non-
commutative extension of complex numbers. If the set of
complex numbers is considered to be a multi-cone real
number space, then the complex number represents a two-
dimensional space. The general quaternion of space is
expressed as follows, and the symbol ‘‘H’’ is used to express
the quaternion space.

H = γ0 + i • γ1 + j • γ2 + k • γ3 (19)

A quaternion has 4 components, γ0 is the real part, and the
remaining three are the imaginary parts, where γ1, γ2, γ3εR
(real number set), i, j, k are the corresponding number factors,
and satisfy the relationship:

i2 = j2 = k2 = ijk = −1

ij = −ji = k, jk = −kj = i, ki = −ik = j (20)
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When the parameter γ0 = 0, in this special case, the quater-
nion q is called pure quaternion. For the general quaternion q
there are the following calculation properties.

Totally:

q̄ = γ0 + i • γ1 + j • γ2 + k • γ3
= γ0 − i • γ1 − j • γ2 − k • γ3 (21)

Modulus:

|q| =

√∑3

i=0
γ 2
i (22)

When the modulus is 1, the quaternion q is called the unit
quaternion.

Meet the multiplication distribution law:

q1q2q3 = (q1q2) q3 = q1(q2q3) (23)

Satisfying the law of multiplication

q1 (q2 + q3) = q1q2 + q1q3 (24)

λ (q1 + q2) = λq1 + λq2, λ is a real number (25) It is
worth pointing out here that quaternion multiplication does
not satisfy the commutative law, i.e. q1 • q2 6= q2 • q1.

For a given two quaternions q1, q2εH , i.e.

q1 = a0 + i • a1 + j • a2 + k • a3 (25)

q2 = b0 + i • b1 + j • b2 + k • b3 (26)

Addition and Subtraction can be done as follows:

q1 ± q2 = (a0 ± b0)+ (a1 ± b1) • i

+ (a2 ± b2) • j+ (a3 ± b3) • k (27)

Multiplication:

q1q2 = (a0b0 − a1b1 − a2b2 − a3b3)

+ (a0b0 + a1b0 + a2b3 − a3b2) • i

+ (a0b2 + a2b0 + a3b1 − a1b3) • j

+ (a0b3 + a3b0 + a1b2 − a2b1) • k (28)

Dot product:

q1 • q2 = a0 • b0 + a1 • b1 + a2 • b2 + a3 • b3 (29)

q1 • q2 =
Sq1q2 + Sq2q1

2
(30)

The dot product of quaternions is an commutative product.
Inverse operation:

q−11 =
Sq1

q1 • 2
(31)

Due to the non-commutability of quaternions, generally

q−11 q2 6= q2q
−1
1 (32)

This means that expressions like q2/q1 cannot be used unless
q1 is a scalar.

B. CLIFFORD FOURIER TRANSFORMATION (CFT)
Clifford Fourier transformation (CFT) provides frequency-
based embedding of a watermark in any type of image.

The CFT of G3 space can be expressed as follows:
For a vector worker x ∈R3, f :E3

→G3, with Clifford-
Fourier Conversion:

F{f} (u) =
∫
E3

f(x)e(−2π i3(x,u)) |dx| (33)

Among them, E3 is a 3-dimensional real number domain
vector space, arithmetic, x,x’, u ∈ E3, i3 = e1e2e3, ei is the
unit vector.
Clifford-Fourier inverse conversion (ICFT)

F−1{f} (x) =
∫
E3

f(u)e(2π i3(x,u)) |du| (34)

According to the above formula, it can be obtained that
the CFT kernel e(−2π i3(x,u)) is a multi-vector value, which
contains a scalar and a pseudo-scalar.

For f :E3
→G3 there are:

f = f0e1 + f1e1 + f2e2 + f3e3 + f23e23
+ f31e31 + f12e12 + f123e123

= [f0 + f123i3] 1+ [f1 + f123i3] e1
+ [f2 + f13i3] e2+[f3 + f12i3]e3 (35)

According to the linear characteristics of CFT, it can be
concluded that:

F {f} (u) = [F {f0 (x)+ f123 (x) i3} (u)] 1

+ [F {f1 (x)+ f23 (x) i3} (u)] e1
+ [F {f2 (x)+ f31 (x) i3} (u)] e2
+ [F {f3 (x)+ f12 (x) i3} (u)] e3 (36)

Clifford Fourier transform allows a frequency analysis of
vector fields and of the behavior of vector valued filters.
In frequency space, vectors are transformed into general
mulitvectors of the Clifford Algebra. Many basic vector val-
ued pattern such as source, sink, saddle points and potential
vortices can be described by a few multivectors in frequency
space [60].

V. GA AS AN INTELLIGENT COMPUTATIONAL
ACCELERATOR FOR GEOSPATIAL DATA PROCESSING
A. GA WITH A SUPPORT VECTOR MACHINE
A support vector machine (SVM) is a machine learning
method based on statistical learning theory. This method
seeks to minimize structured risk to improve the general-
ization ability of the learning machine and to minimize the
experience risk and confidence range, to achieve In the case
of small statistical sample size, the purpose of good statistical
law can also be obtained. Generally speaking, it is a two-
class classification model, and its basic model is defined as a
linear classifier with the largest interval on the feature space.
In other words, the learning strategy of SVMs is to maximize
the interval, which can be converted into convex quadratic
solving planning problems.

155790 VOLUME 8, 2020



U. A. Bhatti et al.: GA Applications in Geospatial AI and Remote Sensing Image Processing

There is a lot of traditional method of SVM development
like twin SVM [51] which used for running SVM two times
but not fast. On this basis, the V-twin SVM [52], least squares
twin SVM [53], smooth twins SVM [54], and least squares
projection twin SVM [55] are derived, which is the progres-
sive timely development is solving a classification problem.
Another change is the fuzzy SVM (FSVM) [56], which uses
a fuzzy math function to overcome the influence of noisy data
on the SVM. Later on, the fuzzy least square SVM (FLS-
SVM) [57] based on the least square function and FSVM,
mainly to solve the unclassifiable part. To overcome the
shortcomings of the mixed noise, such as singular points and
Gaussian noise, a new type of FSVM, called a fuzzy robust
v-SVM (FRv-SVM) [58], the combination of triangle fuzzy
theory, v-SVM, and robustness can effectively punish these
mixed noises.

ACASVM (CSVM)was developed based on the real num-
ber SVM. The latter solves the multi-classification problem,
mainly constructs multiple classifiers based on real number
support vector machine, so there are inevitably many prob-
lems, such as calling the quadratic programming function too
many times [59]. The major benefit of using the CSVM is
that it takes multiple types of vectors in the input side and
helps perform multi-classification. While the other types of
SVMs need a large amount of memory storage to perform
training multiple times and the recall phase also requires the
same time.

By using a SVM, Bayro-Corrochano et al. [9] were able
to generalize the real-valued and complex-valued SVM for
multi-classification of hypercomplex SVM (CSVM), propose
CSVMs based on multiple-input multiple-output (MIMO),
and use CSVM for classification, regression and recurrency.

Later on, a quaternion SVM (QSVM) [10] was devel-
oped that provides a bridge between the CSVM [9] and the
complex-valued SVM [11]. The QSVM uses the sign func-
tions to evaluate the quaternion given by the classification
process and decide which class the input vector corresponds
to:

y = qsignm

 l∑
j=1

(aj • j)(k (xn,X)+ b)

 (37)

where the quaternion function is denoted by q, they belong to
H (y ∈ H), m is a number of classes considered for classifica-
tion, those being 2m. The output y ∈H can classify up to 24 =
16 classes. The QSVM is mainly used for pattern recognition
and classification. Table 3 shows the detailed applications of
CSVMs.

B. GA WITH NEURAL NETWORKS
During the past few decades, the stability of real-valued
neural networks (NN) has matured and they have achieved
many outstanding results [16]. At present, deep learning (DL)
is very popular in the field of algorithms. The NNsmentioned
here are not biological NNs, therefore, we call them artificial
NNs (ANNs), which seems more reasonable. NNs were the

TABLE 3. Clifford based SVM application.

earliest algorithms or models to be developed in the field
of AI. More recently, NNs have developed into a multi-
disciplinary and interdisciplinary field. It has also been re-
emphasized and respected with the progress of DL.

ANNs combine the knowledge of a biological NN with
a mathematical–statistical model and realizes it with the
help of mathematical–statistical tools [17]. In the AI field
of artificial perception, mathematical statistics are used to
enable NN to have human-like decision-making abilities and
simple judgment abilities. This method is a further extension
of traditional logic calculations.

Recently, as an extension of the real-valued NNmodel, the
Clifford NN has become a popular research area. NNs with
function approximation capabilities require operations such
as enhancement, rotation, and expansion, such as backpropa-
gation (BP) NNs. Although these operations are limited by
the Euclidean metric in a real-valued NN, in the Clifford-
valued NN, GA has the characteristics of coordinate less
frame and projective splitting, which means that the metric
is feasible. Therefore, these operations can be performed
effectively in Clifford NNs.

Pearson et al. first used the Clifford NN [18] by extend-
ing the traditional multi-layer perceptrons to allow activa-
tion, threshold, and weight values to take on complex val-
ues instead of real values. Later, conventional real-valued
models of recurrent NNs were extended into the domain
defined by GA [19]. The main focus was proposing models
of fully connected recurrent NNs, which are extensions of
the real-valued Hopfield-type NNs to the domain of CA.
Due to the pioneering work of Bayro et al. [63], formulated
the first geometric neuron and the Clifford forward neural
network.

Buchholz [20] introduced basic Clifford neurons (BCN),
another multi-layered Clifford NN but with a split-type acti-
vation function, which is different from the one Pearson
adopted. He showed that single neurons already described
geometric transformations and studied the spinor Clifford
neurons (SCN), whose weights act like rotors from two
sides. Shen at el. [21] proposed fuzzy cellular Clifford
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NNs to avoid the inconvenience of the non-commutative
multiplication of Clifford numbers, which decompose the
considered n-dimensional Clifford-valued systems into 2m
n-dimensional real-valued systems. Then, by using the
Banach fixed-point theorem and a proof by contradic-
tion, they established sufficient conditions for ensuring
the existence, uniqueness, and global exponential stability
of Sp-almost periodic solutions for the considered NNs.
Takahashi et al. [22] proposed recurrent quaternion NNs
(RQNN), which aid in designing an adaptive-type controller,
and also investigated their usefulness in servo-level controller
applications.

VI. GA APPLICATIONS IN IMAGE PROCESSING
A. GA AND IMAGE WATERMARKING
In the early traditional watermarking algorithm, the water-
mark information was embedded in the lowest position of
the pixel in the spatial domain of the image. The robustness
of this method is not high, however. In recent years, many
researchers have proposed amethod ofwatermark embedding
in the transform domain. Due to the characteristics of the
energy distribution in the transform domain, the watermark
embedding algorithm can guarantee the invisibility of the
watermark. This algorithm first transforms the image (using a
discrete cosine transform, Fourier–Mellin transform, wavelet
transform, etc.) and then embeds the watermark information
into the changed coefficients for the transformed situation.
As this method improves the robustness of the watermark
embedding algorithm, it has proven popular. There are
also many other watermark embedding algorithms, such as
fractal-based and NN-based.

Affes et al. [23] designed a CFT content-based watermark,
which employs the Harris detector to find the area of interest,
then uses the CFT to embed it in the frequency of the image.
In our other work [1], we used the quaternion Fourier trans-
form (QFT) to watermark color images as RGB components
are perfectly handled in quaternion-based CA. Hsu et al. [24]
used quaternion the discrete Fourier transform (QDFT) via
the modulation technique, while Hosney et al. [24] used
quaternion Legendre-Fourier moments (QLFMs) to embed
a watermark in polar coordinates. In the latter’s new work,
they used the polar complex exponential transform (PCET)
and quaternion PCET (QPCET) [26] to embed watermarks in
medical images.

The quaternion polar harmonic transform (QPHT) [27]
is useful for lossless watermarking after embedding it with
the chaotic encryption to improve the security. The Clifford
analytical Fourier–Mellin transform (CAFMT) [28] improves
upon the analytical Fourier–Mellin transform (AFMT) and
makes it applicable to color images due to its invariant prop-
erty against planar similarities. In our recent work, we pro-
posed QFT-based watermarking using advanced encryption
of watermarks with R, G, and B colors being handled sepa-
rately [1]. Fig 6 shows our proposed approach for embedding
watermark after QFT and then restoring image by IQFT with
better results of embedding.

FIGURE 6. Watermarking with QFT [1].

B. GA AND IMAGE EDGE DETECTION
Extracting information from numerous and diverse image
data is the key to this data’s usability. The edge reflects the
main structure, main outline, and skeleton of the image, it is
a relatively direct feeling for people to interpret the image,
and is also the basis for image segmentation and target recog-
nition. The Wavelet and Clifford wavelet [30], [64] has the
advantages of multidimensional unified expression and time-
frequency localized analysis and can analyze images accord-
ing to scale, phase, and direction. Pixel-based data mining
the multi-dimensional characteristics of image information in
the dimension space of Clifford wavelet to realize the unified
expression and processing of the three components of the
color image. Extracting the phase information in different
directions, realize the fusion of wavelet filtering methods in
multiple directions.

Wenming et al. [61] use Clifford differential and the Clif-
ford gradient multispectral image for edge detection and
fusion algorithm. The algorithm first calculates the Clifford
gradient of each pixel, and then obtains the Clifford gradient
norm; then, based on this, judge whether the pixel is a bound-
ary point, and then obtain multiple images. Edge detection
image; finally, these images are fused to obtain the final edge
image. Another similar approach is tested byXu et al. [62] for
multispectral images in which comparasion of performance is
done with maximal entropy edge detection algorithm reveals
that the edge detection based on Clifford gradient is better
at retaining and identifying edge information of the mul-
tispectral image than the maximal entropy edge detection
algorithm.

Saqwine et al. [29] provided edge detection using the QFT.
Quaternion fractional differential (QFD) [31] and quater-
nion fractional directional differentiation [32] helpful in edge
detection by the generalization of general fractional differ-
entiation and quaternion. Yasmin et al. [33] developed a
multi-directional edge detector for color images by using
quaternions of GAwith a filter mask in four dimensions (π /2,
5π /2, 3π /2, and 7π /2), as shown in Fig 7. For color images,
a quaternion Hardy filter (QHF) and Di Zenzo gradient oper-
ator [34] via the QDFT in the frequency domain improves
performance. For remote sense images, edge detection is able
to provide valuable benefits by using the QFT and a masking
filter.
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FIGURE 7. Filter mask implementation at different angles.

FIGURE 8. Edge detection using quaternion Hardy filter [34].

Wenshan et al. [34] tested the results of edge detection with
different noise addition and results were satisfactory against
all types of noise on image as shown in Fig 8.

C. GA AND IMAGE SEGMENTATION
Image segmentation is the most basic and most important
step of image processing. Through the development of image
segmentation technology in the field of image processing,
a detailed and accurate basis for subsequent image process-
ing has been provided. By separating the target features in
the image, the identification of the target in the image is
improved, tomake themmore efficient, accurate, and targeted
analysis of the processed image and make more comprehen-
sive use of the image.

Image segmentation is one of the most important and chal-
lenging problems for low-level vision in the field of computer
vision. In image processing, segmentation as the basic step,
the results directly affect the final analysis results, but also
the image conveys the information that has a very important
impact. It is also important in image engineering as it is a
critical step that needs to be taken before the images are
analyzed. Image segmentation also plays an important role
in target detection, face recognition, computer vision, AI, and
other fields [30]. Fig 9 shows the way color can be segmented
by CA.

Khan et al. used GAwith a masking filter to perform image
segmentation and used that technique for agriculture image
segmentation as one of application [35]. A quaternion oper-
ator with the Fourier transform was implemented to perform
segmentation with a masking filter to filter the colors in an
RGB image. Another Clifford-based application of image
segmentation is blood vessel segmentation in human eyes
for the diagnosis of diabetes and hypertension [36]. Using

FIGURE 9. Color segmentation by GA in the 3D cube of RGB.

image vectorization, the image is converted from image space
to Clifford space. The next step then introduces a Clifford-
matched filter for the extraction of a retinal blood vessel via
a masking function. The third and final step of this method
is a Clifford convolution operation. A 3D biquaternion Clif-
ford analytic signal (CAS) [37] is proposed, which helps in
breast lesion segmentation by creating a 3DClifford temporal
image (CTI).

VII. CONCLUSION
The main limitations of the traditional approach are that its
primitives are too low-level and all geometric concepts have
to be represented by vectors and matrices. This creates a
separation between geometric reasoning and matrix-based
algorithms, which in turn leads to implementation errors.
GA is broad and profound and has links to many fields
in mathematics and physics. It is widely used in general
relativity, quantum mechanics, quantum field theory, pro-
jective geometry, differential geometry, conformal geometry,
etc. GA recently became an important tool in the field of
computing due to its vast applications in robotics, computer
vision, and machine learning.

In this paper, we have discussed the advantages of GA
in multidimensional signal processing, geometric quantities,
geometric relationship modeling, AI, and geometric calcu-
lations with regards to its application in computer vision.
We began with an introduction of GA in different fields of
science to emphasize its importance in computer science.
Then, we discussed the basic geometric operations of GA and
showed how it is different from traditional algebra. We also
discussed its applications in AI and the latest innovations
using GA and quaternions, as well as its application in com-
puter vision.

GA is important in medical science and computer vision
due to its application in handling color by using vector and
its ability to solve AI classification problems. The main work
of GA is as follows:

• Geometry is the foundation of computer vision and the
basis for modeling and calculating various problems.
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This paper discussed the basic geometric operations of
GA and provided an overview of how it is different from
traditional algebra and geometric operations. We ana-
lyzed the GA representation of geometric points, such
as points, lines, and surfaces in projective geometry,
as well as geometric algebraic representations, such as
intersection, union, and the duality of geometric bodies.

• Image segmentation, edge detection, and registration
of image are key steps in many image analyses and
computer vision tasks. There are currently many solu-
tions, but due to mathematical limitations, most of these
methods process grayscale images only. This article first
analyzed the definition of Clifford geometrical opera-
tions and quaternions, and then the properties of spatial
translation, rotation, scaling, etc. Advance implemen-
tation of the CFT was discussed regarding its real-life
applications.

The implementation and advantages of SVMs and AI were
discussed regarding the real-time difference between the non-
geometric SVM and NNs and the Clifford SVM and NNs.
Future studies for application of GA will be on advance
machine learning algorithm such as capsule neural networks.
Clifford-based AI methods are useful for solving big-data
problems quickly and more efficiently.
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