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ABSTRACT Underwater acoustic (UWA) communications systems suffer from a low signal-to-noise
ratio (SNR) and a doubly selective channel, which are caused by many limitations, such as high propagation
loss, slow propagation speed, and time-varying environmental factors. To overcome a low SNR, various
diversity techniques are often adopted in UWA communications. However, such diversity can only be
exploited with knowledge of the channel. Accordingly, channel estimation needs to be performed without
obtaining the benefit of diversity. Moreover, accurate side information that can support a channel estima-
tor (CE) is difficult to acquire at a low SNR under doubly selective channel. In this article, a novel CE
based on an adaptive denoising is proposed for UWA orthogonal frequency-division multiplexing (OFDM)
systems. The proposedmethod exploits two different types of pilot symbols. Channel impulse response (CIR)
is estimated based on primary pilot symbols. By minimizing the squared error of the received secondary
pilot symbols, a near-optimal denoising window is adaptively determined based on the channel length for
the given CIR estimate. The proposed method does not require a priori information about channel statistics
and SNR values. Analysis on the effect of denoising and the performance of the proposed denoising window
estimator are also presented. Simulation and at-sea experiments verify that the proposed method has superior
performance, compared with conventional CEs over diverse channel conditions. Complexity analysis shows
that the proposed method is computationally efficient. Therefore, the proposed method is effective for
real-time UWA OFDM systems under a harsh UWA channel with strong noise.

INDEX TERMS Adaptive denoising, channel estimation, experiment, orthogonal frequency division multi-
plexing (OFDM), underwater acoustic communications.

I. INTRODUCTION
Recently, underwater wireless communications systems have
received substantial attention because it is essential to facili-
tate new applications, such as underwater environment moni-
toring, undersea rescues, deep sea mining, and so on. Various
media (e.g., acoustic [1], [2], optical [3], and magnetic
induction [4]) have been researched to offer wireless com-
munications in the underwater environment. Among these,
an acoustic wave has been known to provide wide-area con-
nectivity due to the relatively good propagation characteris-
tics, compared with other media.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingchun Chen .

Although acoustic wave is preferred for underwater
wireless communications systems, it suffers from many limi-
tations, such as reflections, high propagation loss, slow prop-
agation speed, and so on [5]. In particular, an acoustic signal
is well reflected by the bottom and the surface of water,
which causes many multipaths with long delays. Due to the
slow propagation speed, the Doppler effect can easily occur
with the acoustic signal. Moreover, the underwater channel
varies over time due to many environmental factors, such as
wind, tidal currents, oceanic tides, and so on. Accordingly,
underwater acoustic (UWA) communications experiences a
time-varying doubly selective channel. Note that those limi-
tations yield a much larger impact on system performance,
compared with terrestrial radio frequency-based commu-
nications. Consequently, it is very challenging to achieve
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a reliable and high-speed link with UWA communications
systems.

Another factor that makes UWA communications chal-
lenging is the high propagation loss of the acoustic wave.
The acoustic wave experiences absorption and spreading loss,
which increase with frequency and distance, respectively [6].
As a result, the received signal strength is typically very
weak, and, therefore, a typical UWA communications link is
established in a low signal-to-noise ratio (SNR) regime.

To combat the harsh underwater channel, orthogonal fre-
quency division multiplexing (OFDM) with a cyclic prefix
(CP), which is a multicarrier transmission technology, has
been widely applied in UWA communications systems in
recent years. The CP-OFDM system has many advantages
over conventional single-carrier systems, including robust-
ness against a multipath channel, high spectral efficiency,
as well as the feasibility of low-cost transceiver implemen-
tations [7]. Robustness against a multipath channel comes
from the fact that the CP-OFDM system is able to con-
vert a multipath channel in the time domain into a one-tap
response for each subcarrier in the frequency domain. In order
to guarantee successful equalization and the data decoding,
therefore, accurate channel estimation is indispensable for the
CP-OFDM system.

Many channel estimators (CEs) have been proposed for the
UWACP-OFDM system [8]–[16]. Unless channel bandwidth
is narrow, the UWA channel is known to have resolvable
sparse paths. In order to exploit sparsity of the channel, many
recent methods have been devised based on the principle
of compressed sensing (CS). In [8], basis pursuit (BP) and
orthogonal matching pursuit (OMP) methods, which are the
most popular recovery algorithms for CS technology, were
adopted for estimating time-varying UWA channels. It was
shown in [8] that CS-based channel estimation is effective
for sparse time-varying UWA channel. To enhance recon-
struction performance over the OMP method, a compressive
sampling matching pursuit (CoSaMP) algorithm was applied
for UWA channel estimation [11]. The OMP and CoSaMP
algorithms require the sparsity level of the channel as a priori
information. To resolve such a restriction, a sparsity adaptive
CoSaMP based on a dynamic threshold and weak selection
of atoms (DW-SACoSaMP)was proposed in [15]. Alongwith
sparsity adaptation, this algorithm offers reduced complexity.

However, the above CEs have poor estimation performance
in a low SNR regime, and exhibit their gain only at a high
SNR. The simple way to overcome the low received SNR is
to increase transmission power. Considering that communi-
cation nodes in UWA communications systems are energy-
constrained, however, boosting power can limit the network
life span substantially. In order to overcome a low SNR,
diversity is often exploited in the spatial, temporal, and spec-
tral domains. A typical way to achieve spatial diversity is
to employ multiple receiving hydrophones [8], [17], [18].
Temporal and spectral diversity can easily be exploited by
transmitting data repeatedly in time and frequency domains.
However, gain in diversity can be obtained with information

about the channel, and, subsequently, the channel estima-
tion needs to be performed without obtaining the benefit of
diversity.

At a low SNR, the received pilot symbols contain a
large amount of noise. In such a regime, it is crucial for
the CE to mitigate the noise for accurate estimation per-
formance. To mitigate noise in channel estimation, many
denoising techniques have been proposed for CP-OFDM
systems [19]–[21]. The denoising technique discards noise
components from a channel impulse response (CIR) estimate
based on a threshold, thereby reducing the noise effect on
the subsequent estimation of channel frequency response
(CFR). In [19], a threshold is derived based on an optimality
condition, which is equal to twice the noise variance. In [20],
a threshold is derived based on a more elaborated condition,
which requires channel length, number of actual channel taps
and the noise variance a priori.

The thresholds in most denoising techniques are deter-
mined based on the received SNR value [22]. Due to the
time-varying nature of the UWA channel, however, accurate
estimation of the SNR value may not be available prior to
threshold estimation. Moreover, a low-value SNR is difficult
to estimate under highly frequency-selective channels [23].
A wrong threshold caused by inaccurate SNR estimate can
discard the actual channel tap, and/or fail to discard noise
components, both of which will significantly degrade the
performance of channel estimation.

In this article, a novel CE based on an adaptive denoising
technique is proposed for UWACP-OFDM system in order to
overcome a harsh UWA channel with strong noise. The pro-
posed method exploits two different types of pilot symbols:
the first is used for estimation of the CIR and CFR, while
the second is used to adaptively determine the denoising
window for the given CIR estimate. In particular, the pro-
posed method yields a near-optimal denoising window by
minimizing the squared error (SE) of the received secondary
pilot symbols without a priori information about channel
statistics and SNR values. The effect of denoising and the
performance of the proposed denoising window estimator are
analyzed from the perspective of mean squared error (MSE).
It is demonstrated through simulation and at-sea experiments
that the proposed method outperforms conventional CEs [8],
[15], [24] under diverse UWA channels. Furthermore, it is
shown by complexity analysis that the proposed method can
be realized with much less complexity, compared with the
conventional CS-based CEs.

The rest of this article is structured as follows. In Section II,
the system model is explained. The proposed channel esti-
mation method and a performance analysis are presented
in Section III and IV, respectively. Performance evaluations
based on the simulation and the experimental results are
described in Section V and VI, respectively. Conclusions are
drawn in Section VII.
Notations: IK is a K × K identity matrix. [x]i and [Y]i, j

denote the i-th entry of the vector x and the (i, j)-th entry
of the matrix Y, respectively. |I| is the cardinality of set I.
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D(·) denotes a diagonalization operation. coll(X) and
rowl(X), respectively, are the l-th column and row vector
of X.

II. SYSTEM MODEL
We consider a CP-OFDM with N subcarriers, among which
NU subcarriers are active for transmission of data and pilot
symbols, while NG subcarriers are inactive for guard bands;
i.e., N = NU + NG. The transmission of information data
is on a time-frame basis, where a frame consists of Npreamble
preambles at the beginning followed by Nsym OFDM sym-
bols. Note that all OFDM symbols belonging to a frame need
to be processed to recover the transmitted information.

Let Si = [Si(0), Si(1), · · · , Si(N − 1)]T denote the mod-
ulated symbols on N subcarriers of the i-th OFDM symbol.
The first and lastNG/2 symbols of Si, which correspond to the
guard bands at each edge of the spectrum, are 0. Among the
NU symbols,NDC symbols around themiddle of the spectrum
are set to 0 for direct current (DC). The remaining symbols of
Si are reserved for data and pilot symbols. The time-domain
sample of the i-th OFDM symbol si[n] is then given by

si[n] =
1
√
N

N−1∑
k=0

Si(k)ej
2π
N kn, n = 0, · · · , N − 1. (1)

Before transmission, a CP of length Ncp samples is appended
to the beginning of each OFDM symbol to preserve orthog-
onality between subcarriers on the receiver side. After
CP insertion, the time-domain samples are pulse-shaped and
up-converted to carrier frequency fc. The transmitted signal
in the passband is given by

s̃(t) = 2Re

Nsym−1∑
i=0

N−1∑
n=−Ncp

si[n]q (t − (iNb + n)Ts)

 ej2π fct

(2)

where q(t) is a pulse-shaping filter, Nb = N + Ncp, and
Ts denotes the sample duration.

In UWA communications systems, the transmitted signal
undergoes a multipath channel in which each channel tap
experiences time-varying delay and path gain. Many factors
can cause time variation of the channel, such as motion of the
transmitter and receiver, scattering by the moving sea surface,
and refraction due to sound speed variations [8]. It can be
assumed that within the duration of an OFDM symbol, the
path gain of the channel taps is constant, while its delay is
time-varying by the Doppler rate, as follows [8]:

τl(t) = τl − al t, (3)

where al is the Doppler rate for the l-th channel tap. Then,
the CIR is defined as follows [17]:

c(τ, t) =
Npath−1∑
l=0

Al δ (τ − τl + al t) (4)

where Npath and Al denote the number of channel taps and
the path gain of the l-th channel tap, respectively. Lastly,
the received signal in the passband can be written as

y(t) =
Npath−1∑
l=0

Al s̃(t − τl + al t)+ w(t) (5)

where w(t) is additive white Gaussian noise (AWGN) with a
zero mean and variance σ 2

n .
In this article, we consider that the transmitter and receiver

to be installed in a fixed location, or they are merely drift-
ing. Under such circumstances, the Doppler effect is limited.
We also adopt a two-step approach to the received signal
prior to channel estimation: resampling in the passband based
on the estimated Doppler scale, followed by Doppler shift
compensation [8]. Accordingly, a residual Doppler rate in
the resultant received signal can be assumed to be small.
Ignoring the residual Doppler rate for ease of derivation
(i.e., al = 0, ∀l), the CIR in (4) can then be simplified
to the well-known time-invariant tapped-delay-line model,
as follows:

h(τ ) =
Npath−1∑
l=0

Al δ (τ − τl) (6)

Let h = [h(0), h(1), · · · , h(N − 1)]T denote a
time-invariant N × 1 CIR vector with covariance matrix
Ch = E[hhH ], which contains an actual CIR of length Lh.
TheNU×1 received symbol vector carried by the i-th OFDM
symbol is given by

yi =
√
ND (Si)Fh+ Fw (7)

where F is an N×N discrete Fourier transform (DFT) matrix
with entries [F]m, n = 1

√
N
e−j

2π
N mn, andw is an AWGNvector.

III. PROPOSED CHANNEL ESTIMATION METHOD
A. PILOT ALLOCATION
For the proposed CE, two types of pilot symbols allocated
in a comb-type fashion are employed. The first type of pilot,
denoted as a primary pilot symbol (PPS), is used for estima-
tion of the CIR and the corresponding CFR. The second type
of pilot, denoted as a secondary pilot symbol (SPS), is used to
estimate an adaptive denoising window for noise reduction.

In the considered system, the PPSs are each allocated
at every Df -th subcarrier and Dt -th OFDM symbol. Let If
and It denote the indices of the subcarrier and the OFDM
symbol of the PPSs, respectively, while Np = |If | and Nt =
|It | denote the number of PPSs in the frequency and time
domain, respectively. Likewise, the SPSs are each allocated
at every D̄f -th subcarrier and D̄t -th OFDM symbol. Let Īf
and Īt respectively denote the indices of the subcarrier and
the OFDM symbol for the SPSs, and N̄p = |If | and N̄t = |It |
denote the number of SPSs in the frequency and time domain,
respectively. It is worth noting that SPSs is allocated far more
sparsely than PPSs, because they are used only for denoising
window estimation. Without loss of generality, both the PPS
and SPS are assumed to have a constant amplitude equal to 1.
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FIGURE 1. Block diagram of the proposed CE method.

B. CFR ESTIMATION
In UWA communications systems, received signals are very
noisy due to the large propagation loss and the many
noise sources. Consequently, channel estimation is performed
under the existence of strong noise. Furthermore, the under-
water channel has a large variation in channel length.
Tominimize the noise effect and enhance estimation accuracy
in such circumstances, therefore, a CFR estimation method
with an adaptive denoising technique is proposed, wherein
the denoising window is adaptively determined based on the
channel length without a priori information. The proposed
method makes use of both PPS and SPS. In Fig. 1, the proce-
dure of the proposed method is illustrated.

The received PPSs in the i-th OFDM symbol can be written
in an Np × 1 vector form as

yi =
√
NXiBh+ Bw, i ∈ It (8)

where Xi is an Np × Np diagonal matrix in which the k-th
element is the k-th PPS of the i-th OFDM symbol, and B is
an Np×Lh DFTmatrix with entries [B]m, n = 1

√
N
e−j

2π
N If (m)n.

The least-square (LS) estimation of the CFR at the subcarriers
carrying the PPSs in the i-th OFDM symbol is given by

g̃i = XH
i yi, i ∈ It (9)

where XH
i Xi = INp is assumed.

Based on the LS CFR estimate g̃i, the CFR estimate vector
over all the useful subcarriers H̃i is obtained via interpo-
lation technique in the frequency domain. Several spectral
interpolation techniques [24] have been studied for chan-
nel estimation in OFDM systems: linear interpolation (LI),
piecewise cubic Hermite interpolation (PCHIP), and spline
interpolation. In this article, LI and PCHIP techniques are
considered. The CFR estimate at the k-th subcarriers [H̃i]k
for If (m) < k < If (m+ 1) is given by

[H̃i]k =
[
g̃i
]
m +

([
g̃i
]
m+1 −

[
g̃i
]
m

)
c1 + c2 + c3 (10)

where, for the LI technique,

l = k − If (m), c0 = l/Df ,

c1 = c0, c2 = c3 = 0 (11)

and for the PCHIP technique,

l = k − If (m), c0 = l/Df ,

c1 = 3c20 − 2c30,

c2 = l (c0 − 1)2 dm, c3 = lc0 (c0 − 1) dm+1, (12)

and dm is the slope of the interpolant at If (m) [24]. Note that
the CFR estimation with LI technique can be represented in
a matrix form as

Ȟi = 0g̃ = 0XH
i yi, i ∈ I t (13)

where 0 is an NU × Np linear-interpolation matrix of which
the (m, n)-th entry is

[0]m, n =



(If (n+ 1)− m)/Df ,
for m ∈ If , n = argfirst

n
{If (n+ 1) > m}(

m− If (n)
)
/Df ,

for m ∈ If , n = argfirst
n
{If (n) > m}

0, otherwise

(14)

The noisy CIR estimate for the i-th OFDM symbol is
obtained by transforming CFR estimate Ȟi into the time
domain through an inverse DFT operation as

h̃i =
1
√
N
QH Ȟi, i ∈ It (15)

where Q is an NU × N DFT matrix with entries [Q]m, n =
1
√
N
e−j

2π
N IU (m)n, and IU is the indices of the U active

subcarriers.
CIR estimate vector h̃i has a length equal to N , which is far

larger than the maximum excess delay (MED) of the channel.
This means that most of the elements in h̃i correspond to
unwanted noise. In UWA communications systems, the MED
of the UWA channel changes over time due to environmental
variations. Considering the intermittent transmission nature
of UWAcommunications, it is difficult to acquire information
on theMED prior to channel estimation. Therefore, a key role
of channel estimation in UWA communications systems is to
determine the actual CIR region and to discard the noise from
a noisy CIR estimate without knowing the MED.

For effective noise suppression, a two-step approach
exploiting the SPS is proposed: adaptive denoising followed
by thresholding. Adaptive denoising is first applied to noisy
CIR estimates in order to remove the noise outside of the
actual CIR region. Since this noise region consists of most
of the noise in the CIR estimates, adaptive denoising is very
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effective at noise suppression, especially at a low SNR. In
the proposed method, a denoising window is determined in a
adaptive way based on the SPSs, which will be discussed in
the following subsection. Thresholding is then performed to
discard residual noise within the actual CIR region.

Let Dα,β denote an N × N diagonal denoising window
matrix as

[
Dα,β

]
k, k =

{
0, for α ≤ k ≤ β
1, otherwise

(16)

where α and β of Dα,β represent the start and end indices of
the denoising window, respectively. Let 4 denote an N × N
diagonal matrix that selects the actual channel taps based on
a threshold as

[4]k, k =

{
1,

∣∣[h̃i]k ∣∣2 > γ σ̃ 2
n

0, otherwise.
(17)

Note that noise variance estimate σ 2
n can be obtained based

on the denoising window as

σ̃ 2
n =

1
β − α + 1

β∑
k=α

∣∣[h̃i]k ∣∣2. (18)

By applying denoising Dα,β followed by the thresholding
with 4, the noise can be eliminated effectively from the CIR
estimate. The noise-suppressed CIR estimate is given by

ȟi = 4Dα,β h̃i, i ∈ It . (19)

The refined CFR estimate over the useful subcarriers
for the i-th OFDM symbol can now be obtained from the
noise-suppressed CIR estimate through the DFT operation as

Ȟi =
√
NQȟi, i ∈ It . (20)

If the PPSs are not allocated to all OFDM symbols in a frame
(Dt > 1), a temporal interpolation technique such as LI can
be applied to acquire the CFR estimate for the OFDM symbol
not carrying the pilots as

Ȟj = (Ȟi+Dt − Ȟi)
j− i
Dt
+ Ȟi, i < j < i+ Dt , i ∈ It .

(21)

For further noise reduction, the CFR estimates for all OFDM
symbols in a frame are then smoothed by adaptive temporal
filtering as

Ȟi = (1− λ)Ȟi−1 + λȞi, i = 1, 2, · · · , Nsym−1. (22)

where λ ∈ [0, 1) accounts for the filter memory. A lower
value for the λwill provide more noise reduction, but is more
susceptible to channel variation, and vice versa.

C. THE SPS-AIDED DENOISING WINDOW ESTIMATION
In the proposed CE, the denoising window is determined in
order to minimize the SE of the received SPS. Based on the
noisy CIR estimates h̃i for the given D(α, β), a tentative CFR
estimates at the subcarriers of the SPSs in the i-th OFDM
symbol can be obtained as

H̄i(α, β) =
√
N B̄D(α, β)h̃i, i ∈ Īt (23)

where B̄ is an N̄p × N DFT matrix with entries [B̄]m, n =
e−j

2π
N Īf (m)n. Here, it is assumed for ease of derivation that the

PPS-bearing OFDM symbols also carry the SPSs (i.e., Īt ∈
It ).1 For a given α and β, let εi denote the SE of the received
SPSs in the i-th OFDM symbol as

ε̄i (α, β) =
1

N̄p
||ȳi − X̄iH̄i(α, β)||22

=
1

N̄p
||X̄H

i ȳi − H̄i(α, β)||22 (24)

where ȳi denotes the received SPSs in the i-th OFDM symbol,
and X̄i denotes the N̄p× N̄p diagonal matrix in which the k-th
element is the k-th SPS in the i-th OFDM symbol. The second
equality comes from the fact that X̄H

i X̄i = IN̄p . Then, the start
and end indices of the denoising window, α and β, can be
estimated by minimizing the SE (24).

Because the MED of the channel determines the actual
CIR region, the denoising window is highly dependent on it.
Under a scenario for the stationary transmitter and receiver
with moderate drift, the MED of the channel does not change
drastically within the frame duration. Therefore, we propose
using a universal denoising window for all OFDM symbols in
a given frame. In the proposed denoising window estimation,
the SE of all SPSs allocated in a frame is exploited as follows:

ε̄(α, β) =
1

N̄t

∑
i∈Īt

ε̄i (α, β)

=
1

N̄t N̄p

∑
i∈Īt

||X̄H
i ȳi − H̄i(α, β)||22. (25)

Based on (25), the universal denoising window can be esti-
mated as

Du
α,β = argmin

i, j
{ε̄(i, j)} . (26)

If the denoising window overlaps with the actual CIR
region, the corresponding tentative CFR is distorted due to
loss of the actual channel tap, which will result in an increase
in the SE ε̄(α, β). If the denoising window corresponds
to only some portion of the noise region, this also results
in a high SE. Therefore, the denoising window estimated
by (26) will coincide with the largest noise region outside of
the actual CIR that minimizes the overall SE in (25). Note that
usage of overall SE has the benefit of averaging out noise and

1 If the SPS is not co-located with PPS (Īt /∈ It ), the CIR estimate for the
OFDM symbol carrying the SPS h̃j(j ∈ Īt ) is obtained firstly by temporal
interpolation of the CIR estimates h̃i(i ∈ It ), then, the tentative CFR can be
acquired as in (23).
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Algorithm 1 The SPS-Aided Denoising Window Estimation

Input: X̄i and ȳi for ∀i ∈ Īt
Output: The start and end indices of denoising window, α

and β
1) End Index Determination

1: a = αinit , b = N − 1
2: ēi(a, b) = X̄H

i ȳi − H̄i(a, b), ∀i ∈ Īt
3: ε̄(a, b) = 1

N̄t N̄p

∑
i∈Īt ||ei(a, b)||

2
2

4: for b = N − 2 to N − Nb do
5: ēi(a, b) = ēi(a, b+ 1)−

√
Nh̃i(b+ 1)b̄b+1, ∀i ∈ Īt

6: ε̄(a, b) = 1
N̄t N̄p

∑
i∈Īt ||ēi(a, b)||

2
2

7: end for
8: β ← argmin

b
{ε̄(a, b)} , b = N − Nb, · · · , N − 1

2) Start Index Determination
9: a = αinit
10: ēi(a, β) = X̄H

i ȳi − H̄i(a, β), ∀i ∈ Īt
11: ε̄(a, β) = 1

N̄t N̄p

∑
i∈Īt ||ei(a, β)||

2
2

12: for a = αinit − 1 to αinit − Na do
13: ēi(a, β) = ēi(a+ 1, β)+

√
Nh̃i(a)b̄a, ∀i ∈ Īt

14: ε̄(a, β) = 1
N̄t N̄p

∑
i∈Īt ||ēi||

2
2

15: a← a+ 1
16: end for
17: α← argmin

a
{ε̄(a, β)} , a = αinit − Na, · · · , αinit

undesired fluctuations in the SE, thereby achieving improved
accuracy.

In (26), ε̄(α, β) is a 2-D function of the start and end indices
of a denoising window. One can find the minimum of ε̄(α, β)
with a 2-D exhaustive greedy search. However, this requires
huge computational complexity because the ranges ofα and β
are large (0 ≤ α, β ≤ N −1). Therefore, we adopt a two-step
approach, in which the end index of the denoising window is
first estimated for a fixed value of the start index, and based
on the estimated end index, the start index is searched in a
similar way.

Let ēi(a, b) = X̄H
i ȳi − H̄i(a, b), i ∈ Īt denote the N̄p × 1

error vector for the SPSs in the i-th OFDM symbol for a given
denoising window D(a, b). Then, ε̄(a, b) can be rewritten as

ε̄(a, b) =
1

N̄t N̄p

∑
i∈Īt

||ēi(a, b)||22. (27)

It is important to note that for a fixed value of a, ēi(a, b) can
be obtained from ēi(a, b+ 1) by recovering the contribution
of the (b+1)-th element of h̃i as

ēi(a, b) = X̄H
i ȳi −

(
H̄i(a, b+ 1)+

√
N [h̃i]b+1b̄b+1

)
= ēi(a, b+ 1)−

√
N [h̃i]b+1b̄b+1 (28)

where b̄k is the k-th column vector of B̄. Accordingly, ēi(a, b)
and the corresponding ε̄(a, b) can be readily computed in a
recursive way for a decreasing b with a fixed value of a. End
index β is then determined from the minimum of ε̄(a, b).

Similarly, ēi(a, β) can be computed from ēi(a+ 1, β) as

ēi(a, β) = X̄H
i ȳi −

(
H̄i(a+ 1, β)−

√
N [h̃i]ab̄a

)
= ēi(a+ 1, β)+

√
N [h̃i]ab̄a. (29)

Based on the determined β, ēi(a, β) and the corresponding
ε̄(a, β) are again computed recursively, based on which start
index α is determined from the minimum. Since ēi(a, b) is
updated recursively, the proposed SPS-aided denoising win-
dow estimation has low complexity. The proposed method is
summarized in Algorithm 1, where Na and Nb account for the
search range of α and β, respectively, and αinit is the initial
value of α.

IV. PERFORMANCE ANALYSIS
A. EFFECT OF DENOISING
In order to investigate the effect of denoising on a noisy
CIR estimate, we consider the MSE of the CIR for a given
denoising window with α and β as

σ 2
e (α, β) = E

[∥∥∥h− ȟ
∥∥∥2
2

]
= tr

(
E
[
eheHh

])
(30)

where

eh = h− ȟ

= �α,βh−
1
√
N
Dα,β9w, (31)

9 = QH0B, and �α,β = IN − Dα,β9. In (30), for ease
of analysis, the thresholding is ignored by letting 4 = IN ,
the subscript i for the CIR estimate is dropped, and the
interpolation with the LI matrix 0 in (14) is considered. After
some algebraic manipulations, the MSE of (30) becomes

σ 2
e (α, β) = tr

(
�α,βCh�

H
α,β

)
+
σ 2
n

N
tr
(
Dα,β99HDH

α,β

)
.

(32)

In (32), the first term corresponds to inaccuracy of the
estimator and can be rewritten as

tr
(
�α,βCh�

H
α,β

)
=

N−1∑
l=0

||coll
(
�α,β

)
||
2
2 σ

2
l . (33)

We can see from (33) that the first term is represented as a sum
of the variance of each channel tap, weighted by the norm of
the corresponding column vector of�α,β . The second term of
theMSE in (32) corresponds to a variance of the noise colored
by the estimator 9α,β , and can be rewritten as

σ 2
n

N
tr
(
Dα,β99HDH

α,β

)
=
σ 2
n

N

N−1∑
l=0

[Dα,β ]l,l ||rowl (9) ||
2
2.

(34)

First, when the channel tap is removed by the denoising
window, the first term of the MSE increases due to lack
of an estimate of the corresponding tap. In the appendix,
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FIGURE 2. ρ(α, β), η(α, β) and χ(α, β) according to α for SNR = -3 dB,
0 dB, and 3 dB. β is set to 511.

the increment of the MSE by discarding the channel tap with
a delay of τ , i.e., α = τ , is derived as

a(τ ) '
(
2<

{
[9]τ,τ

}
−
∣∣[9]τ,τ

∣∣2) σ 2
l . (35)

On the other hand, noise is contained in all elements of
the noisy CIR estimate. Accordingly, discarding any element
removes the noise, thereby reducing the second term of the
MSE. It can readily be derived from (34) that a decrease in
the second term of the MSE by removing the τ -th element
of the noisy CIR estimate is equivalent to the norm of the
τ -th row vector of 9, which is given by

b(τ ) =
σ 2
n

N
||rowτ (9) ||22 =

σ 2
n

N

N−1∑
k=0

∣∣[9]τ,k
∣∣2 . (36)

Comparedwith theMSEwith no denoising, an overall change
in MSE by a denoising window with a given α and β is
equivalent to the difference between the cumulative sum of
a(l) and b(l) for α ≤ l ≤ β as

χ (α, β) = σ 2
e (α, β)− σ

2
e (N ,N )

= ρ(α, β)− η(α, β), (37)

where ρ(α, β) =
∑β

l=α a(l), and η(α, β) =
∑β

l=α b(l).
Note that χ (α, β) should be negative to obtain the gain from
denoising. Therefore, the optimal denoising indices α∗ and
β∗ are the ones that reach the minimum of χ (α, β) from the
MSE perspective:{

α∗, β∗
}
= argmin

α,β
{χ (α, β)} . (38)

In the upper side of Fig. 2, the power delay profile of a
channel is shown as a toy example. In the lower side of Fig. 2,
ρ(α, β), η(α, β), and χ (α, β) are depicted as a function of α
with a fixed value of β = 511 for various SNRs (−3 dB,
0 dB, and 3 dB). The parameters of the UWA CP-OFDM
system used in Fig. 2 are summarized in Table 1. The details

TABLE 1. Parameters of the UWA CP-OFDM system for the simulation and
the experiment.

of the parameters will be discussed in the section V. Note
that ρ(α, β) depends only on the power delay profile and is
independent of SNR, while η(α, β) depends only on SNR.
We see that η(α, β) is a monotonically decreasing function

scaled with noise variance σ 2
n , whereas ρ(α, β) is also a

decreasing function with abrupt changes owing to channel
taps. The results reveal that the minimum value of χ (α, β) is
determined by η(α, β), while the shape of χ (α, β) is largely
affected by ρ(α, β). We also observe that χ (α, β) reaches
the minimum at α = 21, α = 41, and α = 61 for
SNRs of −3 dB, 0 dB and 3 dB, respectively. Note that
α = 21, α = 41, and α = 61 correspond to the delay
next to the second, third, and fourth taps of the exemplary
channel, respectively. This indicates the following: for a low
SNR regime, discarding large portions of the noisy channel
estimate is advantageous, despite sacrificing the estimates of
small channel taps, whereas as SNR increases, maintaining
the estimates of small channel taps becomes important.

B. PERFORMANCE ANALYSIS FOR THE SPS-AIDED
DENOISING WINDOW ESTIMATION
The accuracy of the proposed SPS-aided denoising window
estimator is analyzed and compared with that of the optimal
denoising window obtained numerically by an exhaustive
search. In order to investigate performance of the proposed
method for the channel with various statistics, we consider a
spare channel with Npath = 8 taps having a random delay.
In particular, the delay of each path is randomly distributed
within 15 ms, where the minimum difference in time between
adjacent paths is set to 1 ms. The amplitude of each path
is drawn from a Rayleigh distribution, where the path gain
decreases exponentially, with the difference between the first
and the last paths being 25 dB. No Doppler rate for each path
is considered (al = 0). The UWACP-OFDM system with the
same parameters in Table 1 is used for the numerical analysis.
For a performance metric, the MSE and the relative dif-

ference between the SEs of the CFR estimate over the useful
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FIGURE 3. Performance comparison between the proposed and optimal
estimation of the denoising window indices: (a) the MSE in (41), and
(b) the CDF of the relative difference between SEs in (42).

subcarriers are considered. Without considering the thresh-
olding 4 (17) and the adaptive temporal filtering (22), the
CFR estimate for a given denoising window with indices α
and β is given by

Ȟi(α, β) =
√
NQDα,β h̃i, i ∈ It . (39)

The SE of the CFR estimate over the useful subcarriers is then
represented as

ε(α, β) =
1

NUNt

∑
i∈It

||H− Ȟi(α, β)||22 (40)

where H = Qh is an actual CFR vector over the useful
subcarriers. The MSE is defined as

MSE = E [ε(α, β)] = E
[
||H− Ȟi(α, β)||22

]
, ∀i. (41)

The relative difference between SEs with the proposed and
optimal indices is defined as

Metric =
ε(α, β)− ε(α∗, β∗)

ε(α∗, β∗)
× 100 (42)

where α∗ and β∗ are the start and end indices, respectively,
of the optimal denoising window.

Fig. 3(a) and Fig. 3(b) show the performance compari-
son between the proposed and the optimal estimation of the
denoising window for the MSE and the cumulative distribu-
tion function (CDF) of the metric in (42), respectively. It is
seen from Fig. 3(a) that the proposed method is capable of
estimating the near-optimal denoising window in the MSE
sense. Fig. 3(b) shows that the denoising window obtained by
the proposed method yields an SE of the CFR estimate very
close to that of the optimal window for all considered SNR
values. Specifically, in Fig. 3(b), we have a 90% probability
for all considered SNRs that the relative difference between
the SEs is less than 10%.

Interestingly, it is observed that the probability that the
relative difference is very small (< 4%) is higher for a lower

valued SNR. This is due to the shape of χ (α, β) illustrated
in Fig.2. In the low SNR regime, the difference between the
local and global minimum of χ (α, β) is negligible, whereas
the difference grows as SNR increases. As a result, wrong
selection of the local minimum in a high SNR regime causes
a relatively larger SE, leading to an increase in the metric.

V. SIMULATION RESULTS
The performance of the proposed CE is evaluated and com-
pared with existing techniques for a UWACP-OFDM system
with the parameters in Table 1. A frame consists of two
preambles and 54 OFDM symbols, where each has a duration
of 125 ms. Accordingly, a frame has duration of 7 s. The
preambles are employed for time and frequency synchroniza-
tion. A transmitted message for a frame is turbo-coded with a
code rate of 1/3 and modulated by either QPSK and 16QAM
constellations. In order to ensure error-free communications
at a low SNR, the modulated symbols are repeated in the
frequency domain at the cost of reduced spectral efficiency.
The repetition of data symbols allows investigation of the
robustness of the CE against strong noise, especially in a low
SNR regime. In the frequency domain, the PPS and SPS are
allocated at every fourth and 25-th subcarriers, respectively
(Df = 4 and D̄f = 25). For accurate channel estimation
under a time-varying underwater channel, all OFDM symbols
carry PPS and SPS, i.e. Dt = D̄t = 1. Note that the SPSs
occupy only 4% of the useful subcarriers in each OFDM
symbols (N̄p/NU = 16/400 = 0.04), which incurs a very
small overhead.

For the proposed CE, LI and PCHIP are employed for
spectral interpolation. and γ and λ are set to 4 and 0.3,
respectively. For the SPS-aided denoising window estima-
tion, αinit , Na, and Nb are set to 113, 50, and 60, respectively.
The denoising window of the conventional LI method with
a fixed denoising window is set to discard all elements of
the noisy CIR estimate outside of CP region, i.e., α = 113
and β = 511. The same channel described in IV-B, which
has a random delay for each path, is considered to reflect the
performance under diverse underwater environments.

A. BLER PERFORMANCE
For performance evaluation under a time-varying channel,
the block error rate (BLER) is used as the performance
metric, which is defined by the average number of error-free
frames after decoding. The Doppler rate of each path is set to
al = vp/c, where vp is the relative speed between transmitter
and receiver and has an uniform distribution with standard
velocity deviation of 0.1 m/s, and c(= 1500m/s) is the sound
speed.

Fig. 4, Fig. 5 and Fig. 6, respectively, show the BLER per-
formance for QPSK modulation with frequency repetitions
of Nrep = 4 and Nrep = 1, and 16QAM modulation with fre-
quency repetitions of Nrep = 1. Note that the performance of
the proposed method without the thresholding and smoothing
(γ = 0 and λ = 1) is also provided to verify the performance
of the adaptive denoising window.
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TABLE 2. Complexity comparison.

FIGURE 4. BLER performance versus SNR for QPSK with Nrep = 4.

FIGURE 5. BLER performance versus SNR for QPSK with Nrep = 1.

In the figures, the performance of the CE methods can
be observed for low-, medium-, and high-range of SNRs,
respectively. It is seen from Fig. 4 and Fig. 5 that the pro-
posed method shows much better BLER performance than
the conventional methods. In particular, the proposed method
exhibits a gain of 1 dB and 0.5 dB at BLER = 0.01 over

FIGURE 6. BLER performance versus SNR for 16QAM with Nrep = 1.

OMP [8] and DW-SACoSaMP [15] in Fig. 4 and Fig. 5,
respectively, where the proposed adaptive denoising window
gives a gain of 0.5 dB and 0.25 dB, while the thresholding and
smoothing provide an additional gain of 0.5 dB and 0.25 dB,
respectively. This confirms that the proposed method is capa-
ble of suppressing strong noise in channel estimation, thereby
enabling reliable underwater communications especially in
the low-to-medium SNR regime.

In Fig. 6, the proposed method outperforms OMP with
a gain of about 0.3 dB at BLER = 0.01, while the
DW-SACoSaMP method has almost the same performance
as the proposed method with LI. The proposed method with
PCHIP interpolation still shows the best performance for the
whole range of SNRs. It is also observed in high SNR sce-
nario that a gain of the proposed method comes solely from
the adaptive denoising window. The results in Fig. 6 indicate
that the proposed method is able to support a high-order mod-
ulation such as 16QAM for UWA communications systems.

B. COMPLEXITY ANALYSIS
The computational complexity of the proposed CE is ana-
lyzed in terms of the number of real multiplications (RMs).
Note that complex multiplication costs 4 RMs, and an
N -point fast Fourier transform operation requires
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2N log2(N ) RMs. First, the LS estimation of CFR in (9)
needs 4 NpNt RMs, and the spectral interpolation in (10)
requires 2(NU − Np)Nt and 10(NU − Np)Nt for the LI and
PCHIP techniques, respectively. Computation of the noise
variance estimate for the thresholding matrix in (18) requires
2NNt + 1 RMs. Note that multiplication of the denoising
and thresholding matrices cost no RMs. Temporal interpo-
lation and additional smoothing require 2NU (Nsym −Nt ) and
4NU (Nsym − 1) RMs, respectively.
In the SPS-aided denoising window estimation, the num-

ber of RMs for initialization of the end index determination
(steps 2 and 3) is (4αinit + 2)N̄pN̄t . Then, 6N̄pN̄t (Nb − 1)
RMs are required for steps 5 and 6 for (Nb − 1)
iterations. Note that initialization of the start index deter-
mination requires no additional computation because all
necessary values are computed during the end index deter-
mination. Similarly, steps 13 and 14 require 6N̄pN̄t (Na −
1) RMs. Therefore, the total complexity for the proposed
method is 2

(
Np + NU + N

)
Nt + NU

(
6Nsym − 2Nt − 4

)
+

4N log2(N )+ N̄p (4αinit + 2+ 6(Na + Nb − 2)) N̄t + 1.
In Table 2, the number of RMs for the CEs is shown. The

exemplary values are also provided for the considered UWA
CP-OFDM system with the parameters given in Table 1. For
OMP [8] and DW-SACoSaMP, matrix inversion is computed
at every iteration, which is assumed to require 4 K 3 RMs,
where K denotes the dimension of the matrix. The number
of iterations in the OMP method is set to Npath, which is
equal to the sparsity level of the CIR. In DW-SACoSaMP,
it is intractable to analyze the exact complexity, because
the number of iterations and the required computations per
iteration change [15]. As DW-SACoSaMP is in a family of
iterative greedy pursuit algorithms like OMP, the complex-
ity of DW-SACoSaMP is assumed to be the same as that
of OMP.2

It is seen from the table that OMP and DW-SACoSaMP
require more than 20 times greater complexity compared with
the proposed method, where huge complexity is mainly from
the matrix inversion operation performed at every iteration.
Thus, the superior noise suppression capability of the pro-
posed method is highly cost-effective from the perspective of
computational complexity.

VI. EXPERIMENTAL RESULTS
An at-sea experiment was conducted in the Western Sea
of Korea near Deokjeok island from 5 July to 6 July,
2017. A UWA CP-OFDM system with the same parameters
in Table 1 was used. A frame with a duration of 7 s was
transmitted periodically during those 24 hours. The transmit-
ter and receiver were equipped with a single transducer and
a hydrophone, respectively. The transducer and hydrophone
were submerged to a depth of 20 m and 5 m from sea level,
respectively. Both ships for the transmitter and receiver were
anchored with a communication range of 2.2km.

2It is observed in the simulation that measured complexity of
DW-SACoSaMP is slightly smaller than that of OMP.

FIGURE 7. Underwater CIR measured from 5 July, 16:30, to 6 July, 14:58.

FIGURE 8. Estimated MED and RMS DS.

In the experimental area, the strength and direction of the
tidal current change rapidly over time. As a result, both ships
experienced intermittent drifting caused by the tidal current.
Drift induces a weak to mild Doppler effect on the received
signal. In addition, the difference in sea level between high
and low tides is huge in that area. Consequently, depth was
measured at between 35 m and 45 m during the experiment.

A. MEASURED CIR AND DOPPLER SPREAD OVER TIME
During the experiment, a pseudorandom binary sequence was
transmitted periodically for the purpose of measuring the
channel response and the Doppler spread over time [25].
Fig. 7 shows the CIR of the underwater channel measured
from 5 July at 16:30 to 6 July at 14:58. It is clearly seen that
the number of distinct paths and the delay of paths change
over time. This is mainly due to the environmental changes
in the area, such as tidal current and sea level. It is also
observed that the number of distinct paths is not small, while
the MED is large. This can be explained by the fact that the
experimental site is very shallow compared to the horizontal
distance, and has a sandy mud bottom.
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FIGURE 9. Coded BER and BLER performance for QPSK with frequency repetitions of (a) Nrep = 1, (b) Nrep = 2, (c) Nrep = 4, and (d) Nrep = 8.

In Fig. 8, the estimated MED of the CIR and the root mean
square (RMS) Doppler spread (DS) are depicted, for which
smoothed values are also presented. The MED is estimated
directly from the measured CIR with a threshold level of
−15 dB. The RMS DS is estimated based on a scattering
function [25]. It is observed that the MED of the channel
experiences some noticeable changes during the experiment,
in which it remains between 10 ms to 20 ms until the early
morning of 6 July, then has short-term increase, and rises to
about 30 ms until the end of the experiment. Unlike the MED
of the CIR, the RMS DS shows no significant variations,
exhibiting a value smaller than 1 Hz in most cases.

B. CODED BER AND BLER PERFORMANCE FOR QPSK
AND 16QAM
To assess the performance for a wide range of SNRs under
severe channel variations, four different numbers of repe-
titions for transmitting data symbols were adopted for the
experiment, i.e., Nrep = [1, 2, 4, 8]. Coded BER and BLER

are employed as the performance metric, where the coded
BER is defined as BER after channel decoding. Fig. 9(a)-(d)
and Fig. 10(a)-(d) show coded BER and BLER performance
with various values of Nrep for QPSK and 16QAM modula-
tions, respectively. A total of 23 and 22 frames were acquired
for the QPSK and 16QAM modulations, respectively.

We observe from Fig. 9 and 10 that the performance of all
considered CE methods improves with increasing numbers
of frequency repetitions. In QPSK modulation, all meth-
ods reaches perfect transmission for the maximum number
of repetitions (Nrep = 8). In 16QAM modulation, how-
ever, degradation in performance is observed compared with
QPSK modulation, which is due to the increased order of
modulation.

We can see from the results that the proposed method
outperforms the conventional schemes for all cases of repe-
titions. For QPSK modulation, the proposed method exhibits
perfect transmission (i.e. 0 BLER) except for no repetitions
(Nrep = 1). In 16QAM modulation, the proposed method
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FIGURE 10. Coded BER and BLER performance for 16QAM with frequency repetitions of (a) Nrep = 1, (b) Nrep = 2, (c) Nrep = 4, and (d) Nrep = 8.

only reaches perfect transmission when the maximum fre-
quency repetition is applied. This superior performance can
achieve a reliable communication links and lead to a reduc-
tion in retransmissions, which saves power consumption and
prevents resultant delays caused by unnecessary retransmis-
sions. Furthermore, the improved performance of the pro-
posed method enables transmissions with lower power on
the transmitter side. In particular, low power consumption is
crucial for UWA communications systems, not only because
of limited battery life, but also the huge cost of, and difficulty
with, battery replacement. Another advantage of the proposed
method is that its enhanced performance allows transmis-
sion with a lower number of repetitions, thereby achieving a
higher data rate for underwater communications systems. It is
worth noting that the performance of the proposed method is
obtained without any adjustment of the relevant parameters.
Therefore, the proposed method can enable the operation
of UWA communications systems under various channel
environments.

VII. CONCLUSION
In this article, a CE method based on an adaptive denois-
ing technique is proposed for a UWA CP-OFDM system
in order to overcome strong noise and a harsh underwater
channel. By minimizing the SE of the received SPSs, the
proposed SPS-aided denoising window estimator is capable
of determining the denoising region adaptively according to
the channel length of a given CIR estimate. As a result,
the proposed method does not need any a priori information
about channel statistics and SNR values. Performance anal-
ysis verifies that the proposed denoising window estimator
can yield the near-optimal denoising window with a very
small number of SPSs. It is shown by simulation results
that, in comparison to the conventional CEs, the proposed
method achieves higher accuracy in the estimation for a
time-varying UWA channel, especially in a low SNR regime.
The superiority of the proposed method is also confirmed by
the at-sea experiment, in which the proposed method yields
the lowest BLER for received signals recorded over a 24-hour
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period. Complexity analysis show that the proposed method
has a much lower complexity compared with the conven-
tional CS-based CEs, because it can be implemented with-
out involving a computationally intensive matrix inversion.
Therefore, the proposed method is feasible and effective for
a real-time UWA CP-OFDM system under a UWA channel
with diverse environmental conditions.

APPENDIX
When the start index of a denoising window coincides with
the delay of a channel tap, the corresponding tap is discarded.
The increment of the first term of the MSE by discarding a
channel tap with a delay of τ is the difference between the
MSEs before and after discarding the tap:

a(τ )= σ 2
a (τ, β)− σ

2
a (τ + 1, β)

=

N−1∑
l=0

(
||coll

(
�τ,β

)
||
2
2−||coll

(
�τ+1,β

)
||
2
2

)
σ 2
l . (43)

For a given denoising window with α and β, ||coll
(
�α,β

)
||
2
2

can be rewritten as

||coll
(
�α,β

)
||
2
2

=

N−1∑
k=0,k 6=ł

[
Dα,β

]
k,k

∣∣[9]k,l
∣∣2 + ∣∣∣1− [Dα,β]l,l [9]l,l

∣∣∣2
'

∣∣∣1− [Dα,β]l,l [9]l,l
∣∣∣2 (44)

where the first term is ignored because estimator 9 is a
diagonal-like matrix. Substituting (44) into (43) yields

a(τ )

'

N−1∑
l=0

(∣∣∣1−[Dτ,β]l,l [9]l,l
∣∣∣2−∣∣∣1−[Dτ+1,β]l,l [9]l,l

∣∣∣2)σ 2
l .

(45)

Note that
[
Dτ,β

]
l,l and

[
Dτ+1,β

]
l,l are identical for all l

except for l = τ , in that
[
Dτ,β

]
τ,τ
= 0 and

[
Dτ+1,β

]
τ,τ
= 1.

Accordingly, we have

a(τ )

'

(∣∣∣1−[Dτ,β]τ,τ [9]τ,τ
∣∣∣2−∣∣∣1−[Dτ+1,β]τ,τ [9]τ,τ

∣∣∣2)σ 2
l

=

(
1−

∣∣1− [9]τ,τ
∣∣2) σ 2

l

=

(
2<

{
[9]τ,τ

}
−
∣∣[9]τ,τ

∣∣2) σ 2
l . (46)
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