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ABSTRACT With the development and popularization of 5G networks, the coverage problem of the Internet
of Things (IoT) will encounter the massive-node problem. In this paper, we design a parallel genetic
algorithm that divides the coverage problem of IoTs with massive nodes into many small problems and then
solves these problems usingHadoop in parallel. First, the algorithm uses partitioning and grouping operations
to degrade the scale of a large IoT and makes the coverage problem solvable. The algorithm then adopts
the multi-objective programming-based genetic algorithm (MPGA) to solve the coverage problem. MPGA
uses the fast non-dominated sorting to optimize the IoT coverage and node redundancy; it implements the
preferential selection of non-critical nodes to maximize the length of the configuration sequence of working
nodes. Finally, the parallel genetic algorithm uses uniform mutation and individual pruning to optimize the
genetic algorithm internally and force its solving process to quickly converge toward feasible solutions.
Experimental results confirm that the MPGA outperforms the existing algorithm on small IoTs in terms of
coverage, the number of nodes, computing time, and the IoT lifespan. They also demonstrate that the parallel
genetic algorithm successfully solves the coverage problem of IoTs with massive nodes and significantly
extends the IoT lifespan.

INDEX TERMS 5G networks, Internet of Things, parallel computing, genetic algorithm.

I. INTRODUCTION
With the development and popularization of 5G networks, the
applications of the Internet of Things (IoT) face new opportu-
nities and challenges [1]–[6]. Sensor nodes (i.e., nodes) in an
IoT often have no continuous power source, hence extending
the lifespan of the IoT has always been a crucial issue. One
possible way to solve the problem is to overlay more sensor
nodes in the monitoring area and allow these nodes to be
active or sleep alternately. A configuration of working nodes
in the IoT lasts one timeframe, and then other nodes in the
next configuration turn to be active for another timeframe.
With the consumption of working nodes, the configuration
continues to form a sequence until the IoT exhausts most of
the sensor nodes, and the remaining nodes cannot meet the
lower bound of the IoT coverage. Then the IoT lifespan ends
up. Hence, the lifespan of an IoT is equal to the length of the
configuration sequence of working nodes.
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In 5G networks, calculating the optimum configuration
sequence [7], [8] to extend the IoT lifespan will encounter
the massive-node problem [9]. Fig. 1 shows a schematic dia-
gram of 5G network systems. 5G networks use a short-range
and high-frequency radio for communication to achieve a
high transmission speed. As a result, the 5G network times
the number of base stations compared with 4G networks.
In 4G networks, each base station contains a network access
server that is responsible for wireless devices accessing the
backbone network. The network access server often works
as the gateway to manage the local IoT. However, to reduce
construction costs, the 5G network simplifies the network
access server in the base station [9]. Instead, the network
uses the data center to take charge of these network access
servers. Hence the data center has to manage a large IoT
that consists of many local IoTs and contains massive nodes.
Meanwhile, the 5G network also promotes the popularity
of the IoT and result in more IoT devices (i.e., nodes).
According to the GSMA report, IoT connections (i.e., nodes)
will reach almost 25 billion globally by 2025 [10].
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FIGURE 1. The framework of 5G networks.

Then, in some hotspots, the data center will manage millions
of nodes.

The IoT coverage problem that is a selection problem
for coverage-centric active nodes is already an NP-complete
problem [11], and solving the problem in massive-node sce-
narios is often beyond the solving capacity of the exist-
ing algorithms. Usually, these algorithms need to reserve
a series of possible solutions in the solving process to
search for the global optimum solution. In massive-node
scenarios, the number of possible solutions required in the
solving process is huge. The algorithm will fail due to
the inability to complete the calculation after a very long
period.

Three requirements exist for the algorithm that is capable
of solving the IoT coverage problem in massive-node sce-
narios. First, the algorithm should be able to degrade the
scale of the problem and ensure to complete the comput-
ing operation within a limited period. Furthermore, solving
the IoT coverage problem is a multi-objective programming
problem. Hence the algorithm should take both network cov-
erage and node redundancy into account and consider the
impact of the current configuration of working nodes on
the following configuration. Finally, the algorithm requires
internal optimization so that the solving process can quickly
evolve towards feasible solutions.

This paper presents a parallel genetic algorithm (PGA)
usingHadoop to calculate the optimal configuration sequence
for IoTs with massive nodes and finally extend the IoT lifes-
pan. The key contributions are as follows:
• The parallel algorithm divides the coverage problem of
IoTs with massive nodes into many small problems,
degrades the problem scale, and then solves them using
Hadoop [12] in parallel.

• The algorithm adopts the multi-objective programming-
based genetic algorithm (MPGA) to solve the cov-
erage problem. MPGA uses the fast non-dominated
sorting [13] to optimize the IoT coverage and node
redundancy; it implements the preferential selection of
non-critical nodes to maximize the length of the config-
uration sequence of working nodes.

• The parallel algorithm uses uniform mutation and prun-
ing operations to optimize the genetic algorithm inter-
nally and force its solving process to quickly converge
toward feasible solutions.

The rest of the paper is organized as follows. Section II
describes the background and related works for the coverage

problem. Section III presents the framework of the parallel
genetic algorithm. Section IV, V, and VI describe the detailed
implementations of the algorithm. Experimental results are
presented in Section VII. Finally, we conclude the paper
in Section VIII.

II. BACKGROUND, RELATED WORKS AND MOTIVATION
OF THIS WORK
A. IoT COVERAGE MODEL
The network coverage is a fundamental problem for con-
structing an IoT, and its value needs to be maximized or
at least exceed a given threshold. In this way, the IoT can
avoid a blind communication area and guarantee the quality
of service (QoS) [14]–[16]. This work considers the certainty
coverage where the monitoring area is determined, and the
coverage of that area must exceed a given threshold [17].
At the same time, this work also uses the strategy that acti-
vates part nodes to cover the monitoring area as working
nodes and turns off the remaining nodes into a low-power
sleep state.

This work uses the coverage model in [17] to formulate
the IoT coverage problem. Suppose an IoT works on a 2D
monitoring area A, this area is constituted by m × n grids,
and each grid is 1m × 1m. Let si be the ith sensor node.
Let num is the count of these nodes in the IoT, and S =
(s1, s2, . . . , si, . . . , snum) be the set of sensor nodes. Suppose
the position of each node is known, and (xi, yi) stands for
the coordinate of the si node. Suppose the perception range
of a node is a circular region, the rand {xi, yi, r} stands the
effective perception circle of the si node where the node
si(xi, yi) is the center and r is the radius.
Assume that the communication radius rc (i.e., the max-

imum communication distance between sensor nodes) is at
least two times of the perception radius r , namely rc >= 2r .
In this way, if the sensor nodes can cover the monitoring
area, the IoT can maintain its connectivity, and researchers
no longer need to consider connectivity. Let Pcov(x, y, si) be
the condition whether the sensor node si(xi, yi) covers the
grid (x, y), as shown in Equation 1 [17].

Pcov(x, y, si) =

{
1, (x − x i)2 + (y− yi)2 ≤ r2

0, else
(1)

Pcov(x, y,Cj) =

{
1, ∃si ∈ Cj,Pcov(x, y, si) = 1
0, else

(2)

Furthermore, let Pcov(x, y,Cj) be the condition whether
the jth configuration of working nodes covers the grid (x, y),
where Cj is a subset of the node set S and denotes these
working nodes. Its value is calculated by Equation 2 [17].

Once a node si belongs to the jth configuration of working
nodes, and the node si satisfies Equation 1, the IoT covers the
monitoring grid (x, y). Let Aarea(Cj) be the grid count covered
by the configuration Cj, as shown in Equation 3 [17].

Aarea(Cj) =
∑m

x=1

∑n

y=1
Pcov(x, y,Cj) (3)
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So far, the existingmodel has not dealt with the redundancy
of working nodes.

B. RELATED WORKS
Researchers have published [17]–[34] many techniques
for the IoT coverage problem, but none of these tech-
niques is proposed for the IoTs with massive nodes in
5G networks. Some researchers have proposed a series of
meta-heuristic algorithms to maximize the IoT coverage,
as shown in Table 1 [18]. A hybrid algorithm [19] uses
simulated annealing technology to minimize the number
of nodes for optimal IoT deployment. The EENPA algo-
rithm [20] applies an energy-efficient node placement tech-
nology to cover the monitoring area and save network energy.
The ABC algorithm [21] adopts artificial bee colony tech-
nology to increase IoT coverage. The PSO algorithm [22]
integrates two-particle swarm optimizers to maximize cov-
erage and extend the IoT lifespan in the 3D industrial
area with barriers. The HS algorithm [23] uses a harmony
search to maximize network coverage with minimal cost.
The MADA-WOA algorithm [24] employs the whale opti-
mization technique to optimize the dynamic deployment of
sensor nodes. The Firefly algorithm [25] uses a firefly opti-
mization technique to improve the coverage of mobile IoT.
The CM-IA algorithm [26] applies an immune algorithm
to improve the coverage of mobile IoT and reduce redun-
dant area between nodes. Genetic algorithms are suitable
for solving discrete problems and can find globally optimal
solutions, so they are widely used for IoT coverage prob-
lems. For example, GA [27], MGA-RNP [28], and GA [29]

TABLE 1. The meta-heuristic algorithms for IoT coverage [18].

optimize the number of relay nodes for K-connectivity IoTs,
maximize network efficiency using a multi-objective fit-
ness function, and realize K-coverage and K-connectivity
IoT with minimum nodes, respectively. However, directly
applying existing algorithms to the IoT coverage problem
in massive-node scenarios will fail to solve the globally
optimal solution because the large number of possible
solutions required in the solving process prevents these
algorithms from completing calculations within a limited
period.

Some researchers have also developed many scheduling-
based algorithms to extend the IoT lifespan. Calculating the
optimum configuration sequence to extend the IoT lifespan
emerges as a multi-objective programming problem. The
algorithms should take both network coverage and node
redundancy into account and maximum the length of the
working nodes’ configuration sequence as another goal. The
rotation based heuristic cover algorithm [30] divides sensor
node clusters into disjoint sets. It activates these sets one by
one to extend the IoT lifespan, but it is time-consuming for
large IoTs. The node self-scheduling algorithm [31] alter-
nately schedules nodes to be sleep or active and maximizes
the IoT coverage. The probing environment and adaptive
sleeping algorithm [32] demands a working node to be sleep
if another working node exists within the current node’s
detection range, thus reducing redundant nodes. However,
the unbalanced energy consumption will prematurely exhaust
some nodes and reduce the IoT lifespan. The energy-efficient
coordination algorithm [33] constructs a backbone net-
work to determine working nodes, but the backbone nodes
will also prematurely exhaust their energy. The light-
weight deployment-aware scheduling (LDAS) [34] algorithm
demands the working node to sense other nodes within
the detection region. Once the number of working nodes
exceeds a threshold, these nodes are sleep to save energy.
However, the algorithm causes severe redundancy of work-
ing nodes. The HCCVGA algorithm [7] schedules sensor
nodes to be active/sleep to satisfy connectivity and coverage
requirements well.

The IGA-BAC algorithm [17] emerges as one of the
advanced methods to implement multi-objective program-
ming for the IoT coverage problem. The algorithm adopts
a single objective function (i.e., fitness function) for
the IoT coverage and the used nodes. It then com-
bines the improved genetic algorithm and the binary ant
colony (IGA-BAC) algorithm to solve the problem [17].
However, degrading multi-objective programming into lin-
ear programming is not suitable for the IoT coverage
problem. That is because the current two goals are mutu-
ally exclusive, and the appropriate single objective func-
tion corresponding to the optimum solution is usually
unknown. Besides, none of these researches consider the
impact of the current configuration of working nodes on
the following configuration, and maximum the length of
the configuration sequence as a goal for multi-objective
programming.
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C. MOTIVATION
In 5G networks, the algorithm for solving the IoT coverage
problem will encounter the massive-node problem [35]–[37]
and may have a cliff-like decline in its performance. For
example, Fig. 2 presents the coverage that the genetic algo-
rithm (GA) achieves when the different count of sensor nodes
exist in an IoT. The experiments work on a 100m × 100m
monitoring area, set the perception radius as 10m, and initial-
ize the number of individuals in a generation (i.e., possible
solutions in the solving process) as 60. The coverage firstly
rises when the number of nodes increases due to the presence
of more nodes in the IoT. When the number of nodes is 1000,
the coverage reaches its peak, and the calculation time only
takes several minutes. Then, the coverage falls when the num-
ber of nodes reaches 1500. When the number reaches 2000,
the genetic algorithm fails as none of the individuals that
meet the pruning conditions exists after several generations.
If the algorithm dramatically increases the number of indi-
viduals in a generation, it takes tens of hours to get some
solutions. However, in a larger IoT, the algorithm still fails
as it cannot complete the calculation after a very long period.
In massive-node scenarios, feasible solutions often occupy an
extremely low ratio among all possible solutions. Many indi-
viduals with advantages in IoT coverage or node redundancy
cannot meet the pruning conditions. Hence, the algorithm
requires a huge number of individuals reserved in the solving
process to search for globally optimal solutions. Meanwhile,
the algorithm requires many generations to complete the evo-
lution of initial individuals to feasible solutions. Therefore,
the genetic algorithm is either early terminated as there is no
individual remaining after individual pruning if the individu-
als in a generation are not large enough, or fails to complete
its calculation within a limited period if the individuals in a
generation are huge.

FIGURE 2. The coverage of the GA for different number of nodes.

Solving the coverage problem in parallel is feasible for
IoTs with massive nodes in 5G networks. First, the perception
area of a sensor node ismuch smaller than themonitoring area
of an IoT, that is, whether the node is active only affects the
local zone rather than the entire IoT. Hence partitioning the
IoT into many zones (i.e., sub-IoTs) and solving their cov-
erage problems in parallel are feasible. Second, the IoT has
many redundant nodes in the scenarios of over-deploying and
alternately activating nodes. Thus the solving algorithm can
obtain feasible solutions from a group with a small number

of nodes. Therefore, grouping nodes in the IoT is also feasible
for the coverage problem.

III. PARALLEL GENETIC ALGORITHM
This work proposes a parallel genetic algorithm using
Hadoop to extend the lifespan of IoTs with massive nodes
in 5G networks. Fig. 3 presents an example of the parallel
genetic algorithm. Since the data center in 5G networks
takes over the functions of access servers in base stations,
it manages the large IoT that is constituted by multiple IoTs
corresponding to these base stations. Late, the data center
implements partitioning operations to divide the large IoT
into multiple sub-IoTs. Then the data center performs group-
ing operations on each sub-IoT if the sub-IoT still contains
many nodes. Subsequently, this work proposes a genetic
algorithm based on multi-objective programming for each
node group. The algorithm takes the coverage goal and the
redundancy goal into account, and produces a set of feasible
solutions. Finally, the algorithm adopts a strategy of prefer-
entially selecting non-critical nodes to determine the current
configuration of working nodes, and maximum the sequence
length of the working nodes’ configurations.

FIGURE 3. The example of the PGA using Hadoop.

Specifically, this work applies Hadoop [12] to calculate
configurations of working nodes for each node group in par-
allel. This solving process is a multi-objective programming
problem. First, a configuration of working nodes should max-
imize the coverage or at least meet the lower bound. We use
the coverage rate to describe this goal.
Definition 1: The coverage rate of the jth configuration of

working nodes Rcov(Cj) is the grid number covered by the
working nodes in the configuration Cj, dividing the sum of
grids in the monitoring area.

Rcov(Cj) =

∑m
x=1

∑n
y=1 Pcov(x, y,Cj)

m× n
(4)

Equation 4 calculates the value of the coverage rate.
The coverage rate should be no less than the lower bound,
Blow(Rcov), to guarantee the QoS, namely, Rcov(Cj) ≥
Blow(Rcov).
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The configuration should minimize the redundancy of
working nodes, where the redundancy describes that the
current grid is multiply covered by sensor nodes. Let the
coverage degree Dcov(x, y,Cj) be the number of times that
the grid (x, y) is covered by the configuration Cj, as shown
in Equation 5.

Dcov(x, y,Cj) =
∑num

i=1
(si ∈ Cj) && (Pcov(x, y, si) = 1)

(5)

Let Pred (x, y,Cj) the condition whether working nodes
in the Cj configuration redundantly cover the grid (x, y).
Equation 6 calculates the value of Pred (x, y,Cj).

Pred (x, y,Cj) =

{
1, Dcov(x, y,Cj) > 1
0, else

(6)

Definition 2:Redundancy rate Rred (Cj) is the proportion of
the grids that are redundantly covered by the configuration Cj
in the sum of grids in the monitoring area.

Rred (Cj) =

∑m
x=1

∑n
y=1 Pred (x, y,Cj)

m× n
(7)

The redundancy rate is calculated in Equation 7. The two
above goals are mutually exclusive, and their single objective
function corresponding to the optimum solution is unknown.
Definition 3: The critical node is a sensor node that is

required by multiple feasible solutions.
When the algorithm determines the current configuration

of working nodes from feasible solutions, it should avoid
selecting critical nodes. If these critical nodes run out of
energy prematurely, the latter configuration will fail to reach
the lower bound of the coverage due to lack of critical nodes.
Let Nconfig(Cj) be the number of critical nodes in the config-
uration Cj. The MPGA has to minimize Nconfig(Cj).
Assume the configuration sequence of working nodes

(C1,C2, . . . ,CJ ) continues till the last configuration CJ .
Then activating all remaining nodes still cannot meet
the coverage requirement. Hence the IoT lifespan is
equal to the length of the configuration sequence, and
Equation 8 describes the last goal.

Objective = max(J ), J in (C1,C2,C3, .....,CJ ) (8)

Fig. 4 presents a flowchart of the parallel genetic algorithm
to achieve the last goal and extend the IoT lifespan. This
algorithm mainly contains three parts: the mapping-reduce
process, the solving process, and the merging process. The
following sections introduce these processes in detail.

IV. THE MAPPING-REDUCE PROCESS IN PARALLEL
GENETIC ALGORITHM
In the mapping-reduce process, the parallel genetic algorithm
performs partitioning and grouping operations to degrade the
scale of the coverage problem for an IoT with massive nodes.
First of all, the algorithm determines the size of sub-IoTs and
then partitions the IoT into several sub-IoTs. On the one hand,
if the size of each sub-IoT is less than ten times the perception

FIGURE 4. The framework of the PGA using Hadoop.

radius, nodes in adjacent sub-IoTs have an apparent influence
on the coverage of the current sub-IoT. That violates the
assumption that a sensor node affects its local sub-IoT. On the
other hand, a large-sized sub-IoT contains more nodes, which
will lead to a rapid increase in the execution time. Even-
tually, the algorithm even cannot complete the calculation
after a long period. Let Nsub the number of sub-IoTs after
partitioning. For the efficiency of the parallel algorithms, this
work sets the length and the width of each sub-IoT as ten
times of the perception radius, and partitions the IoT into
Nsub sub-IoTs.

Second, let Ngroup the number of nodes of the sub-IoT
divide the solvable number of nodes of the genetic algorithm.
The algorithm divides nodes in a sub-IoT into Ngroup groups
if the sub-IoT still contains too many nodes. In this process,
the algorithm randomly distributes nodes of a sub-IoT, so it
may distribute nodes in a particular solution into different
groups and miss the solution. Let Ntime the times of grouping
operations. As a result, the algorithm employs (Ntime + 1)
times of grouping operations, where Ntime times of grouping
operations aim to generate more groups to cover feasible
solutions, and another time of grouping operation is used
to check if other optimal solutions exist after Ntime times of
grouping operations.

In Fig. 4, the parallel algorithm first divides the IoT with
massive nodes into several sub-IoTs. Later, the algorithm
performs (Ntime + 1) times of grouping operations for the
nodes in each sub-IoT to cover feasible solutions. In this way,
the algorithm obtains a set of node groups whose number of
nodes the genetic algorithm can handle.With partitioning and
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grouping, the algorithm maps the coverage problem for the
IoT with massive nodes into many small problems, and the
following step can solve them in parallel.

V. MULTI-OBJECTIVE PROGRAMMING-BASED GENETIC
ALGORITHM
In the solving process, the parallel genetic algorithm
applies a multi-objective programming-based genetic algo-
rithm (MPGA) to search for feasible solutions of each group
in parallel. The MPGA contains two parts: an improved
genetic algorithm using fast non-dominated sorting [13]
(called IGA-FNS), and preferentially selection of non-critical
nodes. In the first part of MPGA, the algorithm implements
the IGA-FNS to optimize coverage and redundancy for a
given node group. In this work, we modified the source code
of the genetic algorithm in Matlab to form the IGA-FNS
algorithm. Specifically, we use the FNS algorithm [13] to
replace the single objective function (i.e., the fitness function)
for sorting individuals and adopt uniform crossover and indi-
vidual pruning to optimize the genetic algorithm internally.
First of all, the parallel algorithm checks if a node group’s
coverage meets the lower bound when it activates all nodes.
If yes, the parallel algorithm starts the IGA-FNS algorithm;
else, the node group cannot provide any feasible solution, and
the parallel algorithm abandons the node group.

Fig. 5(a) presents the flowchart of the IGA-FNS, where
one-bit models if a sensor node is active, and an N-bit pattern
models a configuration of working nodes. Let gen the number
of generations in the genetic algorithm. IGA-FNS generates
the first generation of individuals by crossover and mutation
and initializes the value of gen as two. Late, IGA-FNSmerges
the individuals of the current generation and its parent genera-
tion and forms a generation. Let TG be the generation interval.
IGA-FNS performs individual pruning every TG generation.
In the following, if individuals in the current generation are
not sorted, IGA-FNS implements the FNS algorithm to sort
these individuals according to their coverage and redundancy.
Specifically, FNS firstly ranks the non-dominated individual
that has either a higher coverage or a lower redundancy
than any other individual. Then IGA-FNS calculates conges-
tion, and finally selects individuals to form a parent genera-
tion; else, IGA-FNS performs uniform crossover to generate
new individuals. Next, IGA-FNS also applies mutations and
selections on these individuals. IGA-FNS continues until
gen reaches its upper bound Max(gen). Finally, IGA-FNS
provides a set of feasible solutions (i.e., configurations of
working nodes) for the given node group.

A. FAST NON-DOMINATED SORTING
The IGA-FNS adopts the FNS algorithm [13] to optimize
coverage and redundancy. Suppose two solutions x1 and
x2 exist. We call x1 dominates x2 if x1 is superior to x2
for all objectives. If the solution x1 is not dominated by
any other solution, we call it a non-dominated solution.
We also call the set of these solutions a non-dominated set.

FIGURE 5. The flowchart of multi-objective programming-based on
genetic algorithm.

The FNS algorithm performs multi-objective programming
by searching the non-dominated set.

Fig. 5(b) presents the flowchart of the FNS algorithm.
Let np and NSp be the number of solutions dominating the
current solution p and a set of solutions dominated by the
current solution p, respectively. First, if individuals still exist,
FNS goes to the next step; else, FNS sorts all individuals
and ends up. Then, FNS calculates the value of np and NSp
for each individual. Specifically, FNS compares the coverage
and the redundancy of individuals in the current generation
(e.g., x and y). If the coverage and the redundancy of x are
superior to those of y (i.e., x dominates y), FNS puts the
individual y into the set NSx , and the value Ny adds one.
If x has higher coverage than y, but y has lower redundancy
than x, they are non-dominated. Then FNS finds every indi-
vidual whose Np is equal to zero. These individuals belong to
the non-dominated set, and they are superior to other individ-
uals in terms of coverage and redundancy. Hence, FNSmoves
these individuals into the first level of the ranking results.
Meanwhile, the algorithm analyzes the NS set of each moved
individual (e.g., NSx), finds every individual (e.g., y) that
belongs to the set, and reduces the Ny value of the individual
by one. After moving the individuals into the first level,
FNS continues to search for another non-dominated set
belonging to the next level.
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For example, Fig. 6 describes that FNS sorts five individ-
uals, where the coverage CR and the redundancy R are avail-
able. First, the fourth and fifth individuals are non-dominated
by any other individual whose Np is 0, so FNS sets them as
the first level. After moving these individuals, FNS updates
the Np of the remaining individuals, and then two new non-
dominated individuals emerge. In this way, FNS sorts these
individuals level by level. Comparedwith the single-objective
function (i.e., fitness function), the FNS algorithm reserves
non-dominated solutions that are advantageous in terms of
coverage or redundancy level by level. Hence FNS is more
suitable to search for the globally optimal solutions for the
IoT coverage problem.

FIGURE 6. The example of fast non-dominated sorting.

B. UNIFORM CROSSOVER AND INDIVIDUAL PRUNING
The IGA-FNS uses uniform crossover and individual pruning
to optimize the genetic algorithm internally and force its
solving process to quickly converge toward feasible solutions.
First, the algorithm adopts uniform crossover to extend the
distribution of individuals. Assume two parent individuals A
and B exist for crossover. In Fig. 5(a), IGA-FNS randomly
generates an N-bit pattern. The number of zero in the pattern
is equal to the number of one. Then the algorithm extracts the
bits of the parent individuals A and B according to the pattern.
As shown in Fig. 7, two 10-bit patterns stand for the parent
individual A and B. The algorithm generates another 10-bit
pattern for uniform crossover. As the first two bits of that
pattern are one, the offspring C extracts the first two bits of
the parent A. Then the next three bits are zero, so the offspring
C extracts the next three bits of B. In this way, the parent A
and parent B are distributed over C. The generated offspring

FIGURE 7. The example of uniform crossover.

individual is significantly distinguished from the original par-
ent individuals. Uniform crossover extends the distribution of
the individuals and ultimately makes the solving process to
quickly converge towards feasible solutions.

Second, the IGA-FNS adopts individual pruning to remove
redundant individuals in the genetic algorithm. As mentioned
above, the genetic algorithm has limited individuals in a
generation. However, the solving process inevitably generates
redundant individuals. On the one hand, redundant individ-
uals come from repetitive individuals. On the other hand,
redundant individuals are also derived from invalid individ-
uals. The ratio of working nodes to all nodes has a reason-
able range. If the ratio of an individual exceeds the range,
the redundancy is too severe, and the individual is useless to
extend the IoT lifespan. If the ratio is below the range, too
few working nodes cannot meet the coverage requirement,
and the corresponding individual is also useless. In Fig. 5(a),
IGA-FNS executes individual pruning every TG generation.
Individual pruning removes repetitive individuals as well as
invalid individuals whose ratios of working nodes are beyond
the reasonable range and thereby frees computing resources
occupied by the redundant individuals. Ultimately, individ-
ual pruning makes the solving process to quickly converge
toward feasible solutions.

VI. MERGING SOLUTONS FOR THE CURRENT
CONFIGURATION OF WORKING NODES
A. MERGING SOLUTIONS FOR THE ENTIRE IoT
The parallel genetic algorithm uses the FNS algorithm to
merge solutions from small node groups and sub-IoTs and
finally gets feasible solutions for the entire IoT with mas-
sive nodes. FNS reserves all non-dominated solutions to
search for globally optimal solutions. Compared with any
other solution, a non-dominated solution has either a higher
coverage or a lower redundancy. Let Nfeasible the number
of feasible solutions reserved after FNS. First, the algo-
rithm merges feasible solutions from node groups in each
sub-IoT and retains the first Nfeasible solutions for the fol-
lowing steps. Fig. 4 presents the workflow of this process.
After the parallel algorithm implements (Ntime + 1) times of
grouping operations for nodes in each sub-IoT and consti-
tutes (Ntime + 1) × Ngroup groups, it generates solutions for
these groups using Hadoop in parallel. Then the algorithm
collects feasible solutions of the Ntime × Ngroup groups in the
iterative part and then merges with the existing solution set
(if it exists). Late the algorithm sorts these solutions using
FNS, retains the first Nfeasible solutions (if its number is less
than Nfeasible, all solutions are retained) as a new solution
set. Meanwhile, the algorithm also collects solutions of the
remaining Ngroup groups as a test set. The algorithm then
merges the test set into the solution set and compares the
solution sets before and after this merging. Let Rfs the ratio of
a part of feasible solutions to all feasible solutions. If the first
Rfs × Nfeasible solutions in the solution set remain the same,
the algorithm goes to the following steps. Besides, Rfs is the
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checking ratio of the test process, and the setting of its value
needs to balance the computing time and the performance
(i.e., coverage and redundancy) of feasible solutions. Oth-
erwise, the algorithm does not complete enough grouping
operations and thus loses some optimal solutions. Therefore,
it returns to the mapping-reduce process, executes (Ntime+1)
times of grouping operations again, and iteratively performs
the previous steps.

For example, we implement an experiment on an IoT with
4000 nodes whose monitoring area is 100m× 100m, and the
perception radius is 10m. In the experiment, we perform three
grouping operations to generate solutions and use another
time of grouping operation for testing. Because the algorithm
solves at most 20 feasible solutions in a 1000-node IoT, we set
Nfeasible as 20. As the current configuration determined by
the parallel genetic algorithm mostly emerges within the first
20% of feasible solutions, we set Rfs as 20%. The gener-
ated solutions pass the testing and finally form a solution
set. Meanwhile, we implement a single-pass grouping on
the IoT and generate another solution set as a reference.
Fig. 8 presents the coverage and redundancy of the first
twenty solutions of these two solution sets. The solutions in
the first set contain advantageous coverage or redundancy,
and none of these solutions are dominated by the solutions in
the second set. Hence the first solution set is generally better
than the second set. The experimental results in Fig. 8 con-
firm that the multi-pass grouping operations with testing can
obtain the optimal solutions for the entire IoT.

FIGURE 8. The coverage and redundancy of solutions after single-pass
and multi-pass grouping operations.

Second, the algorithm merges feasible solutions from
two adjacent sub-IoTs layer by layer, combines these two
sub-IoTs, and finally generates the solution set for the
entire IoT. Specifically, the algorithm merges feasible solu-
tions from the two adjacent sub-IoTs by calculating the Carte-
sian product. Then the algorithm sorts these solutions using
FSN and extracts the firstNfeasible solutions as the solution set
for the IoT combined by these two sub-IoTs. Fig. 9 presents
an example of merging solutions from two adjacent sub-IoTs.
First, the parallel algorithm obtains four solutions for the first
and the second sub-IoTs, respectively. Then, the algorithm

FIGURE 9. An example of merging solutions of two adjacent sub-IoTs.

obtains sixteen solutions for the combined IoT by calculat-
ing the Cartesian product. Finally, the algorithm sorts these
solutions using the FSN algorithm and retains the first six
solutions as the solution set. The merging process continues
until it combines all sub-IoTs into one IoT, and then the
algorithm obtains the solution set for the entire IoT.

B. PREFERENTIAL SELECTION OF NON-CRITICAL NODES
The parallel algorithm adopts the second part of MPGA
(i.e., preferential selection of non-critical nodes) to determine
the current configuration of working nodes. This process con-
siders the impact of the current configuration on the following
configuration and demands tominimize the number of critical
nodes. Fig. 5(c) presents the flowchart of the preferential
selection of non-critical nodes. First of all, the MPGA counts
the occurrence number of each node in the feasible solutions
that the parallel algorithm generates for each node group.
Once the occurrence number of a node exceeds the threshold,
it sets the node as a critical node. After the parallel algorithm
merges solutions for the entire IoT and sorts the generated
solutions according to their coverage and redundancy,MPGA
counts the number of critical nodes that each generated
solution contains. Finally, MPGA sets the solution with the
least critical nodes as the current configuration. It is worth
emphasizing that once multiple solutions contain the least
critical nodes, MPGA selects the earliest solution according
to its sorting order.

Fig. 10 presents an example of the preferential selection
of non-critical nodes on a small IoT, where the IoT contains
ten nodes in the monitoring area. First, MPGA generates
four feasible solutions that meet the coverage and redun-
dancy requirements and uses the FSN algorithm to sort these
solutions. Then MPGA counts the occurrence number of
each node in these solutions and finds that the second, third,
and seventh nodes appear multiple times. These nodes are
critical nodes. Fig. 10 shows that the critical nodes are indeed
distributed in the center of the monitoring area. HenceMPGA
identifies the critical nodes accurately. Next, MPGA finds
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FIGURE 10. The example of preferential selection of non-critical nodes.

that the first and the third solutions contain the fewest critical
nodes. Since the first solution dominates other ones, MPGA
sets the first solution as the current configuration of working
nodes. In Fig. 10, the selected configuration well satisfies
these three goals of coverage, redundancy, and minimizing
critical nodes. Therefore, MPGA can maximize the length of
the working nodes’ configuration sequence, and extend the
IoT lifespan.

VII. EXPERIMENTS
In this section, we implement experiments to evaluate the
performance of theMPGA and the parallel genetic algorithm,
while Table 2 presents the experiment settings. First, as exist-
ing algorithms cannot handle the IoTs with massive nodes
in 5G networks, we perform the MPGA on a small IoT and
use the original GA and IGA-BAC as references. Besides,
we directly apply IGA-FNS without the preferential selection
of non-critical nodes as another reference in the experiments
of IoT lifespan. The reference is used to demonstrate the

TABLE 2. Experiment settings.

impact of the preferential selection of non-critical nodes on
the IoT lifespan. The small IoT covers a 100m × 100m
monitoring area, and its lower coverage bound is 90%. The
sensor nodes are randomly distributed in the IoT. Assume
each sensor node contains ten energy units, and can alter-
nately be active or sleep. The number of sensor nodes ranges
from 100 to 200. Meanwhile, the perception radius is set
as 10m in the beginning, and then gradually increases to
25m to simulate the scenarios that the sensor nodes are over-
placed. Finally, the experiment sets the maximum individual
number in a generation as 60. It then evaluates the coverage,
the number of required nodes, the CPU time, as well as the
lifespan and remaining nodes in the final IoT on a PC with an
Intel i5 CPU and 4GB memory.

Second, we perform the parallel genetic algorithm on the
IoT with massive nodes. The IoT covers a 400m × 400m
monitoring area. The parallel genetic algorithm sets the size
of each sub-IoT as 100m × 100m and partitions an IoT into
16 sub-IoTs. The number of sensor nodes ranges from 8000 to
64,000, and the number of nodes in a sub-IoT ranges from
500 to 4000. When the parallel algorithm applies grouping
operations, the maximum number of nodes in a group is 1000.
Other experimental settings are shown in Table 2.Meanwhile,
we perform the genetic algorithm to the IoTs in two other
ways and use them as references. The first is the direct
genetic algorithm (DGA) that uses a genetic algorithm on the
IoT directly. The second is MPGA after simple partitioning
(MPGA-P) that divides an IoT into 16 sub-IoTs, runs the
IGA-FNS on each sub-IoT, and sets the shortest lifespan of
the sub-IoTs as the ultimate lifespan. Finally, experiments
calculate the coverage and the ultimate lifespan of thesemeth-
ods on a server with two Intel E5 CPU and 64GB memory.

A. MULTI-OBJECTIVE PROGRAMMING-BASED GENETIC
ALGORITHM ON SMALL IoTs
1) OPTIMAZATION OF COVERAGE AND REDUNDANCY
The performance of the IGA-FNS outperforms the original
GA and IGA-BAC in terms of coverage and redundancy.
First, IGA-FNS achieves better coverage than the original
GA and IGA-BAC regardless of the generation number. The
original GA often contains limited individuals involved in a
generation. If these individuals are similar and concentrated
in a small part of the solution space, the algorithm requires
more generations to search for feasible solutions. Or, if many
repetitive individuals squeeze the computing resource, that
will also degrade the performance of the algorithm. The
IGA-BAC attempts to improve the IoT coverage by combin-
ing two advanced algorithms but does not strike the reason to
limit the coverage. IGA-FNS implements uniform crossover
and individual pruning to optimize the IoT coverage. The
experimental results demonstrate the internal optimization of
the genetic algorithm hits the root that limits the improvement
of the IoT coverage.

Second, the required nodes of IGA-FNS reduces sig-
nificantly compared with those of the original GA and

149638 VOLUME 8, 2020



Y. Zhang et al.: Parallel Genetic Algorithm to Extend the Lifespan of Internet of Things in 5G Networks

FIGURE 11. The IoT coverage lifespan and remaining nodes under different perception radiuses.

IGA-BAC in Table 3. IGA-FNS uses the FNS algorithm to
sort individuals according to both of the coverage and the
redundancy. When IGA-FNS is going to remove individu-
als, it removes the individuals that are sorted backward but
retains the individuals ranked first. In this way, the algorithm
reserves all individuals that contain advantageous coverage
or redundancy. As a comparison, both of the original GA and
IGA-BAC form a single objective function (i.e., fitness
function) using the coverage and the node usage to select
individuals. However, as the single objective function can-
not accurately reflect the relationship between coverage and
redundancy, the method that degrades multi-objective pro-
gramming into linear programming is not suitable for the IoT
coverage problem. Besides, Table 3 shows the required nodes
of IGA-FNS after 50 and 100 generations are lower than those
of the other methods after 100 and 150 generations. The result
also confirms that uniform variation and individual pruning
force the solving process to quickly converge towards feasible
solutions.

Third, the CPU times of IGA-FNS are far less than those
of the original GA and IGA-BAC regardless of the gener-
ation number of the genetic algorithm. That is because the
FNS algorithm itself has superior performance and low time
complexity. Specifically, the rule of uniform crossover is
also simple, and IGA-FNS performs individual pruning every
TG generation. The original GA contains many repetitive and
invalid individuals, which result in extra calculation time.

TABLE 3. The coverage rate, The number of nodes, and CPU time of
IGA-BAC and IGA-FNS under different generations.

IGA-BAC combines two complex algorithms and thereby
results in higher CPU time.

2) EXTENDING IoT LIFESPAN
The MPGA significantly extends the IoT lifespan
in Fig. 11(a)-11(c). First, IGA-FNS and MPGA become
more effective in extending the IoT lifespan when the exper-
iments intensify the condition that sensor nodes are over-
placed. In some cases, MPGA even doubles the IoT lifespan
compared with the lifespan of IGA-BAC. That is because
IGA-FNS and MPGA achieve a collaborative optimization in
terms of coverage and redundancy, and save many redundant
nodes. Hence, they can use these nodes in the following
configurations. Furthermore, the IoT lifespan of MPGA is
also higher than that of IGA-FNS. That is because MPGA
considers the impact of the current configuration on the
following configuration, and thus maximizes the length of
the configuration sequence of working nodes.

VOLUME 8, 2020 149639



Y. Zhang et al.: Parallel Genetic Algorithm to Extend the Lifespan of Internet of Things in 5G Networks

The preferential selection of non-critical nodes also opti-
mizes the node usage in the IoT. In the beginning, the con-
dition that sensor nodes are over-placed is relatively mild,
the IoT lifespans of the three algorithms are not much dif-
ferent, but the MPGA contains the most remaining nodes
in Fig. 11(d). When experiments intensify the condition of
over-placed nodes, this strategy ensures to activate sensor
nodes evenly and alternately instead of frequently activating
critical nodes. Hence the MPGA generates a longer sequence
of configurations of working nodes. Besides, the remain-
ing nodes of the MPGA are also minimal in most cases of
Fig. 11(e) and 11(f). In conclusion, the MPGA outperforms
the existing method in terms of coverage, the number of
nodes, and computing time, and thus it significantly extends
the IoT lifespan.

B. PARALLEL GENETIC ALGORITHM ON IoTs WITH
MASSIVE NODES
The experimental results demonstrate that the parallel genetic
algorithm can solve the coverage problem in the IoT with
massive nodes in 5G networks and maximize its lifespan.
First, advanced genetic algorithms cannot directly solve the
coverage problems of the IoT with massive nodes. In the
experiments, the nodes are at least 8000 nodes, and the num-
ber of possible individuals of the genetic algorithm steeply
reaches the power of two to eight thousand. That exceeds the
solving capacity of the genetic algorithm. Fig. 12 presents
that even when the number of nodes is only 8000, DGA can-
not solve any feasible solution, and the IoT lifespan of DGA
is zero. That is because the number of possible individuals
in the genetic algorithm reaches the astronomical scale, and
the ratio of individuals that meet the pruning conditions is
extremely low. After individual crossover and mutation in the
population, the vast majority of new individuals did not meet
the pruning conditions.Meanwhile, the number of individuals
in a generation is only 60. Hence, after several generations
of iterations, the genetic algorithm will terminate because

FIGURE 12. The lifespan and used nodes of different methods on IoTs
with massive nodes.

no legal individual exists. Therefore, directly applying the
genetic algorithm to solve the coverage problem of the IoT
with massive nodes in 5G networks is not feasible.

Second, when the number of nodes is no more than
16000, and the number of nodes in a sub-IoT is no more
than 1000, the MPGA-P can solve this IoT coverage prob-
lem, but its final lifespans are less than those of the parallel
genetic algorithm in Fig. 12(a). Specifically, in the IoT with
8000 or 16000 nodes, the MPGA-P has similar coverage
to the PGA, but MPGA-P requires more nodes than PGA.
In Fig. 12(b)-(c), MPGA-P consumes more nodes at any
timeframe than PGA. Three reasons lead to the result. First,
although MPGA-P partitions the IoT into many sub-IoTs,
the method completely ignores optimizing feasible solutions
in adjacent sub-IoTs. In contrast, the parallel genetic algo-
rithm enumerates all combinations of feasible solutions in
two adjacent sub-IoTs by calculating the Cartesian product.
Second, the parallel algorithm uses the FNS algorithm to
optimize the coverage and redundancy of solutions for two
adjacent sub-IoTs, and reserves more nodes for latter con-
figurations of working nodes. Third, PGA implements the
strategy of preferentially selecting non-critical nodes, and
maximizes the length of the configuration sequence of work-
ing nodes.

Third, when the node scale of the IoT exceeds 16,000,
only parallel genetic algorithms can calculate the lifespan
of the IoTs with massive nodes in 5G networks. That is
because each sub-IoT will contain more than a thousand
nodes, and that exceeds the solve capacity of the genetic
algorithm. The PGA further divides nodes into several groups
whose number of nodes should be nomore than one thousand,
so the parallel algorithm solves the coverage problem of the
IoT with 64,000 nodes. Furthermore, the algorithm performs
multiple-pass grouping operations and then compares the
feasible solutions with those in the test set. If other better
solutions exist, the algorithm continues to perform the above
steps iteratively. Consequently, the final solution approaches
the optimum solution of the current sub-IoT.

Fourth, the parallel genetic algorithm using the divide-and-
conquer idea properly degrades the time complexity of the
coverage problem in the IoT with massive nodes in 5G net-
works. In themapping-reduce process, the time complexity of
partitioning and grouping operations is O(num). In the solv-
ing phase, the time complexity of the genetic algorithm using
FSN for each group is O((num/(Ngroup × Nsub))2) according
to work [13]. In the merging phase, the time complexity is
O(log2(Nsub)× (N 2

feasible)
2
×num). Finally, the total cycles of

the above processes, namely the IoT lifespan, is proportional
to the number of sensor nodes (num). Since the variable num
is much larger than other variables, the time complexity of the
entire algorithm is nearly O(num3). Therefore, the algorithm
only takes 36 hours to calculate a configuration sequence of
working nodes for the IoT with 64000 nodes. Furthermore,
this algorithm has good scalability and is applicable to the
IoT with many more nodes. That is because the major process
of the algorithm (i.e., solving the coverage problem) can

149640 VOLUME 8, 2020



Y. Zhang et al.: Parallel Genetic Algorithm to Extend the Lifespan of Internet of Things in 5G Networks

be completely parallel with many computers existing in the
data center. In conclusion, the parallel genetic algorithm can
solve the coverage problem of IoTs with massive nodes in
5G networks and maximize the lifespan of these IoTs.

VIII. CONCLUSION
In this paper, we develop a parallel genetic algorithm for the
coverage problem of IoTs with massive nodes in 5G net-
works and extend the IoT lifespan. Specifically, the parallel
algorithm performs partitioning and grouping operations to
degrade the coverage problem of a large IoT into many small
problems. The algorithm then adopts the multi-objective
programming-based genetic algorithm (MPGA) to solve the
coverage problem. MPGA uses the fast non-dominated sort-
ing to optimize the IoT coverage and node redundancy; it
implements the preferential selection of non-critical nodes
to maximize the length of the configuration sequence of
working nodes. Finally, the parallel genetic algorithm uses
uniform mutation and individual pruning to optimize the
genetic algorithm internally and force its solving process to
quickly converge toward feasible solutions. The experimental
results confirm that theMPGA outperforms the existing work
on small IoTs in terms of coverage, the number of nodes,
computing time, and IoT lifespan. They also demonstrate
that the parallel genetic algorithm successfully solves the
coverage problem of the IoT with massive nodes in parallel,
and significantly extends the IoT lifespan.
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[24] R. Özdaǧ and M. Canayaz, ‘‘A new dynamic deployment approach based
on whale optimization algorithm in the optimization of coverage rates of
wireless sensor networks,’’ Eur. J. Technic, vol. 7, no. 2, pp. 119–130,
Dec. 2017.

[25] E. Tuba, M. Tuba, and M. Beko, ‘‘Mobile wireless sensor networks
coverage maximization by firefly algorithm,’’ in Proc. 27th Int. Conf.
Radioelektronika (RADIOELEKTRONIKA), Apr. 2017, pp. 1–5.

[26] M. Abo-Zahhad, S. M. Ahmed, N. Sabor, and S. Sasaki, ‘‘Coverage
maximization in mobile wireless sensor networks utilizing immune node
deployment algorithm,’’ in Proc. IEEE 27th Can. Conf. Electr. Comput.
Eng. (CCECE), May 2014, pp. 1–6.

[27] S. K. Gupta, P. Kuila, and P. K. Jana, ‘‘Genetic algorithm for K-connected
relay node placement in wireless sensor networks,’’ in Proc. 2nd Int.
Conf. Comput. Commun. Technol. New Delhi, India: Springer, 2016,
pp. 721–729.

[28] J. George and R. M. Sharma, ‘‘Relay node placement in wireless sensor
networks using modified genetic algorithm,’’ in Proc. 2nd Int. Conf. Appl.
Theor. Comput. Commun. Technol. (iCATccT), Jul. 2016, pp. 551–556.

[29] S. K. Gupta, P. Kuila, and P. K. Jana, ‘‘Genetic algorithm approach for k
-coverage andm -connected node placement in target basedwireless sensor
networks,’’ Comput. Electr. Eng., vol. 56, pp. 544–556, Nov. 2016.

[30] S. Slijepcevic and M. Potkonjak, ‘‘Power efficient organization of wireless
sensor networks,’’ in Proc. ICC. IEEE Int. Conf. Commun. Conf., Helsinki,
Finland, Jun. 2001, pp. 472–476.

[31] D. Tian and N. D. Georganas, ‘‘Location and calculation-free node-
scheduling schemes in large wireless sensor networks,’’ Ad Hoc Netw.,
vol. 2, no. 1, pp. 65–85, Jan. 2004.

[32] F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang, ‘‘PEAS: A robust energy
conserving protocol for long-lived sensor networks,’’ in Proc. 23rd Int.
Conf. Distrib. Comput. Syst., Pairs, France, Nov. 2002, pp. 200–201.

[33] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, ‘‘Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc wire-
less networks,’’Wireless Netw., vol. 8, no. 5, pp. 481–494, 2002.

[34] K. Wu, Y. Gao, F. Li, and Y. Xiao, ‘‘Lightweight deployment-aware
scheduling for wireless sensor networks,’’ Mobile Netw. Appl., vol. 10,
no. 6, pp. 837–852, 2005.

[35] M. Huang, K. Zhang, Z. Zeng, T. Wang, and Y. Liu, ‘‘An AUV-assisted
data gathering scheme based on clustering andmatrix completion for smart
ocean,’’ IEEE Internet Things J., early access, Apr. 15, 2020, doi: 10.1109/
JIOT.2020.2988035.

VOLUME 8, 2020 149641

http://dx.doi.org/10.1109/TASE.2020.2975225
http://dx.doi.org/10.1109/TASE.2020.2975225
http://dx.doi.org/10.1109/JIOT.2020.2988035
http://dx.doi.org/10.1109/JIOT.2020.2988035


Y. Zhang et al.: Parallel Genetic Algorithm to Extend the Lifespan of Internet of Things in 5G Networks

[36] H. Teng, K. Ota, A. Liu, T. Wang, and S. Zhang, ‘‘Vehicles joint UAVs
to acquire and analyze data for topology discovery in large-scale IoT
systems,’’ Peer-Peer Netw. Appl., pp. 1–24, Feb. 2020.

[37] J. Tan, W. Liu, T. Wang, M. Zhao, A. Liu, and S. Zhang, ‘‘A high-accurate
content popularity prediction computational modeling for mobile edge
computing using matrix completion technology,’’ Trans. Emerg. Telecom-
mun. Technol., p. e3871, Jan. 2020.

YING ZHANG (Member, IEEE) received the B.S.
degree in computer science from Harbin Engi-
neering University, Harbin, China, in 2006, and
the Ph.D. degree from the Institute of Comput-
ing Technology, Chinese Academy of Sciences,
Beijing, China, in 2011. He completed one-year
postdoc in the Embedded Systems Laboratory,
Linkoping University, Sweden. He also worked
as a Visiting Scholar with the ECE Department,
Duke University, USA, in 2016. He is currently

an Associate Professor with the School of Software Engineering, Tongji
University. He has served on several program committees of international
conferences and symposiums, including IEEEAsia and South Pacific Design
Automation Conference and IEEE Asian Test Symposium. His research
interests include signal integrity, reliable design of network-on-chip, and
wireless sensor networks. He is a member of CCF.

WEIHONG YU is currently pursuing the bach-
elor’s degree in software engineering with
the School of Software Engineering, Tongji
University. He is also a Research Assistant with
the Laboratory of Dependable Computing and
Communications, Tongji University. His current
research interests include parallel computing,
machine learning, and data mining.

XIAODONG CHEN received the master’s degree
in software engineering from the School of Soft-
ware Engineering, Tongji University. He worked
as a Research Assistant with the Laboratory
of Dependable Computing and Communications,
Tongji University. He is currently working with
Meituan Company. His research interests include
wireless sensor networks, the Internet of Things,
and computer networks.

JIANHUI JIANG received the B.E., M.E., and
Ph.D. degrees in 1985, 1988, and 1999, respec-
tively. He is currently a Full Professor of computer
science and technology and the Vice Dean of the
School of Software Engineering, Tongji Univer-
sity. He is also the Vice Director of the Technical
Committee on Fault-tolerant Computing, Chinese
Computer Federation (CCF). He has served on
several program committees of national or interna-
tional symposiums or workshops, including IEEE

Pacific Rim International Symposium on Dependable Computing, IEEE
Asian Test Symposium, IEEE Workshop on RTL and High-Level Testing.
He has coauthored two books and published more than 200 technical articles.
His current research interests include dependable systems and networks,
software reliability engineering, VLSI/SoC testing, and fault-tolerance. He is
a Senior Member of CCF.

149642 VOLUME 8, 2020


