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ABSTRACT In this article, a two-layered model predictive control strategy is proposed for the nonsquare
system of nonlinear cut tobacco drying process. The control objective is to optimize the drum dryer
temperature, hot air temperature, and cut tobacco outlet temperature meet the process constraints while
meeting the moisture content of cut tobacco. Firstly, the tobacco drying process system was introduced, and
the nonsquare system model and performance index function were established. Then a nonlinear moving
horizon estimator (NMHE) and real-time optimization (RTO) are designed. NMHE provides state and
parameter estimation for the controller, and RTO provides an optimal operating setpoint for the controller.
Subsequently, a two-layered model predictive control (SSTO-MPC) design integrated with a steady-state
target optimization layer (SSTO) is proposed for the nonsquare system of nonlinear cut tobacco drying
process. Extensive simulations under different scenarios illustrate the effectiveness of the proposed SSTO-
MPC design compared with the conventional MPC.

INDEX TERMS Cut tobacco drying process, moving horizon estimation, model predictive control, non-
square system, steady-state target optimization, real-time optimization.

I. INTRODUCTION
The main function of the cut tobacco drying process is to
reduce the moisture content in cut tobacco, which is conve-
nient for subsequent processing and storage. As one of the
largest energy consumption equipment in the industry, drying
equipment accounts for about 10%−25% of industrial energy
consumption [1]–[5].Most industrial dryers are low in energy
efficiency, ranging from a disappointing 10% to an acceptable
60%. Due to the rising cost of energy and the increasingly
fierce global competition, energy efficiency improvement is
an urgent goal for the industry. Most scientific research is
still focused on understanding dryingmechanism and product
quality, rather than the related control of drying equipment.
The cost and energy consumption of drying equipment in
the industry does not lie in the initial cost investment, but
the equipment’s daily operation and maintenance. In order
to obtain the desired product quality, the control strategy is
a very critical step [6]–[11].
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The classical proportional–integral–differential (PID) con-
trol is the most commonly used control strategy in the cut
tobacco drying system [1], [7], [12]. Because there are more
than 100 kinds of drying equipment in the world and the com-
plexity of drying mechanisms, no controller can be applied
to all drying equipment, leading to an uneven design level of
drying equipment and low efficiency of most control strate-
gies. In the literature, various control strategies have been
applied to drying equipment, from internal model control
(IMC) [13], fuzzy control [14] to model predictive control
(MPC) [9], [15]–[18]. However, most of the control strategies
are based on a linear drying process. We know that the drying
process mechanism is a highly nonlinear process, and the
linear model is often not enough to fully describe the process,
which is also a direct reason for the low energy efficiency of
drying equipment [19]. With the improvement of computer
load capacity, it also promotes advanced technology (MPC)
to solve nonlinear problems, continuously improve product
quality specifications and energy efficiency, and make the
system operate closer to the boundary of permitted opera-
tion area [20], [21]. In the traditional MPC control struc-
ture, the upper real-time optimization (RTO) bridges the gap
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among economic and control worlds and periodically trans-
fers all input and output steady-state operation setpoints to
the lower MPC, and the task of MPC is to transfer the system
from the current state to the target state. In practice, due to
the different system models used by RTO and MPC, MPC
can not reach the operating setpoints of RTO optimization,
resulting in a steady-state static error of system output. This
is another direct reason for the low energy efficiency of drying
equipment [22], [23].

The drying process of cut tobacco is a nonlinear and non-
square system; the number of input variables is less than
the number of output variables. For the nonsquare multivari-
able control system, the system’s steady-state gain matrix
is irreversible, so the steady-state value of the control input
cannot be obtained from the system output setpoint value
and the steady-state gain matrix, which leads to the existence
of static error control in the nonsquare system. For the cut
tobacco drying process’s nonsquare system, the compatibility
and uniqueness of input and output steady-state values are
all due to RTO’s unreasonable setpoint value, which leads
to no solution of input and output steady-state relationship.
To solve the nonsquare system control problem: (1) Reselect
a set of more reasonable operation setpoints. (2) The num-
ber of steady-state equations is reduced so that the steady-
state equations have unique solutions. Motivated by these
considerations and inspired by Hedengren et al. [24], Li
and Ding [25], Kassmann et al. [26], Liu et al. [27], Mao
et al. [28], and Zhang et al. [29], two control strategies are
proposed in cut tobacco drying process in this article. The
first control strategy is two-layered model predictive control,
which adds a steady-state target optimization layer (SSTO)
between RTO and MPC to reselect a more reasonable set of
steady-state operating setpoints. Another control strategy is
zone MPC, which is to relax some system output variables’
control requirements and give an allowable output interval.
The purpose is to reduce the number of steady-state equations
and increase the system’s degree of freedom to eliminate the
steady-state static error and realize the offset free control.
First, the cut tobacco drying process system and its model
are introduced, and the performance indices are formulated.
Then, the nonlinear moving horizon estimator (NMHE) and
RTO are employed to estimate the system parameters, states,
and optimal operating setpoints, and the controller is designed
by its ability to deal with system constraints and nonlinear-
ity. Subsequently, a two-layered MPC based on SSTO, and
zone MPC were proposed to optimize the cut tobacco drying
process. The conventional RTO-MPC is also introduced for
comparison purposes. The simulation results under different
scenarios have demonstrated that the proposed two-layered
MPC based on SSTO provides a more flexible way to handle
the cut tobacco drum dryer system’s optimization problem
in the presence of system nonlinearities, constraints, and
disturbances.

The remainder of this article is organized as follows: a
detailed description of the cut tobacco drum dryer system
and its fourth-order nonlinear open equation model and the

performance indices function are presented in Section 2.
Section 3 introduces the design of NMHE and RTO, and
Section 4 and 5 provide the design details of the pro-
posed two-layered model predictive control strategy (SSTO
and MPC). Extensive simulations have been conducted in
Section 6 to verify the performance of the proposed two-
layered model predictive control strategy over conventional
RTO-MPC in setpoint tracking and disturbance rejection.
Finally, we give conclusions in Section 7.

II. SYSTEM DESCRIPTION AND PERFORMANCE INDICES
A. SYSTEM DESCRIPTION
In this work, we consider a tobacco drum dryer system with
a production capacity of 500kg

/
min. The schematic of the

system is shown in figure 1. The drum-type drying equipment
uses steam as the heating energy, adopts the conduction and
convection mixed drying method to dry and dehumidify the
cut tobacco, mainly conducts the heating, and supplements
the convection heating. The heated steam heats the drying
cylinder through the steam supply system of the dryer. The
cut tobacco is fed into the continuously rotating drum by
a vibrating conveyor. The drying cylinder wall is in direct
contact with the cut tobacco, and the heat is transferred to the
cut tobacco in a conductive manner. Simultaneously, hot air
flows from the feed end to the cut tobacco in the tube. The hot
air directly contacts the cut tobacco and transfers the heat to
the cut tobacco through convection to enhance moisture evap-
oration from the cut tobacco. After the cut tobacco absorb
heat from the cylinder wall and the hot air, the temperature
rises, the moisture evaporates on the cut tobacco surface and
diffuses into the hot airflow. The hot air flow absorbs water
vapor, becomes humid and hot air, and enters the air dust
box from the drying cylinder’s discharge end. In the whole
process, under the action of the heating cylinder wall and hot
air, the cut tobacco will continue to rotate with the rotation of
the inclined cylinder, and then gradually slide from the high
end of the drying cylinder to the discharge end.

For computational tests in this work, it was assumed that
the drum dryer is adiabatic (Heat loss Ql1 and Ql2 equal to
0) and moisture movement and heat transfer are one dimen-
sional; has a drum length L of 7.7m; diameter of 1.25 m;
the slope of 3.5 degree; has an area A, cross-area A1 and the
volume V . No chemical reaction takes place during drying,
i.e., thermal and chemical properties of the material, air and
moisture are constant within the range of temperatures con-
sidered; Drying air is distributed uniformly through the dryer.
The mass flow at the drum dryer’s input and output must be
equal; otherwise, the system’s mass and heat capacity will
change.

Based on mass and energy balances, a fourth-order non-
linear model shown below can be developed to describe the
dynamics of the above cut tobacco drum dryer system:

ρpV
dw
dt
= ṁinwin − ṁoutw− ρpVRevap (1)

155698 VOLUME 8, 2020



A. Chen et al.: Two-Layered MPC Strategy of the Cut Tobacco Drying Process

FIGURE 1. Schematic of cut tobacco drum dryer system.

dTdryer
dt

=
ρaircairq

(
Tin − Tdryer

)
ρmixVcmix

+
ṁincp

(
Tpin − Tpout

)
ρmixVcmix

+
ρpVRevapcw

(
Tpin−Tf

)
ρmixVcmix

+
Akeff

(
Tc2−Tdryer

)
LρmixVcmix

−Ql2 (2)
dTpout
dt
=

Akeff 1
(
Tdryer − Tpout

)
LρpVcp

+
Akeff 1

(
T1 − Tpout

)
LρpVcp

−
ρpVRevapcw

(
Tpout − Tpin

)
ρpVcp

(3)

dT1
dt
=
ρaircairq (Tin − T1)

ρawVcaw
+
A1keff 2 (Tc1 − T1)

LρawVcaw
−Ql1

(4)

Revap = 0.0001649exp
(
2Tdryer + T1

T1

)
(5)

ρmix and cmix are the mixing density and mixing specific
heat capacity in the drum, ρaw and caw are the mixing density
and mixing specific heat of air and water in the heater. keff =
100, keff 1 = 5, keff 2 = 700 are all thermal conductivity
(W
/
m◦C); here, they were considered constant along the

time; in the following nonlinear dynamic estimation section,
these three parameters will be estimated.

B. OPERATIONAL DATA AND PERFORMANCE INDICES
Table 1 specifies the inlet and outlet data of the dryer in
operation, assuming that the speed of cut tobacco and hot air,
the specific heat of tobacco, water and air, and the quality of
tobacco and hot air are always constant.

NOTATION
c1, c2 and c3 =Weights and cost.
f , g, and h = Output functions, equality and inequality

constraints.
Tc1 and Tc2 = Control inputs.
x̂, ŷ, p̂ and d̂ = The estimated values of x, y, p and d .
x0, yx and ȳ = Initial state, measurements and prior model

outputs.
Wm =Measurement deviation penalty.
c1p = Penalty from the prior parameter values.
Wp = Penalty from the prior solution.
1pT = Change in parameters.

TABLE 1. Inlet and outlet data of the cut tobacco dryer (operational data).

CV and MV = Controlled variable and manipulated vari-
able.
yt = Desired trajectory target (yt,RTO, yt,SSTO).
uLL and uHL = The lower and upper bounds of operation

constraints of the control inputs.
uLLL and uHHL = The lower and upper bounds of engineer-

ing constraints of the control inputs.
yLL and yHL = The lower and upper bounds of operation

constraints of the controlled variables.
yLLL and yHHL = The lower and upper bounds of engineer-

ing constraints of the controlled variables.
ε1, ε2, ε3 and ε4 = Slack variables.
w1, w2, w3 and w4 = The weights on the slack variables.
Wt = Penalty outside reference trajectory.
wu and wy = The weights on input and output.
1u =Manipulated variable change.
W1u =Manipulated variable movement penalty.
sp = Operating setpoint.
sphi and splo = Upper and lower bounds to final setpoint

dead-band.
τc = Time constant of desired controlled variable response.
wThi and w

T
lo = Penalty outside reference trajectory.

ehi and elo = Upper and lower error outside dead-band.
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1uU and 1uL = Upper and lower manipulated variable
change.
yt,hi and yt,lo = Upper and lower bounds to desired trajec-

tory target.
Two common manipulated variables are the steam

temperature Tc1 of the heater and the heating steam tem-
perature Tc2 of the drum dryer. Let us define the state vec-
tor as x =

[
w Tdryer Tpout T1

]T , the manipulated input
vector as u =

[
Tc1 Tc2

]T , and the process output vector
as y =

[
w Tdryer Tpout T1

]T , a set of parameters p =[
keff keff 1 keff 2

]T , d is a time varying trajectory of dis-
turbance values. output functions, equality and inequality
constraints are represented by f , g, and h, respectively. Then
the dynamic mathematical model of cut tobacco drum dryer
system can be described by a compact nonlinear open equa-
tion form model as follows:

0 = f
(
dx
dt
, x, y, p, d, u

)
0 = g(x, y, p, d, u)

0 ≤ h(x, y, p, d, u) (6)

The real-time optimization (RTO) economic function used
in the simulation is presented in equation 7. The main objec-
tive is to minimize the steam temperature Tc1 of the heater
and the heating steam temperature Tc2 of the drum dryer, and
at the same time minimize the cut tobacco outlet temperature
Tpout .

J2(u, y, c) = −c1w+ c2Tpout + c3(Tc1 + Tc2) (7)

The steady-state target optimization (SSTO) economic
function used in the simulation is presented in equation 8.
It has the same terms of RTO’s economic function; hence,
the same objective and an additional term are included to
penalize the previous RTO setpoint’s distance.

J4/5(u, y, c) = −c1w+ c2Tpout + c3(Tc1+Tc2)+‖y−ys‖2Q
(8)

where u and y represent the system outputs and inputs respec-
tively, c1 and c2 are the weight of the cut tobacco output
moisture w and the cut tobacco outlet temperature Tpout , and
c3 is the cost associated with the control inputs Tc1 and Tc2.

III. NONLINEAR DYNAMIC ESTIMATION AND REAL-TIME
OPTIMIZATION
This section introduces nonlinear moving horizon estima-
tor (NMHE) and real-time optimization (RTO). We propose
using NMHE for states and parameter estimation purposes
since it can handle nonlinear systems and take into account
constraints [30]–[35]. The RTO is utilized to coordinate the
network of process units and to provide optimal setpoints
for the lower controllers [22], [23]. The NMHE and RTO
structure considered in this work are represented in figure 2.

FIGURE 2. General nonlinear control structure.

A. NONLINEAR DYNAMIC ESTIMATION OF MHE
State estimation and parameter estimation have gained
valuable applications in the chemical process industry by
strengthening process monitoring and control. Examples of
industrial applications include offline and online process
system identification, online monitoring and fault detection,
parameter estimation for model predictive control, and pro-
cess disturbance prediction. Certain states of the system can-
not often bemeasured directly, or the direct measurement cost
is too high, which requires the estimation of these states based
on the system’s output measurement. For the cut tobacco
drum dryer system, the measurable outputs are the hot air
temperature T1, the drum dryer temperature Tdryer and the cut
tobacco outlet temperature Tpout , while the cut tobacco outlet
moisture w is unmeasured. Simultaneously estimate three
parameters keff , keff 1 and keff 2. In the proposed double-
layer MPC design, the system’s overall state and parameters
are required, making the design of state and parameter esti-
mator necessary.

MHE aims to estimate the states and parameters and read-
just the predicted and measured values of the model. The
model prediction matches the previous measurement results
by adjusting the parameters and initial conditions of the
model. As the estimation range increases, the solution’s sensi-
tivity to x0 decreases at xn. The only d has a significant effect
on the current model state in a sufficiently long time frame.
Therefore, it is usually unnecessary to estimate the initial state
x0 as the degree of freedom in the optimization problem.

min
x̂,ŷ,p̂,d̂

J1 =
(
yx − ŷ

)TWm
(
yx − ŷ

)
+ (ŷ− ȳ)TWp(ŷ− ȳ)

+1pT c1p

s.t. 0 = f
(
dx
dt
, x̂, ŷ, p̂, d̂, u

)
0 = g(x̂, ŷ, p̂, d̂, u)

0 ≤ h(x̂, ŷ, p̂, d̂, u) (9)

In the above optimization equation 9, x̂, p̂ and d̂ rep-
resent the estimated values of x, p and d , respectively;
J1 represents minimized objective function result; ŷ rep-
resents model outputs

(
ŷ0 · · · ŷN

)T ; yx represents measure-
ments

(
yx,0 · · · yx,N

)T ; ȳ represents prior model outputs
(ȳ0 · · · ȳN )T ; Wm represents measurement deviation penalty;
Wp represents penalty from the prior solution; c1p represents
penalty from the prior parameter values; 1pT represents
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change in parameters; N represents the size of the estimation
window. The NMHE structure, as shown in figure 2 and 3,
at time step k , which is based on a rigorous process model,
computes the parameters and states, x̂ and p̂ to transmitted to
RTO, SSTO and MPC.

B. DESIGN OF REAL-TIME OPTIMIZATION (RTO)
In figure 2, real-time optimization (RTO), the optimal val-
ues of setpoints are recalculated periodically (for example,
hourly or daily). RTO is utilized to coordinate the pro-
cess units’ network and provide optimal setpoints for the
lower controllers, called supervisory control. These repeti-
tive calculations involve solving a constrained, steady-state
optimization problem. The RTO optimization problem is
described in equation 10. Where J2 is the scalar economic
function to be minimized, yt,RTO = Luut,RTO represents the
steady-state input-output linear mapping obtained by the non-
linear system; uLL and uHL are the lower and upper bounds
of operation constraints of the control inputs, respectively;
and yLL and yHL are the lower and upper bounds of operation
constraints of the controlled variables, respectively.

min
yt,RTO,ut,RTO

J2 = cTy yt,RTO + c
T
u ut,RTO

s.t. yt,RTO = Luut,RTO
uLL ≤ ut,RTO ≤ uHL
yLL ≤ yt,RTO ≤ yHL (10)

The RTO optimization algorithm’s output is sent down-
wards to the control structure targeting the plant to the eco-
nomic increase direction. Comparing the RTO and MPC
models, it is clear that they are different models, so there is no
guarantee that the predictions obtained through them will be
consistent, unless perhaps when the process is operating close
to the linearization point. Further, the inconsistency between
the steady-state RTO model and the dynamic MPC model
may cause the MPC regulator to produce steady-state input
and output errors.

Another issue that arises when using RTO is its sampling
period. As RTO optimization only starts after the process
reaches a steady-state, it might happen that MPC targets
will not be updated for a long time, which might reflect in
economic loss. In many cases of the real world, the distur-
bances’ dynamics are comparable with the process dynamics.
Hence, the hierarchical control system should deal with fast
disturbances properly.

A better option is the inclusion of the sub-layer steady-state
target optimization (SSTO) to improve the integration of RTO
and MPC and counteract the disadvantages just mentioned.
The sub-layer is executed at the same MPC frequency and
uses the steady-state version of theMPCmodel. Its purpose is
to correct RTO setpoints to steady-state targets that are attain-
able by the MPC regulator. By choosing the SSTO approach,
one can expect to: have a faster reaction of the control struc-
ture in response to the occurrence of disturbances, avoid giant
steps in setpoint changes that might cause instability, deal

FIGURE 3. Extended control structure, considering an intermediary
steady-state target optimization stage.

with the offset from the desired targets in a more controlled
and optimized way.

IV. DESIGN OF THE SUB-LAYER STEADY-STATE TARGET
OPTIMIZATION (SSTO)
In this section, we introduce steady-state target optimization
(SSTO).We propose using SSTO for recalculating the steady-
state target value of CV andMV and realizing the asymptotic
tracking of RTO calculation results [25], [26], [31]. The
optimal operating setpoints of SSTO is sent downwards to the
MPC control structure. SSTO and MPC structure considered
in this work are represented in figure 3.

There is a real-time optimization layer (RTO) at the top of
the control system, and the optimization cycle is hour level.
The optimizer combines the whole process optimization
index and user-defined goal to give some CV and MV ideal
setpoints. However, the existence of process constraints and
the influence ofmodelmismatch or disturbancemaymake the
system not reach the desired setpoints. The steady-state target
optimization is to recalculate the steady-state target value
of CV and MV (that is, the setpoints of dynamic control)
at every moment of MPC controller execution. On the one
hand, steady-state target optimization (SSTO) can realize the
asymptotic tracking of RTO calculation results; on the other
hand, it can also achieve the local economic optimization of
the MPC corresponding process. Therefore, at each sampling
time, the first step is to calculate the steady-state target,
find steady-state operating setpoints yt,SSTO, ut,SSTO in the
feasible region, and make it as close to the expected val-
ues yt,RTO, ut,RTO as possible.The hierarchical structure opti-
mization control is shown in figure 3. This structure includes
an intermediary layer, called steady-state target optimization
(SSTO), which computes modified targets to guarantee the
controllability of the MPC controller.

For a steady-state optimization problem, the optimization
process can be artificially divided into two stages: (1) In the
feasibility stage, to ensure that the optimization problem is
feasible; (2) In the economic optimization stage, the opti-
mization is carried out in the feasible space to find the optimal
solution that makes the economic objective function optimal.
First, it determines whether space (domain) formed by the
constraints exists, if it exists, it will be optimized in it; if it
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does not exist, it will obtain the feasible space through soft
constraint adjustment, and then solve it.

A. FEASIBILITY JUDGMENT OF SSTO
The feasibility judgment of the steady-state objective opti-
mization problem can be attributed to the following nonlinear
programming problem in equation 11. where J3 is the scalar
economic function to be minimized, f (x̂, ŷ, p̂, d̂, u) = 0 rep-
resents the nonlinear system steady-state output functions;
uLL and uHL are the lower and upper bounds of operation
constraints of the control inputs, respectively; and yLL and
yHL are the lower and upper bounds of operation constraints
of the controlled variables, respectively. uLLL and uHHL are
the lower and upper bounds of engineering constraints of the
control inputs, respectively; and yLLL and yHHL are the lower
and upper bounds of engineering constraints of the controlled
variables, respectively. ε1, ε2, ε3 and ε4 are slack variables,
and w1, w2, w3 and w4 represent the weights on the slack
variables. If J3 = 0, it indicates that the feasible region
exists, and the original SSTO problem is feasible; if J3 > 0,
it indicates that the feasible region does not exist, and the
original SSTO problem is not feasible, so it is necessary to
adjust the constraints to rebuild the feasible region.

min
ε1,ε2,ε3,ε4

J3 = w1ε1 + w2ε2 + w3ε3 + w4ε4

s.t. f (x̂, ŷ, p̂, d̂, u) = 0

uLL − ε1 ≤ u ≤ uHL + ε2
yLL − ε3 ≤ ŷ ≤ yHL + ε4
uLLL ≤ u ≤ uHHL
yLLL ≤ ŷ ≤ yHHL (11)

B. THE TARGET TRACKING OF SSTO
Because the optimization model and period of RTO are dif-
ferent from that of the dynamic control layer, the expected
values yt,RTO, ut,RTO of the RTO are usually not directly
transferred to the dynamic control layer as dynamic setpoints.
It is necessary to recalculate the steady-state operating set-
points yt,SSTO, ut,SSTO through SSTO in combination with
the current actual situation of the system and the adopted
nonlinear model. The target tracking of SSTO problem is
shown in equation 12.

min
u,ŷ

J4 =
(∥∥u− ut,RTO∥∥2R + ∥∥ŷ− yt,RTO∥∥2Q)

s.t. f (x̂, ŷ, p̂, d̂, u) = 0

uLL ≤ u ≤ uHL
yLL ≤ ŷ ≤ yHL (12)

C. THE ECONOMIC OPTIMIZATION OF SSTO
SSTO not only has the requirement of tracking RTO opti-
mization target but also has the ability of self-optimization in
operation horizon. In other words, according to the process
requirements, automatic optimization is carried out near the
steady-state target value to find the best process setpoint. Its

inherent meaning is to maximize the benefit or minimize the
cost caused by the change of control input and controlled
output; the first task is to standardize the benefit or cost
generated by the unit change of control input, then use the
standardized parameter cT =

[
c1 c2 c3

]
to represent the

benefit or cost of each control input variable, and use the
± symbol to distinguish the cost and benefit, + represents a
cost, − represents a benefit, so the objective function should
be minimized. The economic optimization of SSTO problem
is shown in equation 13.

min
u,ŷ

J5 = −c1w+ c2Tpout + c3(Tc1 + Tc2)

s.t. f (x̂, ŷ, p̂, d̂, u) = 0

uLL ≤ u ≤ uHL
yLL ≤ ŷ ≤ yHL (13)

D. COORDINATION BETWEEN SSTO FEASIBILITY AND
ECONOMIC OPTIMIZATION
From the above SSTO economic optimization, it can be
seen that the system optimization feasibility is the necessary
condition for the system optimization control when dealing
with the complex system optimization control. The following
two cases are divided to analyze the relationship between the
feasibility and the target coordination.

(1) If SSTO has an optimal feasible region, but when the
feasible region of the system is far away from the expected
target, the objective function J value will be tremendous from
the economic optimization, which shows that even if there
is a broader feasible region, it is not necessarily able to
get the optimization results satisfactory to users. So, in this
case, for the SSTO, the system’s feasibility is no longer the
only necessary condition for system optimization. On the one
hand, if the system still has the remaining degrees of freedom
(the adjustability of constraints), we should further use these
degrees of freedom to adjust the feasible space of the system
to the desired setpoint of the target; on the other hand, we can
also soften the target while relaxing the constraints.

(2) When SSTO is not feasible, the optimization problem
must be made feasible to coordinate the objectives. It is
necessary to construct a feasible region through soft con-
straint adjustment. For SSTO, it is necessary to take eco-
nomic optimization into account while optimizing the fea-
sible region’s design. Because the feasible region formed
by u and ŷ constraints is a polyhedral shape, the feasible
region reconstructed by constraint adjustment does not nec-
essarily approach to the direction of making the economic
optimization goal smaller, whichmay lead to the optimization
results not satisfactory to users. Therefore, when the feasible
region of the optimization problem does not exist, we need
to adjust the constraints, rebuild the feasible region, and take
into account the system’s economic optimization.

Therefore, when the feasible region of SSTO is not feasi-
ble, or the feasible space of the system is far away from the
expected target, it is necessary to adjust the constraints of the
system properly to obtain an optimal value satisfying the user.
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The coordination and optimization problem is shown in Equa-
tion 14, and the second half of object J reflects the economic
benefits. If loosening the constraint bound will increase eco-
nomic benefits, the bound will be adjusted accordingly, and
not all soft constraints can be coordinated.

min
ε1,ε2,ε3,ε4,u,ŷ

J6 = w1ε1 + w2ε2 + w3ε3 + w4ε4

− c1w+ c2Tpout + c3(Tc1 + Tc2)

s.t. f (x̂, ŷ, p̂, d̂, u) = 0

uLL − ε1 ≤ u ≤ uHL + ε2
yLL − ε3 ≤ ŷ ≤ yHL + ε4
uLLL ≤ u ≤ uHHL
yLLL ≤ ŷ ≤ yHHL (14)

V. PROPOSED TWO-LAYERED MODEL PREDICTIVE
CONTROL STRATEGY
In this section, we introduce MPC and zone MPC (ZMPC).
The MPC layer is responsible for the dynamic tracking con-
trol of the optimal setpoints [21]. The ZMPC sacrifices some
secondary output variables’ control requirements to ensure
that the main output variables can reach the set value target
with limited degrees of freedom [24], [27]–[29]. RTO, SSTO,
and MPC structure considered in this work are represented
in figure 3.

A. MPC STRUCTURE INTEGRATED WITH SSTO
The two-layer MPC not only keeps the advantages of predic-
tive control but also adds the SSTO layer to recalculate the
optimal steady-state output and the input value of the system
at each sampling time, to prevent the disturbance entering the
system at any time or the input of the operator from changing
the optimal steady-state input and output of the system. The
dynamic control layer is responsible for the dynamic tracking
control of the optimal setpoints. Since the disturbance and
the deviation between the predicted output and the measured
output are considered in the SSTO, the dynamic control can
completely track the target and realize offset free control. The
optimal input sequence is obtained from equation 15 of the
dynamic optimization problem.

min
u

J7 =
(
ŷ− yt

)TWt
(
ŷ− yt

)
+ ŷTwy + uTwu

+1uTW1u1u

s.t. 0 = f
(
dx̂
dt
, x̂, ŷ, p̂, d̂, u

)
0 = g(x̂, ŷ, p̂, d̂, u)

0 ≤ h(x̂, ŷ, p̂, d̂, u)

τc
dyt
dt
+ yt = sp (15)

In the above optimization, x̂, ŷ, p̂ and d̂ represent the
state and parameter estimate from NMHE. J7 represents
minimized objective function result; yt represents desired
trajectory target (yt,RTO, yt,SSTO); Wt represents penalty out-
side reference trajectory; wu and wy represent the weights on

input and output;1u represents manipulated variable change;
W1u represents manipulated variable movement penalty; sp
represents operating setpoint; τc represents time constant of
desired controlled variable response. In the dynamic control,
three goals are achieved: (1) the future CV is as close to yt as
possible, (2) the drastic change ofMV is restrained.

B. NONLINEAR CONTROL OF NONSQUARE
MULTIVARIABLE SYSTEM
The general description is as follows: The nonlinear system
is square (the number of control input variables is equal to
the number of controlled output variables), and its process
steady-state gain matrix exists and is reversible. After the out-
put target is given, it means that the control input target is also
determined simultaneously. The steady-state values of input
and output are compatible. Nonsquare systems are divided
into two cases: (1) The systems with a degree of freedom
D > 0 (the number of control input variables is higher than
the number of output variables), and a given output target can
havemany types of control input combinations corresponding
to it. (2) For a system with a degree of freedom D < 0 (the
number of control input variables is less than the number of
output variables), the given output target is often unreachable,
and the process has a steady-state error.

Consider the cut tobacco drying process nonlinear system
with 4 states, 2 inputs, and 4 outputs. Based on the nonlinear
system’s input/output linearization, the relationship between
the steady-state input and the steady-state output value of the
nonsquare system is analyzed. As shown in equation 16, Lu
is the characteristic matrix of the system,4 is the augmented
matrix of the system. For the systemwith a degree of freedom
D < 0, the root cause of the possible incompatibility of the
steady-state solution lies in the fact that rank(Lu) < rank(4).
It is known theoretically that if yt belongs to the column
space of Lu, then Luut = yt must be compatible, that is,
rank(Lu) = rank(4), indicating that the steady-state solution
of the control input is unique at this time. It can be seen that
if we can find yt , which makes rank(Lu) = rank(4), then the
problem of compatibility and uniqueness of the steady-state
solution of the system will be solved at the same time. The
key to ensuring that yt is an element in the column space of
Lu, but yt itself is not unique.

Lu =


L11 L12 · · · L1m
...

...
...

...

Lp1 Lp2
... Lpm


p×m

4 =

 L11 L12 · · · L1m yt,1
...

...
...

...
...

Lp1 Lp2 · · · Lpm yt,m


p×(m+1)

Luut = yt (16)

According to the theory, the primary reasonwhy the system
with D < 0 is usually uncontrollable is that the setpoint is
not given reasonably. The way to solve the control problem
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of the system is as follows: (1) select a set of more reasonable
(that is, make the input-output steady-state relationship equa-
tion have a solution). (2) Reduce the number of equations,
so that the number of equations (the number of outputs) is
equal to the number of unknown variables (the number of
inputs), or make the number of equations less than the num-
ber of unknown variables constitute a sub definite equation
group, usually with solutions, and whether there are array
solutions.

The first method to solve the system with a degree of free-
dom D < 0 is the two-layered model predictive control with
integrated steady-state target optimization (SSTO). Based
on the multivariable predictive control, a steady-state target
optimization layer is introduced to ensure that the steady-state
solution (ut , yt ) of the optimal control input and controlled
output is uniquely determined. The secondmethod is the zone
control. Its essence is: for the control of the system with
a degree of freedom D < 0, the zone control strategy is
adopted for some outputs, that is, to give up the setpoint of
this part of the output, that is, to reduce the number of steady-
state equations, to obtain unique solutions, or even infinite
solutions (the number of solutions is related to the number of
relaxed outputs of the zone control strategy), to eliminate the
steady-state error of the output.

The optimal objective function of the zone control strategy
is the L1-Norm objective (as in Equation 17). By sacrific-
ing some secondary output variables’ control requirements,
the limited degrees of freedom can ensure that themain output
variables can achieve the setpoint objective. Another feature
of zone control is the way to deal with system disturbances.
In extreme cases (all outputs use zone control), the controller
may not generate any action for disturbance in the entry
process. For a process that uses a hybrid control mode (partial
output is setpoint control, and part output is zone control,
which is also common in practice), the controller can respond
to disturbances with minimal controller action. The L1-Norm
zone MPC gives an intuitive way to manage these tradeoffs
for problems with security, environment, economy, and other
competing priorities.

min
u

J8 = wThiehi + w
T
loelo + ŷ

Twy + uTwu

+ wT1u (1uU +1uL)

s.t. 0 = f
(
dx̂
dt
, x̂, ŷ, p̂, d̂, u

)
0 = g(x̂, ŷ, p̂, d̂, u)

0 ≤ h(x̂, ŷ, p̂, d̂, u)

τc
dyt,hi
dt
+ yt,hi = sphi

τc
dyt,l0
dt
+ yt,lo = splo

ehi ≥ ŷ− yt,hi
el0 ≥ yt,lo − ŷ

1uU ≥ ui − ui−1
1uL ≥ ui−1 − ui

ehi, el0 ,1uU ,1uL ≥ 0 (17)

In the above optimization, x̂, ŷ, p̂ and d̂ represent the
state and parameter estimate from NMHE. J8 represents
minimized objective function result; wThi and wTlo represent
penalty outside reference trajectory; ehi and elo represent
upper and lower error outside dead-band;wu andwy represent
the weight on input and output; wT1u represents manioulated
variable movement penalty; 1uU and 1uL represent upper
and lower manipulated variable change; sphi and splo rep-
resent upper and lower bounds to final setpoint dead-band;
yt,hi and yt,lo represent upper and lower bounds to desired
trajectory target.

VI. SIMULATION RESULT
In this section, we apply the proposed SSTO-MPC and RTO
zone MPC (RTO-ZMPC) to the cut tobacco drum dryer sys-
tem and compare its performance with the RTO-MPC. The
optimization problems (NMHE, SSTO-MPC, RTO-MPC,
and RTO-ZMPC ) are solved using IPOPT in Matlab based
on APMonitor [24].

A. SYSTEM PARAMETERS AND CONSTRAINTS
For the cut tobacco drum dryer system in equation 6, model
parameters used in the simulations are given in Table 1. The
lower and upper limits of the operation constraints of manip-
ulated inputs are uLL =

[
0 0

]T and uHL =
[
200 200

]T ,
respectively. The lower and upper bounds of the engineering
constraints of manipulated inputs are uLLL =

[
0 0

]T and
uHHL =

[
250 250

]T , respectively. The lower and upper
limits of the changing rates of the two manipulated inputs
are 1umin =

[
10 10

]T and 1umax =
[
100 100

]T , respec-
tively. The lower and upper limits of the operation con-
straints of system outputs are yLL =

[
0.13 130 20 100

]T
and yHL =

[
0.16 170 100 120

]T , respectively. The lower
and upper bounds of the engineering constraints of system
outputs are yLLL =

[
0.13 100 20 100

]T and yHHL =[
0.20 200 105 150

]T , respectively. The lower and upper
limits of the three system parameters are pmin =

[
0 0 0

]T
and pmax =

[
200 50 1000

]T , respectively.
B. SYSTEM PARAMETERS AND STATES ESTIMATION
USING NMHE
First, the state and parameter estimation performance of the
NMHE scheme introduced in Section 3 is illustrated. It is
assumed that the three outputs (Tdryer , Tpout and T1 ) are
measured every1T = 1s and the measurements are immedi-
ately available to the state estimator. First of all, the estimator
must predict the outlet moisture content of cut tobacco w,
because there is no direct measurement of this output vari-
able. Secondly, three thermal conductivity keff , keff 1 and
keff 2 need to be predicted. We consider that the system is at
initially a zero state x0 and the corresponding initially input is
u0 =

[
100 130

]T . The choice of NMHE window length N
is based on extensive simulation. The simulation results show

155704 VOLUME 8, 2020



A. Chen et al.: Two-Layered MPC Strategy of the Cut Tobacco Drying Process

that when N is greater than 6, the estimation performance
is not significantly improved. Therefore, N is chosen as 10.
In order to illustrate the estimation performance of NMHE,
a set of step input signals (u(1 : 19) =

[
100 130

]T and
u(20 : 90) =

[
130 150

]T ) are applied to the nonlinear
cut tobacco drum dryer system. Figure 4 shows the results
of the parameters and states estimation. For this application,
the results indicate that NMHE provides accurate estimates
of three thermal conductivity and four states, especially when
the cut tobacco outlet moisture content is not measurable; it
is also estimated accurately.

C. OPTIMAL OPERATING SETPOINTS OF SSTO AND RTO
The proposed SSTO approach was applied in the control of
the cut tobacco drying process. The SSTO economic function
to be used in the simulation is presented in equation 14
and RTO economic function in equation 10. In table 2, four
different optimum operating setpoints are displayed, which
were obtained through the solution of the RTO and SSTO,
for corresponding weight values of cT . The first and second
operating setpoints are obtained in the nominal condition, and
the third and fourth operating setpoints are obtained in the
disturbance condition. In the disturbance condition, the SSTO
problem is not feasible, so it is necessary to relax the opera-
tion constraints (u) to find a feasible solution. The optimal
operating setpoints of SSTO and RTO are sent downwards to
the MPC control structure to validate our proposed approach.

D. RESULTS OF OPTIMAL OPERATING
SETPOINTS-TRACKING CAPABILITY TESTS
The nonlinear system of cut tobacco drying has four states:
a nonsquare system and two inputs and four outputs. The
optimal operating setpoints under under different system con-
ditions have been transmitted to the lower control structure
through SSTO and RTO. Therefore, this section first verifies
the tracking capability of the proposed SSTO-MPC and RTO-
MPC; it is assumed that the entire state vector is measured and
available to the controllers.

Simulation is carried out in two typical cases, the first
of which is system simulation in a nominal case. First
simulation, the weight coefficient of RTO and SSTO
objective functions is cT =

[
1 1 1 1

]
and cor-

responding optimal operating setpoints of SSTO and
RTO are yt,SSTO =

[
0.1535 130 58.8876 100

]T and
yt,RTO =

[
0.1584 131.2529 58.0798 100

]T , respectively.
The weighting matrix coefficient of MPC objective func-
tion is Wt = diag

([
30 20 20 10

])
and represents penalty

outside reference trajectory. W1u represents manipulated
variable movement penalty, here we choose as W1u =

diag
([
200 200

])
. SSTO-MPC and RTO-MPC track the

optimal operating setpoints in closed-loop simulation as
shown in figure 5. In figure 5, e1 = wsp − w represents the
outlet moisture error of cut tobacco. In the whole system,
the outlet moisture content of the cut tobacco is the most
critical controlled output variable, which is directly related to

the quality of cigarette products. It can be seen from figure 5
that RTO-MPC has static error control, and SSTO-MPC can
well control each output variable without static error.

In the second simulation, when the weight coeffi-
cient of the objective function of RTO and SSTO is
changed, i.e., cT =

[
−1 1 1 1

]
and correspond-

ing optimal operating setpoints of SSTO and RTO are
yt,SSTO =

[
0.1444 141.1501 56.4244 100

]T and yt,RTO =[
0.16 135.0332 56.2106 100

]T , respectively. The weight-
ing matrices Wt and W1u are selected to be the same as the
first simulation. SSTO-MPC andRTO-MPC track the optimal
operating setpoints in the closed-loop simulation, as shown
in figure 6. It can be seen from figure 6 that RTO-MPC still
has a small static error, while SSTO-MPC is still no static
error control.

In the second case, we consider a disturbance in the
system, either from upstream equipment or the equipment
itself. Here, we assume that the moisture and temperature
at the inlet of the cut tobacco from the upstream equip-
ment fluctuate, i.e. win = 0.20, Tpin = 35; the air tem-
perature at the inlet of the heater changes twice as much,
i.e. Tin = 40. Third simulation, the weight coefficient of
RTO and SSTO objective functions is cT =

[
1 1 1 1

]
and corresponding optimal operating setpoints of SSTO
and RTO are yt,SSTO =

[
0.16 134.5834 61.3004 100

]T
and yt,RTO =

[
0.16 130 58.6144 100

]T , respectively. The
weighting matrices Wt and W1u are selected to be the same
as the first simulation. SSTO-MPC and RTO-MPC track the
optimal operating setpoints in the closed-loop simulation,
as shown in figure 7. It can be seen from figure 7 that when
there is a disturbance in the system, RTO-MPC still has
static error control, which cannot overcome the shortcomings
of the control of the nonsquare system; at the same time,
the moisture of the cut tobacco outlet exceeds the operational
constraints of the output variable, which affects the quality
of subsequent products. SSTO-MPC achieves the error-free
tracking of output variables by relaxing the constraints of
operating variables.

It can be seen from the simulation that compared with
RTO-MPC, the proposed SSTO-MPC has better tracking
performance for the nonsquare system of the nonlinear cut
tobacco drying process.

E. ZONE CONTROL OF THE NONSQUARE SYSTEM
In the cut tobacco drying process, the primary task is to
meet the outlet moisture content of cut tobacco. Under the
condition of reducing the operation cost, as long as the
cut tobacco outlet temperature, drum dryer temperature, and
hot air temperature meet the process requirements, energy
consumption can be saved. The second control strategy for
nonsquare systems is zone MPC. We set a dead band zone
for drum dryer temperature Tdryer and hot air temperature T1
to meet the process requirements. The primary purpose of
setting the dead band zone is to reject the measurement error
and stabilize the parameter estimation. A unique feature of
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FIGURE 4. Trajectories of the actual states and parameters, and states and parameters estimate by the NMHE.

FIGURE 5. Under the nominal condition, SSTO-MPC and RTO-MPC track the optimal operating setpoints in the closed-loop
simulation.

the zone MPC is that a dead band zone or no penalty zone is
added to the measured value without causing any loss. Only
when the model prediction exceeds this dead band zone will
the optimizer change the parameters to modify the model.
This setting reduces the controller actions to a certain extent,
achieving cost savings, and optimizing economic goals.

For the proposed RTO zone MPC (RTO-ZMPC), In the
optimization problem equation 17, wThi and wTlo represent

penalty outside reference trajectory, here we choose as:wThi =[
30 20 20 10

]
, wTlo =

[
30 20 20 10

]
. wu and wy choose as

the identity matrix.W1u is selected to be the same as the first
simulation. In the cut tobacco drying process, the primary
task is to meet the outlet moisture content of cut tobacco.
We set a dead band zone for drum dryer temperature Tdryer
and hot air temperature T1 to meet the process require-
ments and the outlet moisture content setpoint w and outlet
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FIGURE 6. Under the nominal condition, SSTO-MPC and RTO-MPC track the optimal operating setpoints in the closed-loop
simulation.

FIGURE 7. Under the disturbance condition, SSTO-MPC and RTO-MPC track the optimal operating setpoints in the closed-loop
simulation.

TABLE 2. Optimal operating setpoints of the cut tobacco dryer.
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FIGURE 8. Under the disturbance condition, SSTO-MPC, RTO-MPC, and RTO-ZMPC track the optimal operating setpoints in the
closed-loop simulation.

temperature of cut tobacco Tpout are same as RTO. sphi and
splo represent upper and lower bounds to final setpoint dead-
band zone, here we choose as: sphi =

[
0.16 160 60 110

]
,

splo =
[
0.16 150 20 100

]
. The simulation conditions are

the same as the third simulation, the weight coefficient of
RTO and SSTO objective functions is cT =

[
−1 1 1 1

]
and

corresponding optimal operating setpoints of SSTO and RTO
are yt,SSTO =

[
0.13 162.5643 55.3745 100

]T and yt,RTO =[
0.16 165.6059 43.4009 100

]T , respectively. SSTO-MPC,
RTO-MPC, and RTO-ZMPC track the optimal operating set-
points in the closed-loop simulation, as shown in figure 8.
As can be seen from figure 8, RTO-ZMPC is also an effec-
tive control strategy for nonsquare systems, which has good
tracking performance and realizes the controller’s minimum
action economy. However, the selection of the dead band zone
for RTO-ZMPC is more based on engineering practice, while
SSTO-MPC is a more desirable control strategy to obtain
exact optimal operation setpoints based on strict optimization
problems.

VII. CONCLUSION
This article proposes a double-layer MPC (SSTO-MPC)
control strategy for the nonsquare system of the nonlinear
tobacco drying process, which overcomes the shortcomings
of traditional MPC (RTO-MPC) in static error control of the
nonsquare system. Simulation results show that SSTO-MPC
has better tracking ability and disturbance suppression ability
than RTO-MPC. At the same time, the addition of the SSTO
layermakesMPC have amore flexible framework. Compared
with RTO-ZMPC, SSTO-MPC has a more rigorous theoreti-

cal optimization operation setpoint, and the implementation is
more scientific and reasonable. Overall, the proposed double-
layer MPC (SSTO-MPC) provides an attractive control alter-
native to the conventional tracking MPC.
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