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ABSTRACT Multimodal transportation has become a main focus of logistics systems due to environ-
mental concerns, road safety issues, and traffic congestion. Consequently, research and policy interests
in multimodal freight transportation problems are increasing. However, there are major challenges in the
development of multimodal transportation associated with inherent risks and numerous uncertainties. Since
risks are potential threats that directly impact logistics and transportation systems, comprehensive risk
analysis should be carried out. Risk analysis is a critical process of identifying and analyzing significant
issues to help industry mitigate those risks. However, identifying and prioritizing risks is more complex
because of the ambiguity of the relevant data. This study proposes the integration of the fuzzy analytic
hierarchy process (FAHP) and data envelopment analysis (DEA) for identifying and assessing quantitative
risks. The proposed FAHP-DEA methodology uses the FAHP method to determine the weights of each risk
criterion. The DEA method is employed to evaluate the linguistic variables and generate the risk scores.
The simple additive weighting (SAW) method is used to aggregate risk scores under different risk criteria
into an overall risk score. A case study of the coal industry demonstrates that the proposed risk analysis
model is practical and allows users to more accurately prioritize risks while selecting an optimal multimodal
transportation route. The process raises user’s attention to the high-priority risks and is useful for industries
in optimizing a multimodal transportation route under risk decision criteria.

INDEX TERMS Multimodal freight transportation, logistics, optimal route, risk analysis, risk assessment,
DEA, FAHP.

I. INTRODUCTION
Freight transportation is an integral supply chain element
for providing timely availability and effective movement of
raw materials and finished goods [1]. Due to trade glob-
alization, a traditional truck-only mode is no longer a fea-
sible solution for all scenarios. Besides, traffic congestion,
road safety and environmental issues are concerned on the
agenda. Consequently, the EU transport policy aims to reduce
road transport in favor of less polluting and more-energy
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efficient modes of transport. Multimodal transportation
is currently a key element of modern transportation
systems.

However, when focusing on the multimodal freight trans-
portation system, many problems can be seen [1]–[5]. Since
multimodal transportation comprises many factors and inter-
actions among the different modes can be quite complex [2],
leading to increased risk and uncertainty [3]. Risks are
potential threats that instantly impact the transportation
system [6]. Particularly in multimodal transportation, risks
directly associated with accidents play a critical role not only
in impacting cost and time but also in lessening competitive
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advantage [7]. Moreover, risks can disturb the logistics
process, impact delivery timeliness and cause damage to
freight and unexpected costs or delays [3], [7]–[9].

There are a large number of highly possible accident sce-
narios in the freight transportation system [10]–[12]. To eval-
uate and minimize the consequences of those scenarios, risk
analysis is a crucial tool used to discuss the nature and impact
of risks related to freight transportation. However, when
considering risks perception in transportation, most studies
focus only on road, ship, rail or air modes in isolation. There
are very few studies concentrated on risks in multimodal
transportation [3], [7], [13].

Risk analysis is a process for characterizing and determin-
ing hazards. It comprises two main stages: a qualitative stage
of hazard classification and a quantitative stage of risk assess-
ment. The latter stage includes estimating the possibility and
severity of each hazard. Risk analysis in transportation can be
defined as multi-criteria decision making (MCDM) problems
and mainly propose qualitative models which are based upon
subjective evaluations [7], [14], [15].

In addition, quantitative models are also complicated when
involving the uncertainty and vagueness of the human deci-
sion process. Consequently, the dynamic nature of multi-
modal transportation leads to complex problems in the risk
analysis process. For example, in the risk classification pro-
cess, a method is required for risk prioritization considering
many multiple experts’ decisions.

Therefore, an appropriate MCDM should be realized for
risk analysis in multimodal transportation while effectively
solving multiple conflicting and interdependent issues [14].
To overcome the difficulty, this study proposes a novel frame-
work for analyzing risks in multimodal freight transportation
systems on the basis of the FAHP-DEA approach. The FAHP
method is utilized to determine the weight of each criterion.
Furthermore, FAHP can handle the vagueness and subjectiv-
ity of human judgments. The DEA method is used to define
assessment grades in linguistic terms and to generate the local
risk scores. Finally, the SAW method enables aggregation of
local risk scores into an overall risk score for each decision
alternative. The approach is illustrated on actual multimodal
coal transportation routes in Thailand. To validate the model
and result, Spearman’s rank correlation and Pearson correla-
tion analysis are carried out on each of the MCDM methods
that are studied.

The significant contributions of this study can be summa-
rized as follows:

1) The presented novel FAHP-DEA model has competi-
tive performance compared with other techniques for
evaluating multimodal transportation risks. To avoid
a large number of pairwise comparisons in FAHP
method, the proposed model requires the experts to
only provide pairwise comparisons on decision cri-
teria. Moreover, linguistic terms such as Very high,
High, Medium, Low and Very low are used to sim-
plify experts’ assessment when selecting risk scores in
DEA method. Therefore, the model has no synthesis of

pairwise comparison matrices and requires only simple
computation.

2) This study proposes a valid risk analysis framework to
reduce bias in risk assessment and to help develop a
new decision support system for assessing quantitative
risk in multimodal transportation. It uses a qualitative
expert opinion system to manage subjective risks in
multimodal freight transportation. Moreover, the pro-
posed model integrates a fuzzy set theory for reducing
the complexity and uncertainty associated with risk
analysis. The study offers useful insights to researchers
and practitioners for analyzing and prioritizing trans-
portation risks as well as optimizing routes under risk
decision criteria.

3) The case study of risk analysis is presented along
with its contributions to the literature by introduc-
ing a holistic list of potential factors affecting the
five common risk types, including freight-damage risk,
infrastructure risk, operational risk, security risk and
environmental risk. Risks in multimodal transportation
are identified in two sequential stages using both qual-
itative and quantitative research approaches. This com-
prehensive classification not only helps researchers and
practitioners identify and classify the potential risk
factors, but also provides a starting point for creating a
transportation risk index model applicable to the mul-
timodal transportation process.

The remainder of this article is organized as follows.
Related work is briefly presented in Section II. Section III
introduces the modeling framework of the FAHP and DEA
models. Section IV illustrates the practical case study. Finally,
conclusions, limitations, and future work are presented
in Section V.

II. RELATED WORK
Risk analysis is a systematic process to assess the impact,
occurrence and consequence of human activities or systems.
The traditional risk analysis process consists of the following
phases [3], [16]: risk identification, risk assessment and risk
management and monitoring implementation. The diversity
of risk analysis techniques ensures that there are many appro-
priate ones for any circumstance.

Various methodologies have been proposed in the
risk analysis literature. Many studies have been carried
out using MCDM methods to analyze significant risks.
Karamoozian et al. [14] proposed a hybrid decision-making
trial and evaluation laboratory and analytic network process
(DEMATEL-ANP) models for risk prioritization in the con-
struction projects. The result presented the important risk
factors and defined the interdependencies between them in
the case study. Ilangkumaran et al. [17] applied the ana-
lytic network process (ANP) and fuzzy linguistic approach
to assess risks in the foundry industry’s hot environments.
Yazdi et al. [18] used the best-worst method (BWM) for
reliable risk analysis based on the democratic-autocratic
decision-making style. Lo et al. [19] proposed the failure
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mode and effects analysis (FMEA), which is based on
MCDM and developed by integrating a rough best-worst
method (BWM). Moreover, a technique for order prefer-
ence by similarity to ideal solution (TOPSIS) is utilized
for evaluating risk factors in machine tools. Matthews [20]
studied risk management organization and practices using the
DEA methodology. The result showed the importance of risk
assessment in the banking industry. Shi et al. [21] utilized
fuzzy logic with DEA to investigate the construction-program
risk in China. Skevas et al. [22] used the DEA method
to determine the performance of farms by incorporating
environmental spillover of pesticides as well as other inputs
related to production risks. Wang et al. [23] suggested the
AHP-DEA methodology for risk assessment of bridges and
showed that the method is simple and applicable to the case
study. Kengpol and Tuammee [7] developed a risk assess-
ment tool for determining multimodal logistics risks using
the analytic hierarchy process (AHP) and data envelopment
analysis (DEA). The abovementioned literature indicates the
importance of risk analysis in different areas. Furthermore,
most recent works have utilized the DEA model to develop
risk analysis models.

Data envelopment analysis (DEA) is an assessment tool
that involves different decision-making units (DMUs). It is
capable of solving many complex problems by concurrently
integrating multiple inputs and outputs using a ratio of the
limited weight sum of outputs to the limited weight sum
of inputs [7], [24]–[26]. Over the years, many studies have
utilized DEA method to analyze risks in various fields.
The DEA framework has been applied in a wide range
of areas, including evaluation of service performance [25],
[27], hospital efficiency [28], supplier selection [29] and
transportation [30]–[33].

However, the DEA method is a nonparametric linear
programming approach that evaluates DMU peers’ relative
efficiencies [7], [21]. Determining the weights of output indi-
cators involves a multiple criteria decision-making (MCDM)
problem [25]. Several MCDM methods have been used to
determine the criteria weights, including the analytic hierar-
chy process (AHP). AHP is especially suitable for modeling
and weighting qualitative data with a crisp 9-point rating
scale [24] and utilizes pairwise comparison for each crite-
ria [8]. It has been used in various research areas includ-
ing evaluation, selection and forecasting [7], [8], [23], [34].
Nonetheless, AHP is not suitable when there are a large
number of items to be determined and prioritized, as it can
compare only a limited number of decision alternatives [24].
Besides, another limitation of traditional AHP is that experts
cannot truly express their judgments by the crisp values in
the rating scale. Fuzzy set theory can be utilized to solve
the limitations since it provides the numerical strength to
capture the uncertainties associated with the human cognitive
process [24]. To overwhelm these problems, fuzzy set theory
integrated with AHP are conducted to handle these uncer-
tainty and complex problems involved in a decision-making
environment [21], [31], [35]–[37].

Therefore, the integration of FAHP and DEA has become
an effective method to deal with the multiple inputs
and outputs of risk analysis. For example, Vencheh and
Mohamadghasemi [24] used a hybrid model of FAHP and
DEA for multiple criteria inventory classification. They
showed that the integrated FAHP–DEA approach is very
simple and applicable to the problems with a large number
of decision alternatives. Shi et al. [21] applied fuzzy logic
and DEA to investigate the management of delivery risk in
construction and proved that those methods could reduce risk
assessment bias. Diouf and Kwak [29] presented a conceptual
model based on fuzzy set theory, AHP, and DEA for supplier
selection.

The previous research studies indicate that integration of
FAHP and DEA is widely used and appropriate for perform-
ing risk analysis. The combined FAHP and DEA models can
deal with both qualitative and quantitative data [7]. Further-
more, it is more practical and easier for ranking decisions
compared to a large number of alternatives.

The proposed integrated FAHP–DEA methodology has
the following advantages over the methods of absolute
priorities [23]–[25]:

1) The proposed FAHP-DEAmethod ismore efficient and
straightforward than other techniques. The implemen-
tation of FAHP-DEA considers the relative priorities
of factors and represents the best alternative. More-
over, FAHP can confirm the response consistency by
comparing objects with multiple attributes based on the
hierarchical structure. In addition, the redundancy of
pairwise comparisonmakes the FAHP-DEAmodel less
sensitive to evaluation errors.

2) The proposed method can group risk alternatives into
different risk categories for each criterion by character-
izing the linguistic assessment grades.When facedwith
a large number of alternatives, this approach is much
more practical for rank-ordering decision alternatives.

3) The proposed method requires solving only one linear
programming model for each criterion, whereas the
others require the solution of many linear programming
models for every criterion.

To the best of found knowledge, there has been no study
using this model to evaluate risks in multimodal transporta-
tion systems. Therefore, a hybrid model utilizing the FAHP
and DEA method is introduced in this study. DEA is used to
generate the local risk scores for each criterion. Additionally,
FAHP is used to effectively assess the weight calculation for
the risk factors’ priorities.

III. MODELING FRAMEWORK
A. FUZZY SET THEORY
Fuzzy set theory was initially proposed by Zadeh [38]. A sig-
nificant contribution of the theory is its capability to represent
vague data. Fuzzy set theory is similar to a human’s thought
when expressing obscure words [24], for example, approxi-
mate, nearly, very, etc. A fuzzy set is a group of objects with
a continuum of grades of membership, represented as values
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between 0 and 1. In this study, multimodal transportation risk
analysis is carried out using experts’ subjective judgments
and fuzzy set concepts to determine the weights of different
criteria. Fuzzy sets and linguistic variables are firstly intro-
duced, followed by their applications to AHP [24], [38].
Definition 1: A fuzzy set Ã in a universe of discourse

X is defined by a membership function uÃ(x) which asso-
ciates any x ∈ X , with a real number in the interval [0,1].
uÃ(x) expresses the membership degree of x in Ã.
Definition 2: The α-cut of fuzzy set Ã is a crisp set Ãα =
{x|uÃ(x) ≥ α}. The support of Ã is the crisp set Supp(Ã) =
{x|uÃ(x) ≥ 0}. Ã is normal if and only if Suppx∈XuÃ(x) = 1.
Definition 3: A fuzzy subset Ã of the universe set X is

convex if and only if uÃ(λx + (1− λ)y) ≥ min(uÃ(x), uÃ(y)),
∀x, y ∈ X , λ ∈ [0, 1], where min denotes the minimum
operator.
Definition 4: Ã is a fuzzy number if and only if Ã is a

normal and convex fuzzy set of R.
Definition 5:A triangular fuzzy number (TFN) Ã is defined

with piecewise linear membership function uÃ(x) as follows:

uÃ(x) =


x − l
m− l

, l ≤ x ≤ m,
u− x
u− m

, m ≤ x ≤ u,

0, otherwise,

(1)

where (l,m, u) is a triplet with l, u being the lower and upper
bounds, respectively, and m being the most likely value of Ã.
Definition 6: Let Ã = (l1,m1, u1) and B̃ = (l2,m2, u2)

be two positive triangular fuzzy numbers and r be a positive
real number. Then summation, subtraction, multiplication,
distance, and inversion of the two triangular fuzzy numbers
are defined as follows:

Ã⊕ B̃ = [l1 + l2,m1 + m2, u1 + u2],

Ã	 B̃ = [l1 − l2,m1 − m2, u1 − u2],

Ã⊗ B̃ = [l1 × l2,m1 × m2, u1 × u2],

d(Ã, B̃) =

√
1
3
[(l1 − l2)2 + (m1 − m2)2 + (u1 − u2)2],

Ã⊗ r = [l1 × r,m1 × r, u1 × r],

(Ã)−1 = (
1
u1
,
1
m1
,
1
l1
).

B. FUZZY AHP
The AHP method is the MCDM technique proposed by
Saaty [39]. Generally, AHP uses comparison judgments and
determines their relative importance weights. It is a sig-
nificant technique for solving complex problems [25]. The
AHP method’s steps are as follows:

1) Construct the hierarchy structure of a decision and
alternatives (See Fig 1.).

2) Compute the criteria weights at each level of the
hierarchy.

3) Aggregate the normalized weights to obtain the final
scores.

FIGURE 1. The hierarchy structure of decision.

However, the traditional AHP method is unable to deal
with ambiguous problems. To relieve the shortcoming, fuzzy
AHP is employed to solve uncertain problems more pre-
cisely. With fuzzy AHP, the pairwise comparisons of criteria
and alternatives are performed through linguistic variables
that are presented as triangular fuzzy numbers (TFNs). Var-
ious research [24], [35], [36] have applied FAHP to handle
data uncertainty. Among the various methods, Chang [40]
proposed an extent analysis method to derive weights for
fuzzy comparison matrices. It has been adopted in several
applications for its computational simplicity [41]–[43]. The
algorithm can be described as follows:

Let X =
{
x1, x2, . . . , xn

}
be an object set and U ={

u1, u2, . . . , um
}
be a goal set. According to Chang’s extent

analysis method [40], each object is taken and an extent anal-
ysis for each goal gi is performed, making it possible to obtain
the values of m extent analysis that can be demonstrated
as M1

gi ,M
2
gi , . . . ,M

m
gi i = 1, 2, . . . , n where all the M j

gi
(j = 1, 2, ..,m) are TFNs.

The steps of Chang’s extent analysis can be given as
follows [43]:
Step 1: The value of a fuzzy synthetic extent with respect

to the ith object is defined as:

Si =
m∑
j=1

M j
gi

⊗ n∑
i=1

m∑
j=1

M j
gi

−1 (2)

To obtain
∑m

j=1M
j
gi , the fuzzy addition operation of m extent

analysis values for a particular matrix is performed such that

m∑
j=1

M j
gi =

 m∑
j=1

lj,
m∑
j=1

mj,
m∑
j=1

uj

 (3)

and to obtain
∑n

i=1
∑m

j=1M
j
gi , the fuzzy addition operation is

executed onM j
gi (j = 1, 2, . . . ,m) values such that

n∑
i=1

m∑
j=1

M j
gi =

[
n∑
i=1

li,
n∑
i=1

mi,
n∑
i=1

ui

]
(4)

The inverse of the vector in (4) can be computed as: n∑
i=1

m∑
j=1

M j
gi

−1 = [ 1∑n
i=1 ui

,
1∑n
i=1mi

,
1∑n
i=1 li

]
(5)
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Step 2: If theM1 andM2 are two triangular fuzzy numbers,
then the degree of possibility of M2 = (l2, m2, u2) ≥ M1 =

(l1, m1, u1) is defined as follows:

V (M2 ≥ M1) = sup
y≥x

[min(µM1 (x), µM2 (y))] (6)

and can be equivalently expressed as follows:

V (M2 ≥ M1) = hgt(M1 ∩M2) = µM2 (d)

=


1, m2 ≥ m1

0, l1 ≥ u2
l1 − u2

(m2 − u2)− (m1 − l1)
, otherwise

(7)

where d is the ordinate of the highest intersection point D
between µM1 and µM2 (See Fig 2.)

FIGURE 2. The interaction between M1 and M2.

To compare M1 and M2, the values of both V (M2 ≥ M1)
and V (M1 ≥ M2) are required.
Step 3:Compute the overall degree of possibility for a con-

vex fuzzy number greater than other convex fuzzy numbers
Mi (i = 1, 2, . . . , k), which can be defined as

V (M ≥ M1,M2, . . . ,Mk )

= minV (M ≥ Mi), i = 1, 2, . . . , k (8)

Assume that,

d ′(Mi) = minV (Mi ≥ Mk ) (9)

for k = 1, 2, . . . , n and k 6= i. The following formula can
give the weight vector:

W ′ = (d ′(M1), d ′(M2), . . . , d ′(Mn))T (10)

Step 4: Normalization step: the normalized weight vectors
and results are non-fuzzy numbers which are given as:

W = (d(M1), d(M2), . . . , d(Mn))T , (11)

whereW is a non-fuzzy number.
Step 5: The graded mean integration approach is used to

defuzzify the fuzzy weight, where a TFN P = (l,m, u) can
be defuzzified to a crisp number as follows:

Pcrisp =
(4m+ l + u)

6
(12)

Step 6: It is essential to check the consistency index
between the pairwise matrices. The consistency ratio (CR) is

defined as the ratio between the consistency of an evaluation
index (CI ) and the consistency of a random index (RI ).
Eqs. (13)–(15) calculate the consistency ratio (CR):

CI =
λmax − n
n− 1

(13)

where λmax is the largest eigenvalue of the comparison
matrix, and n is the dimension of the matrix.

λmax =
∑[(∑

Cj
)
× {W }

]
(14)

where
∑
Cj is the sum of the pairwise matrix, and W is the

weight vector.

CR =
CI
RI (n)

(15)

where RI (n) is a random index that depends on n, as shown
in Table 1. The acceptance limit for CR is 0.1 or 10%.
If the CR is greater than 0.1, the judgment of the pairwise
comparison needs to be carried out again to make the decision
more consistent.

TABLE 1. Random Index (RI) of random matrices [43].

C. INTEGRATION OF THE FAHP AND DEA
DEA, introduced by Charnes [44], is an analytical technique
for determining the relative efficiencies of DMUs using sev-
eral inputs and outputs. There have been abundant applica-
tions of combining the FAHP and DEAmethods because they
are simple and applicable to complex problems with many
decision alternatives. This study is developed from previous
literature [7], [23], in order to improve the reduction of bias
in risk analysis.

The study focuses on MCDM problems with l crite-
ria and n decision alternatives. The normalized weight
vector, Wp, is obtained through pairwise comparison in
the FAHP.

To define the relative importance of each alternative with
respect to each criterion, a set of assessment grades in linguis-
tic terms (such as Very High, High, Medium, Low and Very
Low) is constructed for each criterion asGp = {Lp1 , ..,LpKj},
{p = 1, .., l}, where Lp1 , ..,LpKj represents the linguis-
tic terms of importance ranking from the most to the least
important, and Kp is the number of assessment grades for
criterion p. This definition evaluates the different numbers
of assessment grades and identifies their relative importance
for each criterion. Assume that criterion p is assessed by Np
experts. Then, the assessment vectors can be characterized
as:

R(Dp(Aij)) = {(Lp1 ,NEijp1 ), . . . , (Lpkj ,NEijpkj )} (16)

where NEijpk (k = 1, ..,Kp) is the number of experts
who assess alternative routes Aij to grade Lpk under the
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TABLE 2. Decision matrix.

criterion p. It is indicated that
∑Kp

k=1 NEijpk = Np for
i = 1, .., n; j = 1, ..,m. All the assessment vectors are
derived from a decision matrix, listed in Table 2.

Let S(Lpk ) be the scoring of grade Lpk (k = 1, . . . ,Kp).
Thus, the local weight of each alternative with respect to each
criterion can be defined as [7], [23]:

Vijp =
Kp∑
k=1

S(Lpk )NEijpk ,

for i = 1, .., n; j = 1, ..,m; p = 1, .., l (17)

The local weight of each alternative with respect to every
criterion is computed as a decision-making unit (DMU) using
S(Lpk ) as a decision variable and also the weight assigned to
the output NEijpk . Thus, the local weight can be constructed
as the following DEA model with common weights [7], [23]:

Maximize α

Subject to α ≤ vijp =
Kp∑
k=1

S(Lpk )NEijpk ≤ 1,

for i = 1, .., n; j = 1, ..,m; p = 1, .., l

S(Lp1 ) ≥ 2S(Lp2 ) ≥ . . . ≥ KpS(LpKp ) ≥ 0 (18)

where S(Lp1 ), .., S(LpKj ) are decision variables and
S(Lp1 ) ≥ 2S(Lp2 ) ≥ . . . ≥ KpS(LpKp ) ≥ 0 is the strong
ordering condition imposed on assessment grades proposed
by Noguchi et al. [45]

The local risk scores of each criterion and decision alter-
native can be determined by Eq. (18). Then, the local weight
of each decision alternative with respect to criterion l is
generated by Eq. (17). Subsequently, the simple additive
weighting (SAW) method is utilized to aggregate the local
weight into an overall weight, as follows [7], [23]:

V (Aij) =
l∑

p=1

WpVijp

=

l∑
p=1

Wp

 Kp∑
k=1

S(Lpk )NEijpk


for i = 1, .., n; j = 1, ..,m; p = 1, .., l (19)

where Wp is the criterion weight determined by the FAHP
methodology, S(Lpk ) are the optimal scores of the assessment

grades solved by Eq. (18), and V (Aij) is the overall weight
of n decision alternatives, from which the alternatives are
prioritized [7], [23].

IV. CASE STUDY
Multimodal freight transportation has become increasingly
complex and vulnerable to various risks across all related
activities, making it difficult to predict the process. The mul-
timodal freight transportation system handles a wide range
of freight for the main commodities, including coal—one
of the world’s most important natural resources as it is
used in electrical generation and other manufacturing pro-
cesses. Therefore, in order to identify and evaluate these
risks effectively, the combined FAHP and DEA methodol-
ogy has been proposed to analyze multimodal transportation
risks. An actual case study is presented regarding multimodal
coal transportation routes between Srichang, Thailand and
the cement industry in Saraburi, Thailand. In the following
sections, the conceptual framework is discussed the step by
step instructions demonstrated in Fig 3.

A. IDENTIFY THE ROUTES
Multimodal transportation routes consist of different seg-
mented routes, which can be classified into two types:
where the goods are in motion by some mode of trans-
portation, and where goods come to rest or change to
another mode of transport. Thus, the possible routes as Aij
are defined where i is a segmented route of multimodal
route j.
To study risks of coal logistical services originating from

Srichang to a destination in the cement industry in Saraburi,
Thailand, the data for possible multimodal transportation
routes, including distances in different transport modes are
collected through expert interviews. There are 8 possiblemul-
timodal logistics routes, which are presented in Table 3 and
Appendix A. As an example, the details of the first segmented
route in Table 3 are as follows: A11 is a route from Srichang
to the Pasak River by ship. A21 is a route from the Pasak River
to Nakornluang Port, also by ship. A31 is Nakornluang Port,
the point for changing the mode of transport. A41 is the truck
route from Nakornluang Port to Mittraphap Road. Finally,
A51 is a route from Mittraphap Road to the cement plant in
Saraburi.
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FIGURE 3. The framework of quantitative risk assessment in multimodal transportation.

B. RISK IDENTIFICATION
Risk identification is based on expert opinion and previous
literature. This study utilizes a qualitative expert opinion sys-
tem to manage risks in multimodal freight transportation. The
expert team was composed of 10 experts who have a neutral
understanding of the transportation risk, including logistics
managers, shippingmanagers, academic researchers, etc. The
main experts were directly involved in the process of trans-
portation and logistics management for over 20 years (more
details in Appendix B.).

The previous literature contained various studies on
risk identification for transportation. Kengpol et al. [34]
identified six risk factors in multimodal transportation
including freight-damage risk, infrastructure risk, political
risk, operational risk, macro risk, and environment risk.
Pallis [46] classified 38 risk factors into five categories:
human, machinery, environment, security, and natural.

Shankar et al. [9] identified 18 categories of risks related to
transportation systems. Vilko et al. [3] considered and classi-
fied risks into two categories of exogenous and endogenous
risks (65 and 38 risks respectively).

The identified risks were analyzed by the highly qualified
expert panel. Delphimethod is the expert survey technique for
identifying, prioritizing and aiding in the follow-up of expert
interviews in decision-making [7], [14], [34]. To obtain a per-
spective on multimodal freight transportation risks, experts
were asked repeatly until no further change occurs [7], [8].

With respect to experts’ opinions, the given factors and
their categories have been empirically validated in the multi-
modal transportation domain. Based on these results, the risk
factors can be assessed in terms of the following criteria:

1) Freight-damage risk: This includes damaged or lost
products during transfer, delivery at a warehouse, and
delivery to a customer [7], [34].
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TABLE 3. Possible multimodal transportation routes.

2) Infrastructure risk: This includes road density, lanes,
tunnels, the facility for handling equipment and mate-
rial, railway density, transit utilization, etc. [7]

3) Operational risk: This involves document standardiza-
tion, problems with documents or contracts, lack of
skilled workers, strikes, lockouts, stoppage or restraint
of labor from any cause, errors in server systems,
etc. [34]

4) Security risk: This is a significant consideration in
overall transportation risk planning and it includes theft
from insiders, terrorism, fire and accidents.

5) Environmental risk: This includes natural phenomena
which can have a negative effect on the transporta-
tion environment. Examples include natural disasters,
climate change, floods, tropical storms and the rainy
season [47].

C. QUANTITATIVE RISK ANALYSIS
Risk analysis is a process for identifying, determining, and
assessing hazards [34]. It is applied extensively in a variety
of applications, including logistics and transportation with a
primary aim of minimizing accident occurrences by reducing
their possibilities.

This study introduces a valid quantitative risk analysis
approach for determining the value of decision variables. The
quantitative risk assessment calculates the risk level of an
activity which might raise hazards for people, environment,
or systems [7]. In traditional transportation, risks can be cal-
culated by multiplying the probability of accident occurrence
by accident consequence as indicated in Eq. (20) [7], [48]:

Rij = Pij × Cij (20)

where Rij is the risk level along route segment i of multimodal
route j, Pij is the possibility of accident occurrence, and
Cij represents the consequences of the accident.

Multimodal transportation is a complex system with many
categories of risk. The suggestions from experts indicate that
the growing risk trend in multimodal transportation is based
upon the mode of transportation and shipping distance. Thus,
the shipping distance along each segment of a multimodal
transportation route affects the quantitative risk analysis—
longer distances can lead to higher risk levels. Besides, esti-
mating risk scores relies on the consensus of conflicting
expert opinions. Therefore, a proper risk assessment model

has been developed to consider the weighted risk level based
on shipping distances. The multimodal transportation risk
assessment is a MCDM problem which consists of l criteria
(p = 1, .., l). The ratio between each segmented route and
the total multimodal transportation route distance is defined
as 4EAijpk . The quantitative risk assessment developed from
Eq. (20) can be calculated as follows [7]:

RAijpk = PAijpk × CAijpk ×4EAijpk (21)

where RAijpk is the risk level of segmented route i of multi-
modal route j for criteria p by expert k who assesses link Aij.
PAijpk is the probability assessment scale rank of Aij. CAijpk is
the severity impact assessment scale of Aij.4EAijpk is the ratio
between distances of segmented route i and the total distance
of multimodal route j.

The ranking scales in the probability and severity impact
assessments were expressed using the percentage of increased
cost and the increased time of logistics on the route,
as illustrated in Table 4. This table was developed from
previous studies and experts’ opinions. In this study,
there were 10 experts who have experience in transporta-
tion fields. The decision-making environment necessitates
reliance on the opinions of multiple experts. However, expert
decision-makers may not always give the same importance
to the decision being made or specifics of a decision-making
transaction because they may not always have equal degrees
of relevancy, knowledge, and experience with respect to a
specific decision.

To simplify experts’ assessment while selecting scores,
the measures of these criteria need to be converted into lin-
guistic terms, defined as Very High, High, Medium, Low,
and Very Low [24]. A visual representation is used to map
multimodal transportation risks and define a set of assessment
grades in linguistic terms. A risk matrix consists of a proba-
bility assessment scale rank (1–5) on the horizontal axis and
a severity impact assessment scale rank (1–5) on the vertical
axis, as shown in Fig. 4.

After identifying transportation risks, their quantitative
values are calculated based on the risk level using Eq. (21).
The risk matrix is then converted into assessment grades in
linguistic variables. This process is necessary to define a set
of assessment grades to describe multimodal transportation
risk quantitatively. The risk assessment data are illustrated
in Table 9 (more details in the next section).
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TABLE 4. The rank of probability and severity assessment scale (adapted from Kengpol and Tuammee [7]).

FIGURE 4. Risk matrix based on expert opinions.

The following illustrates the calculation of the risk
level of the segmented route A11 shown in Table 3. For
freight-damage risk, the segmented route A11 can be assessed
as follows. The first expert defines the probability rank as
PA1111 = 3 and the impact severity rank as CA1111 = 3. The
ratio between the distance of segmented route and the total
distance of the route is 4EA1111 =

195km
207km = 0.942. Thus,

the risk level of RA1111 for freight-damage risk on segmented
route A11 is 3 × 3 × 0.942 = 8.478. Consequently, the risk
score can be approximately measured by the risk magnitude
in Fig. 4 as Medium. Furthermore, experts 1–5 assess it to be
Medium and experts 6–9 assess risk as Low. The last expert
evaluates it to be Very Low. The rest of the data for other cases
can be described in a similar way in Table 9.

D. DETERMINATION OF THE WEIGHTS OF CRITERIA
USING FAHP
In this study, risks in the context of multimodal transporta-
tion were identified based on literature review and expert
interviews. Due to the meaning and similarities of trans-
portation risks, these risks are grouped into five categories,
namely freight-damage risk, infrastructure risk, operational
risk, security risk, and environmental risk. The identified risks
were analyzed to determine their importance weights using
the FAHP method. The data collected will be converted into
the Geometric Mean to measure the pairwise comparison.

In order to determine the criteria for the risk analysis
process, decision-makers or experts consider the pairwise
judgment matrices and evaluate their relative importance
weights with respect to the goals, using linguistic terms.
These linguistic evaluations are subsequently transformed
into TFNs by means of the conversation scale presented
in Table 5. Pairwise judgment matrices are finalized based
on the experts’ opinion and transformed into positive fuzzy
numbers using the standard TFNs. The constructed fuzzy
pairwise judgment matrices for various categories of risk are
presented in Table 6.

TABLE 5. Fuzzy linguistic scale.

To test the consistency of the pairwise matrix, the consis-
tency in a crisp comparison matrix are evaluated by follow-
ing the criteria discussed in step 6 of Fuzzy AHP section.
A triangular fuzzy number of the pairwise comparison matrix
of the risk categories is defuzzified to a crisp number in
Eq. (12). According to the result, the λmax of the fuzzy crisp
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TABLE 6. Risk factors pairwise comparison matrix.

TABLE 7. Normalized matrix of risk factors.

matrix is 5.301. The dimension of matrix is 5; thus the RI is
1.12 for n = 5 (Table 1). The calculation of the consistency
index (CI ) and the consistency ratio (CR) are represented in
Eqs.(13)–(15). The value of CI is 0.075 and CR is 0.070,
which is smaller than 10%. Thus, the pairwise comparison
matrix developed for the multimodal risk factors is consistent
and acceptable.

When the consistency in the comparison matrix is
accepted, the fuzzy values of pairwise comparison are con-
verted to crisp values through Chang’s extent analysis as
mentioned above (Table 7). First, the fuzzy synthesis extent
values and the priority weights are calculated using Eq. (2).
Equations (3)-(5) are used to present the degree of the syn-
thetic extent values. An example of the weight calculation and
these values are obtained:

5∑
j=1

M j
g1 = (1.00, 1.00, 1.00)+ (1.74, 2.14, 2.49)

+ (2.70, 3.38, 4.00)+ (3.10, 4.21, 5.28)

+ (2.70, 3.38, 4.00) = (11.25, 14.11, 16.77)
5∑
i=1

5∑
j=1

M j
gi= (11.25, 14.11, 16.77)+(13.84, 16.98, 20.14)

+ (6.20, 6.95, 7.69)+ (3.11, 3.22, 3.40)

+ (2.56, 2.66, 2.83)= (36.948, 43.926, 50.835) 5∑
i=1

5∑
j=1

M j
gi

−1

=

(
1

50.835
,

1
43.926

,
1

36.948

)
= (0.020, 0.023, 0.027)

Once the weight vector is derived by Eq. (6), the step
of the normalized weight vector (Ni) is used to obtain the
priority weight vector of each criteria by Eqs. (10)–(11).
Thus, the minimum degree of possibility for each pairwise
comparison is computed as:

d ′(F) = minV (F ≥ I ,O, S,E) = 0.329

d ′(I ) = minV (I ≥ F,O, S,E) = 0.398

d ′(O) = minV (O ≥ F, I , S,E) = 0.162

d ′(S) = minV (S ≥ F, I ,O,E) = 0.075

d ′(E) = minV (E ≥ F, I ,O, S) = 0.062

Therefore, the weight vector is computed as W ′ = (0.329,
0.398, 0.162, 0.075, 0.062). The preference weights are nor-
malized for each risk as W = (0.321, 0.388, 0.157, 0.073,
0.061). In other words, the relative weight criteria from FAHP
for freight-damage risk, infrastructure risk, operational risk,
security risk, and environmental risk are 0.321, 0.388, 0.157,
0.073 and 0.061 respectively, as shown in Table 8.

TABLE 8. Fuzzy weight of risk factors and their categories.

E. AN HYBRID MODEL OF FAHP-DEA METHODOLOGY
The proposed model of FAHP-DEA can classify alternatives
into different categories for each criterion, which are char-
acterized by linguistic assessment grades [23]. Moreover,
the integration of the FAHP and DEA methodology can
solve an MCDM problem with a large number of decision
alternatives.

This case study has five main criteria with 51 alternatives.
The FAHP method is used to evaluate the criteria weights.
It intends to determine the overall risk score of each seg-
mented route. From the previous section, the importance
weights of freight-damage risk, infrastructure risk, opera-
tional risk, security risk and environmental risk are 0.321,
0.388, 0.157, 0.073, and 0.061, respectively.

To quantitatively describe multimodal transportation risks,
a set of assessment grades need to be defined for each of the
five risk criteria. For example, the following set of assessment
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TABLE 9. Risk assessment data.

grades is defined for the five criteria by G = {Very High,
High, Medium, Low, Very Low} = {VH ,H ,M ,L,VL}. The
numbers and different sets of assessment grades were defined
according to the risk matrix.

Table 9 presents the distribution decision matrix of assess-
ment results for the 51 segmented routes, which were
assessed by 10 experts. Consider freight-damage risk for
the segmented route A11, five experts assessed the grades
as ‘‘Medium’’, four experts assessed it as ‘‘Low’’, and one
expert assessed it as ‘‘Very Low’’. For the other segmented

routes, assessment data can be described in the same way.
The risk assessment data are subsequently used to generate
the local risk scores for each criterion by the DEA model in
Eq. (17).

The optimal solution for all decision variables S(Lpk ) can
be calculated as:

Let the freight-damage risk assessment in Table 9 be an
example to calculate the optimal solution of decision vari-
ables S(Lpk ), solving by Eq. (18). S(Lpk ) is a decision variable
and the weight assigned to the output NEijpk . Then, the DEA
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TABLE 10. The optimal solution of each criterion.

model with common weights can be constructed as follows:

Maximize α

Subject to

0S(VH11)+0S(H11)+5S(M11)+4S(L11)+1S(VL11) ≤ 1

0S(VH11)+0S(H11)+5S(M11)+5S(L11)+0S(VL11) ≤ 1

0S(VH11)+0S(H11)+2S(M11)+3S(L11)+5S(VL11) ≤ 1

0S(VH11)+0S(H11)+0S(M11)+0S(L11)+10S(VL11)≤1

0S(VH11)+0S(H11)+5S(M11)+5S(L11)+0S(VL11) ≤ 1
...

0S(VH11)+0S(H11)+6S(M11)+4S(L11)+0S(VL11) ≤ 1

S(VH11)+0S(H11)+0S(M11)+0S(L11)+0S(VL11)

≥ 2S(H11)

0S(VH11)+2S(H11)+0S(M11)+0S(L11)+0S(VL11)

≥ 3S(M11)

0S(VH11)+0S(H11)+3S(M11)+0S(L11)+0S(VL11)

≥ 4S(L11)

0S(VH11)+0S(H11)+0S(M11)+4S(L11)+0S(VL11)

≥ 5S(VL11)

S(VH11), S(H11), S(M11), S(L11), S(VL11) ≥ 0 (22)

where S(VH ), S(H ), S(M ), S(L) and S(VL) are the opti-
mal scores of the assessment grades ‘‘Very High’’, ‘‘High’’,
‘‘Medium’’, ‘‘Low’’, ‘‘Very Low’’, respectively and α is the
optimal local weight of each criterion. Additionally, the opti-
mal solutions of decision variables S(Lpk ) for other criteria
can be computed in a similar way.
The local weight of each decision alternative with respect

to every criterion is determined as a DMU, where S(Lpk ) is a
decision variable and also the weight assigned to the output
NEijpk . The following optimal solutions of each criterion
S(Lpk ) are calculated using Eq. (18). For freight-damage risk,
infrastructure risk, and operational risk, the optimal solutions
are as follows:
S(VH ) = 0.13333, S(H ) = 0.066667, S(M ) = 0.044444,
S(L) = 0.033333, S(VL) = 0.026666 and α = 0.999985
The following optimal solutions are obtained for security

risk and environmental risk, respectively.
S(VH ) = 0.18462, S(H ) = 0.092307, S(M ) = 0.061537,
S(L) = 0.046151, S(VL) = 0.036917 and α = 0.867769
S(VH ) = 0.14286, S(H ) = 0.071428, S(M ) = 0.047619,
S(L) = 0.035714, S(VL) = 0.028571 and α = 1.000000

Thus, the optimal solutions of each criterion S(Lpk ) are
illustrated in Table 10. Consequently, these optimal solutions
can be used to calculate the local risk scores of the 51 seg-
mented routes with respect to each of the five criteria using
Eq. (16), presented in Table 11.
The final step is to aggregate local risk scores into over-

all risk scores for each decision alternative using the SAW
method in Eq. (19). The results, along with the risk priority
ranking, are presented in Table 12.
The example of local risk calculation for segmented route

A11 is shown below:

Freight-damage risk:
(5×0.044444)+(4×0.033333)+(1×0.026666) = 0.382218
Infrastructure risk:
10× 0.033333 = 0.333333
Operational risk:
(2×0.066666)+(5×0.044444)+(3×0.033333) = 0.455551
Security risk:
(2× 0.092307)+ (6× 0.061537)+ (1× 0.046151)+ (1×
0.036917) = 0.636904
Environmental risk:
(5×0.047619)+(3×0.035714)+(2×0.028571) = 0.402379

As stated in the previous section, the relativeweight criteria
from FAHP can be determined to complete the overall trans-
portation risk scores in Table 12. The overall risk score can
be solved by the SAWmethod in Eq. (19). Thus, the total risk
score in segmented route A11 can be calculated as follows:
V (A11) = (w1v111) + (w2v111) + (w3v111) + (w4v111) +
(w5v111) = (0.321 × 0.382) + (0.388 × 0.333) + (0.157 ×
0.455)+ (0.073× 0.637)+ (0.061× 0.402) = 0.394
The last step is to combine the risk scores in each seg-

mentedmultimodal route. Table 12 represents the quantitative
risk scores of multimodal routes with risk priority ranking.
Based on the ranking in Table 12, these risks can be priori-

tized: the highest risk score is 4.747 in route 4 and the lowest
is 2.241 in route 1. The optimal multimodal transportation
route is route 1 from Srichang to the Pasak River by ship.
Then, to Nakornluang Port, also by ship; switching to truck
transport to Mittraphap Road; and finally, shipping by truck
from Mittraphap Road to the cement plant in Saraburi.
Table 12 provides a breakdown of the risk analysis results.

Of the 5 risks identified in the interview and literature, pos-
sible multimodal routes have been evaluated on the basis of
corresponding FAHP and DEA methods. It is apparent that
the highest overall risk score is for route 4 because of several
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TABLE 11. The overall multimodal transportation risk scores.

changes in the mode of transportation and longer required
lead time. The main aim of risk analysis is to reduce the
impact of uncontrollable accidents on the working transporta-
tion process. The results could alert the user to select the
appropriate corrective action and reduce time consumption.

This study supports the development of a valid decision
support approach that is flexible and applicable to an indus-
trial sector adopting multimodal transportation risk practices.
In this perspective, the present work attempts to contribute
to the reliable literature and expert knowledge by presenting

the identification, analysis and prioritization of risks. The
list of risks identified would certainly facilitate users in
understanding the theory of risks. Moreover, coal industry
companies were examined in the study. Comparing the risks
arising from fundamentally different activities along a multi-
model transportation route requires care in the wise selection
of the appropriate route from the alternatives, which are
ranked as routes 1, 7, 3, 8, 2, 6, 5, 4, from least to the most
risky. Route 4 has the highest risk score and needs a higher
level of managerial attention as compared to other routes.
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TABLE 12. The quantitative risk scores of multimodal routes with risk priority ranking.

The results show that the integrated FAHP-DEA for risk
analysis in multimodal transportation can help users select a
better decision on the optimal-risk route.

F. COMPARISON WITH OTHER DECISION-MAKING
APPROACHES
Comparison and correlation analysis of the integrated
FAHP-DEA model with results of other fuzzy multi-criteria
decision making (MCDM) approaches are conducted to
ensure greater consistency and validity of the model. The
advantage of the integrated FAHP-DEA model is presented
by its comparisonwithwell-known fuzzyMCDMapproaches
for determining the criteria weight, a category to which the
FAHP and DEA methods also belong. The fuzzy best-worst
method (FBWM) [49] and fuzzy full consistency method
(FFUCOM) [50] were investigated, since the validity of both
MCDM methodologies are based on the concept of pairwise
comparison and the degree of consistency, which are the
fundamental foundation of the FAHP and DEA methods.

Each of the selected models was analyzed through
the previous discussion in which the DEA, FAHP-DEA,
FBWM-DEA and FFUCOM-DEA models were employed.
For the purpose of validation, the obtained results will present
the risk factor priority and the route ranking.

Mathematical models were performed in a similar way
for the risk calculations. The weight coefficients for com-
parison with similar subject models—FAHP, FBWM and
FFUCOM—were further utilized on as input data in the
DEA model (Table 13), and the final results of DEA, FAHP-
DEA, FBWM-DEA and FFUCOM-DEA models are illus-
trated in Table 14.

The alternative ranking discussed previously indicated that
route 4 was selected due to its the highest weight with
respect to other risk factors. Furthermore, the FAHP-DEA
and FFUCOM-DEAmodels yielded the same ranking results,
while the DEA and FBWM-DEAmodels gave different rank-
ings.

From the results obtained in Table 13, it can be noted
that these weights are different due to a number of reasons,
summarized briefly below:

1) In the initial stage of determining the weight coeffi-
cients of the FAHP, FBWM, and FFUCOM models

TABLE 13. Alternative risk criteria weight ranks.

(Table 13), FFUCOM only requires n − 1 pairwise
comparisons, whereas FBWM requires 2n−3 pairwise
comparisons, and for FAHP, it is necessary to perform
n(n− 1)/2 pairwise comparisons.

2) When comparing the pairwise matrix, FBWM uses
integer values, unlike FAHP, which requires the use of
a ratio scale. On the contrary, FFUCOM can apply any
scale (integer or decimal).

3) The FBWM and FAHP models rely on adherence to
mathematical transitivity. FFUCOM allows satisfying
the complete consistency of the model while respecting
the conditions of transitivity.

G. RESULT VALIDATION USING SPEARMAN’s RANK AND
PEARSON CORRELATION COEFFICIENT
The correlation analysis is considered to describe the direc-
tion and strength of the relationship between two variables.
Possible correlations range from +1 to −1. A zero cor-
relation indicates that there is no relationship between the
variables. A correlation of −1 indicates a perfect negative
correlation, meaning that as one variable increases, the other
decreases. A correlation of +1 indicates a perfect positive
correlation, meaning that both variables move in the same
direction.

The results obtained from Table 14 represent that risk
scores and risk priority ranking were examined to evaluate the
relationship between the results obtained by fuzzy MCDM
methods. Generally, two main types of Spearman’s rank
correlation coefficient and Pearson correlation coefficient are
measured. In this case, Spearman’s rank correlation eval-
uates the ranked value for each variable, whereas Pearson
correlation is used to evaluate the final score value.
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TABLE 14. The results obtained using different methods.

FIGURE 5. Correlation between the results of the risk priority ranking.

FIGURE 6. Scatter plots between the results of the risk scores and risk priority ranking.

The computation of Spearman’s rank correlation and
Pearson correlation are based on the following
definitions [51]:

1) Spearman’s rank correlation coefficient:

Correlation = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(23)
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where di is the difference between two rankings and n
is the number of observations.

2) Pearson correlation coefficient:
Correlation

=
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i −(

∑n
i=1 xi)2

√
n
∑n

i=1 y
2
i −(

∑n
i=1 yi)2

(24)

where n is the total number of values, x is the value in
the first set of data, and y is the value in the second set
of data.

The results from Spearman’s rank correlation coefficient
and Pearson correlation coefficient analysis, shown in Fig. 5,
confirm the validity of the proposed FAHP-DEA method.
The FAHP-DEA is most highly correlated with the final
ranking while the DEA method is least correlated with the
final ranking.

Furthermore, as opposed to other subjective models,
the FAHP-DEA method has relatively less variation in the
obtained risk scores than FFUCOM-DEA and other meth-
ods as shown in Table 14. The stability in the analysis of
FAHP-DEA method makes evident that the priority of risk
factors remain steady. On the other hand, the results from
FFUCOM-DEA method indicate that the risk scores for
route 2 and 6 are 3.300 and 3.309, respectively. This sug-
gests that FFUCOM-DEA method produces almost identical
risk scores, making it difficult to confidently rank the risk
priorities. The scatter plots depicted in Fig 6 presented that
the difference between adjacent risk scores of FAHP-DEA
method are more uniformly distributed compared to other
methods.

In conclusion, the FAHP-DEA method produces the best
overall results. On the basis of case study findings, it clearly
proves that the proposed FAHP-DEA method significantly
outperforms other approaches.

V. CONCLUSION, LIMITATION AND FURTHER STUDY
Multimodal freight transportation is a complex problem sen-
sitive to various risks. It is difficult to predict the process, as it
faces risks in all activities. From the managerial perspective,
risks are potential threats that can negatively impact normal
activities or prevent actions. Multimodal freight transporta-
tion is the integration of two or more modes of transport to
move goods from the source to the destination. Accidents can
occur at any point along the transportation routes. Therefore,
to raise user’s attention to the high priority risks related to
multimodal freight transportation, this study proposed the
integrated FAHP-DEA process to model multimodal trans-
portation risks quantitatively.

The proposed risk analysis model is the combination of
quantitative risk analysis, FAHP, and DEA to prioritize and
optimize the multimodal transportation routes. The FAHP
technique is used to determine the weights of the risk crite-
ria. The DEA method is employed to determine the values
of the linguistic terms such as Very High, High, Medium,

Low and Very Low to assess transportation risks under each
criterion. Finally, the SAW method is applied to aggregate
the risks under different criteria into an overall risk score.
The literature review revealed that the integrated FAHP-DEA
is very simple, applicable to many decision alternatives and
particularly effective for complex MCDM problems.

A practical case study of the coal industry in Thailand has
been conducted regarding multimodal transportation routes.
The high visibility risks involved with complex multimodal
freight transportation are identified. With prior literature and
expert knowledge, 5 main multimodal transportation risk
categories are investigated. Subsequently, the local risk scores
of 51 segmented routes with respect to 5 criteria are gener-
ated. The FAHP-DEA approach is an effective tool for ana-
lyzing and prioritizing the critical risks in complex systems.
The results of this study provide risk scores with priority
ranking. Moreover, the risk assessment model can generate
an optimal route in accordance with weights from the users.

The main contribution of this study is the development of
reliable and practical risk model to support users in optimiz-
ing a route under risks. Furthermore, the results suggest that
the users should consider the source and nature of risk impact
to minimize the risks in multimodal freight transportation.

According to the correlation analysis using Spearman’s
rank correlation coefficient and the Pearson correlation coef-
ficient, the proposed FAHP-DEA method clearly produces
results that are consistent with the actual results. This clearly
indicates that the proposed method is not only a practi-
cal decision-making approach but also highly reliable and
accurate.

Nonetheless, there are limitations concerning the data. The
majority of data acquired in this study is specific to the
environment. These factors can be adjusted before apply-
ing to other cases. Therefore, the factors based on experts’
preference scores need to be constructed carefully. The
data and its analysis are typically subject to the context of
industries.

For potential future research, this proposed risk analy-
sis model can help support a new platform to systemati-
cally analyze risk and extend its applications to other com-
plex and critical installations. The conceptual framework
will be exploited by developing decision support software
for quantitative risk analysis in transportation. It could pro-
vide an accurate, practical, and systematic decision support
tool.

APPENDIX A
ROUTE IDENTIFICATION
Route 1: Srichang + Pasak River + Nakornluang Port −
Mittraphap Road − Kaeng Khoi Cement Plant Saraburi
Route 2: Srichang + Pasak River + Nakornluang Port −
Jumpa District − Mittraphap Road − Kaeng Khoi Cement
Plant Saraburi
Route 3: Srichang+ Pasak River+Nakornluang Port−Don
Yanang District − Mittraphap Road − Kaeng Khoi Cement
Plant Saraburi
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TABLE 15. Profile of experts

Route 4: Srichang + Laem Chabang = Sri Racha = Chon-
buri = Chachoengsao = Bang Nam Piew = NakornNayok
= Kaeng Khoi Train Station − Kaeng Khoi Cement Plant
Saraburi
Route 5: Srichang − Laem Chabang = Sri Racha = Chon-
buri = Chachoengsao = Bang Nam Piew = NakornNayok
= Kaeng Khoi Train Station − Kaeng Khoi Cement Plant
Saraburi
Route 6: Srichang + Bang Pa Kong − Bang Nam Piew −
NakornNayok − Mittraphap Road − Kaeng Khoi Cement
Plant Saraburi
Route 7: Srichang + Bang Pa Kong − Mittraphap Road −
Kaeng Khoi Cement Plant Saraburi
Route 8: Srichang + Bang Pa Kong − NongRong District −
Mittraphap Road − Kaeng Khoi Cement Plant Saraburi
(Note: + is ship transport, = is train transport, − is truck
transport.)

APPENDIX B
See table 15.
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