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ABSTRACT This study aims to explore factors affecting passenger car and truck driver injury severity
in passenger car-truck crashes. Police-reported crash data from 2007 to 2017 in Canada are collected.
Two-vehicle crashes involving one truck and one passenger car are extracted for modeling. Different injury
severities are not equally represented. To address the data imbalance issue, this study applies four different
data imbalance treatment approaches, including over-sampling, under-sampling, a hybrid method, and a
cost-sensitive learning method. To test the performances of different classifiers, five classification models
are used, includingmultinomial logistic regression, Naive Bayes, Classification and Regression Tree, support
vector machine, and eXtremeGradient Boosting (XGBoost). In both the passenger car driver and truck driver
injury severity analysis, XGBoost combined with cost-sensitive learning generates the best results in terms of
G-mean, area under the curve, and overall accuracy. Additionally, the ShapleyAdditive Explanations (SHAP)
approach is adopted to interpret the result of the best-performing model. Most of the explanatory variables
have similar effects on passenger car and truck driver fatality risks. Nevertheless, six variables exhibit
opposite effects, including the age of the passenger car driver, crash hour, the passenger car age, road surface
condition, weather condition and the truck age. Results of this study could provide some valuable insights for
improving truck traffic safety. For instance, properly installing traffic control devices could be an effective
way to reduce fatality risks in passenger car-truck crashes. Besides, passenger car drivers should be extremely
cautious when driving between midnight to 6 am on truck corridors.

INDEX TERMS Driver injury severity, data imbalance, interpretable machine learning, truck crashes.

I. INTRODUCTION
As the dominant mode of freight transportation in North
American, trucking plays an important role in commodity
flow and economic vitality. According to the 2017 Com-
modity Flow Survey conducted by the U.S. Department of
Transportation, trucks move 73.0% of all goods by value,
71.5% by weight, and 41.6% by ton-miles [1]. Unfortunately,
the considerable volume of truck traffic has also brought
some regrettable safety issues. Compared to other types of
vehicles, trucks have some unique characteristics, such as
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heavier gross weight, larger vehicle size, and larger blind
spot area, which might increase the risk of severe crashes.
According to the National Highway Traffic Safety Adminis-
tration (NHTSA), there were 4,761 people killed in crashes
involving large trucks in 2017, a 12% increase from 2008 [2].
It should be noted that 72% of these fatalities were occupants
of other vehicles. Additionally, the involvement rate of large
trucks in injury crashes was 31 per 100 million large-truck
miles traveled in 2015, a 48% increase from 2008.

Compared to crashes involving other types of vehicles,
truck crashes usually result in more severe economic losses
and crash severity. As such, a significant amount of research
has been conducted to explore factors affecting injury severity
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in truck-involved crashes. However, a review of the litera-
ture indicates that comparatively few studies have compared
factors affecting injury severity of passenger car drivers and
truck drivers in truck-involved crashes. Since the crash out-
comes of passenger car drivers and truck drivers are signif-
icantly different, lacking such information could affect the
effectiveness of safety improvement countermeasures.

Besides, although a wide variety of modeling approaches
have been adopted to study injury severity of truck-involved
crashes, relatively little attention has been paid to the data
imbalance issue. A dataset is considered as imbalanced when
one class has a much greater number of instances than the
other classes [3]. In a typical traffic crash dataset, the num-
ber of fatal crashes (minority instances) is considerably out-
numbered by non-fatal crashes (majority instances), leading
to a data imbalance problem. Without proper treatments,
data imbalance could severely undermine the performance
of classification models. This is mainly due to standard clas-
sifiers (such as logistic regression, decision tree and Naive
Bayes) are designed for balanced training data. When the
data imbalance is present, these classifiers often provide
suboptimal results by classifying majority instances more
accurately while misclassifying the minority instances [4].
Another reason is the learning process of standard classifiers
is guided by achieving the highest overall accuracy, inducing
a bias towards the majority instances [5]. The value of a
crash classification model depends largely on its accuracy in
predicting more severe crashes, which happen to be minority
instances in a crash dataset [6]. As such, to make crash
classification models more informative, the data imbalance
problem needs to be properly handled.

Another issue worth studying is the model results
interpretability. In recent years, various machine learning
techniques have been used to study traffic injury severi-
ties, such as classification and regression tree [7], support
vector machine [8], and gradient boosting model [9]. Com-
pared to traditional safety models, these more sophisticated
data-driven models have been shown to predict crash severity
with relatively high accuracy [10]. Nevertheless, these mod-
els are often considered as ‘‘black-box’’ methods as lacking
the inference ability. To unravel how specific variable influ-
ences model prediction results, the current study adopts a
recently proposed approach called SHAP (Shapley Additive
Explanations), which is a unified approach for interpreting
the output of any machine learning model [11]. Based on
coalitional game theory, SHAP is able to explain a predic-
tion by computing the contribution of each variable to the
prediction.

The rest of this article is organized as follows: Section 2
reviews relevant literature in related domain; Section 3 intro-
duces the dataset used in this study, and the descriptive
statistics of variables are provided; Section 4 describes the
proposed methodology in detail; Section 5 discusses the
model results; Section 6 concludes the current study and
Section 7 points out the study limitations.

II. LITERATURE REVIEW
Since the available traffic crash datasets typically report
injury levels as discrete variables, many previous studies on
injury severities of truck-involved crashes have adopted dis-
crete outcome regression models. In an early study, Khattak
and Targa applied the ordered probit model to examine factors
affecting truck-involved crash severities in work zones [12].
Based on a unique dataset collected from North Carolina,
the effects of various variables were tested. The results
suggested that following variables significantly affected the
severities of multivehicle crashes involving trucks: the road-
way configuration, posted speed limits, adjacent to the work
zone, and whether a bypass was required on the opposite
side. To study the impact of vehicle, driver, occupant and
environmental attributes on injury levels of crashes involving
heavy-duty trucks, Lemp et al. established an ordered pro-
bit model based on datasets consolidated from various data
sources [13]. Results suggested that increasing the number of
trailers could increase the likelihood of more severe crashes.
Chu used a binary logit model to study factors contributing to
severities of crashes involving gravel trucks [14]. This study
found that lacking driver awareness, geometric improvement
of roadways, and the desire to make more runs in a day
significantly increased the likelihood of severe injury crashes.
Choi et al. applied a binary logistic regression model to iden-
tify factors affecting truck-involved crash severities under
normal and adverse weather conditions [15]. Based on the
model results, speed-related variables were identified as the
most important factors affecting crash severities. To explore
factors affecting the frequency and severity of large-truck
involved crashes, Dong et al. [16] proposed multinomial
logit and negative binomial models. This study concluded
that truck percentage, annual average daily traffic, weather
condition and driver condition significantly affected both
the severity and frequency of crashes involving large trucks.
Using 2009-2013 crash data in Ohio, Uddin and Huynh [17]
developed six mixed logit models considering three lighting
conditions and two area types to investigate factors affecting
injury severities of truck-involved crashes. Results revealed
the impacts of variables on injury severity were quite different
in different models, highlighting the necessity of investigat-
ing crashes based on different lighting conditions and area
types. Newnam et al. [18] studied a unique safety issue:
whether older truck drivers give rise to an increased safety
risk. Chi-square statistics were used to explore differences in
injury levels in middle-aged and older driver groups. Based
on the results of this study, compared with middle-aged
drivers, older drivers presented some safer driving behaviors.
Moomen et al. [19] utilized a logistic regression model to
analyze factors affecting truck crashes on Wyoming down-
grades. Several countermeasures were identified to prevent
such crashes. Osman et al. [20] analyzed injury severity of
large truck crashes in work zones by using a generalized
ordered response logit model. It was concluded that follow-
ing factors had higher elasticity: lower AADT, higher speed
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limits, and daytime. Useche et al. [21] examined the effect of
various factors associated with serious injuries and fatalities
among Spanish professional drivers. Results of the study
indicated that the type of road and crash, light and vehicle
conditions, along with individual driver’s characteristics are
significant factors for predicting serious injuries and fatalities
of professional drivers. Unlike previous literature focusing on
truck crashes in developed countries, Wang and Prato [22]
analyzed injury severities of truck crashes on mountainous
expressways in China. A total of 2,695 truck crashes occur-
ring on four mountain expressways were analyzed with a
partial proportional odds model. This study focused on the
geometric characteristics of expressways and proposed sev-
eral road design suggestions to alleviate truck crash severity.
Rahimi et al. [23] studied the injury severity of single-vehicle
truck crashes in Iran. A random thresholds random parameter
hierarchical ordered probit model was used to consider the
heterogeneity across crashes. Several safety countermeasures
were also proposed. A recent study conducted by Behnood
andMannering [24] studied the temporal instability of factors
affecting injury severities of truck-involved crashes. Based
on the results of random parameters logit models, this study
found that the effects of factors influencing injury severities
in truck crashes were unstable from year to year and across
daily time periods. Behnood and AI-Bdairi [25] analyzed
the weekly instability of factors affecting injury severities in
large truck crashes. It was revealed that model estimation
results were not transferable across weekends and week-
days. Haq et al. [26] investigated occupant injury sever-
ity of truck-related crashes based on vehicle types. It was
found that sperate models should be used for each occu-
pant of each vehicle type. Besides, the actions of drivers
had more significant impacts on crash severity. Although
most previous studies have applied regression models to
study injury severity of truck crashes, the application of non-
parametric machine learning techniques has also attracted
some attention. For instance, Chang and Chien [7] developed
a classification and regression tree (CART) model to uncover
the relationship between truck crash severities and various
driver, roadway, environment and crash characteristics. The
results revealed that the following variables were the key
determinants of truck crashes severities: seatbelt use, crash
type, vehicle type, driver action, crash location and number
of vehicles involved in the crash. In another study, a more
advanced gradient boosting model was developed to analyze
commercial truck crash severities [9]. The model revealed
that 22 variables significantly contributed to injury severities
and 11 of them could explain more than 80% of the model
forecasting.

Regarding the data imbalance embedded in traffic crash
datasets, several studies have proposed corresponding treat-
ments. To analyze factors affecting crash severity in Jordan,
Mujalli et al. [27] used three different resampling techniques
to address the data imbalance issue. It was found that using
the balanced data set to train the classifier could improve the
classification accuracy of killed and severe injuries crashes.

In another study, Goh et al. [28] applied logistic regression
and six popular machine learning algorithms to uncover the
relationship between different cognitive factors and unsafe
behaviors. Since the unsafe behaviors are highly imbalanced,
this study used an over-sampling technique to rebalance
the training data. It was concluded that the decision tree
algorithm achieved the best classification performance when
training on the rebalanced dataset. Jeong et al. [6] proposed a
hybrid approach for imbalanced traffic crash data analysis.
They used two resampling techniques and five classifica-
tion algorithms to classify injury severities in motor vehicle
crashes. It was revealed that the best classification perfor-
mance was achieved when Bootstrap aggregation was used
with the decision tree, with over-sampling technique to treat
data imbalance.

The current study proposes a threefold contribution to
existing literature. Firstly, by comparing factors affecting
injury severity of passenger car drivers and truck drivers in
truck-involved crashes, this article provides some valuable
insights for stakeholders to alleviate crash severity. Secondly,
by implementing several algorithms to deal with imbalanced
crash datasets, the current study significantly improves the
classification accuracy of more severe crashes. Thirdly, to the
best of our knowledge, this is the first study to apply SHAP
to improve the interpretability of traffic crash classification
models.

III. DATA PREPARATION
The data used in the current study is extracted from Canada
National Collison Database (NCDB). NCDB contains all
police-reported vehicle crashes on public roads in Canada
since 1999 [29]. For the modeling purpose, this study collects
the 2007-2017 two-vehicle crashes involving one truck and
one passenger car. According to NCDB, a truck is defined as a
heavy vehicle with GVWR (Gross Vehicle Weight Rating) of
more than 4,536 kg. From 2007 to 2017, there are 28,605 two-
vehicle crashes involving one truck and one passenger car.
Among these crashes, 1,274 passenger car drivers suffer from
fatal injuries, accounting for 4.45% of total crashes. Contrast-
ingly, 27 truck drivers are killed in these crashes, accounting
for 0.09% of total crashes. Additionally, 80.46% of passenger
car drivers are injured and only 15.36% of truck drivers suffer
from injuries in these crashes

In the context of the current study, 16 variables are selected
for the modeling purpose, including crash characteristics
(e.g., crash month and day), infrastructure characteristics
(e.g., roadway alignment and surface condition), vehicle
characteristics (e.g., age of the passenger car and truck), and
driver characteristics (e.g., driver’s gender and age). Please
refer to Table 1 for the detailed variable description and
distribution.

IV. METHODOLOGY
A. TREATING DATA IMBALANCE
As shown in Table 1, the injury levels of passenger car drivers
and truck drivers are both highly imbalanced. Without proper
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TABLE 1. Variable summary.

treatment, this could severely compromise the performance of
the classifier. In the past few years, hundreds of algorithms
have been proposed to address the data imbalance issue.

TABLE 1. (Continued.) Variable summary.

Basically, these techniques can be divided into two groups:
resampling and cost-sensitive learning [3]. To compare
the performance of different data imbalance treatment
approaches, the current study adopts three resampling algo-
rithms (over-sampling, under-sampling, and a hybrid method
combining under-sampling and over-sampling) and one cost-
sensitive learning method.

1) OVER-SAMPLING
Over-sampling aims to eliminate the adverse impact of
skewed class distribution by creating synthetic minority
instances. A popular over-sampling technique called SMOTE
(Synthetic Minority Over-sampling Technique) is used in the
current study. Originally proposed by Chawla et al. [30],
SMOTE is widely used in previous imbalanced learning
studies [3], [27], [28], [31]. SMOTE aims to create a more
balanced dataset by randomly generating artificial minority
samples along the line segments joining eachminority sample
with its k nearest neighbors (in our case, k = 5). Depending
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on the amount of over-sampling instances required, neighbors
from the k nearest neighbors are randomly chosen and one
synthetic sample is created in each direction. This is done as
follows. Firstly, SMOTEmeasures the difference between the
feature vector (an n-dimensional vector representing the sam-
ple) under consideration and its nearest neighbor. Secondly,
this measured difference is multiplied by a random number
between 0 and 1, which is then added to the feature vector.
This forces the selection of a random point and creates an
artificial instance along the line segment joining two feature
vectors.

2) UNDER-SAMPLING
Unlike over-sampling, under-sampling tries to create better-
defined class clusters by removing samples according to a
specific selection criterion. The current study applies the
Edited Nearest Neighbor (ENN) method to perform under-
sampling [32]. For each sample in the dataset, its three nearest
neighbors are located. If this sample pertains to the minority
class, and at least two of its three nearest neighbors belong to
the majority class, then this sample is eliminated. Likewise,
if this sample belongs to the majority class, and at least two
of its three nearest neighbors pertain to the minority class,
then this sample is also deleted. Through this in-depth data
cleaning, the ENN method could generate a more balanced
class distribution.

3) THE HYBRID METHOD
The hybrid method combines the over- and under-sampling
method. Although the SMOTE method could generate syn-
thetic samples by interpolating new points between existing
feature vectors, it can also bring on other problems. As shown
in Figure 1(b), the interpolation of minority samples could
generate artificial samples too deeply in the majority class
cluster. To this end, the classification algorithm might be
overfitted and less informative. The hybrid method tries to
solve this problem by applying the SMOTE and ENN meth-
ods in sequence. The SMOTE method is firstly applied to
generate artificial minority instances, resulting in a more
balanced dataset. Then, the ENN method is called for the
data cleaning purpose. This would create better-defined class
clusters.

FIGURE 1. Illustration of the hybrid method for treating data imbalance.

In the current study, the SMOTE method, ENN method
and hybrid method are all coded in Python based on the
imbalanced-learn library [33].

4) COST-SENSITIVE LEARNING METHOD
In addition to the aforementioned three resampling methods,
this study also tests a cost-sensitive learning method. Cost-
sensitive learning assumes a higher cost for misclassifying
minority instances with respect to majority instances. To this
end, a weight is calculated for each sample in the dataset
according to the class frequency of this sample. For a sam-
ple Si belonging to class i, the weight is calculated as:

WeightSi =
the total number of samples

number of classes× number of class i samples
(1)

Obviously, minority instances have higher weights rela-
tive to majority instances. And this would force the classi-
fier to put more emphasis on correctly classifying minority
instances. Unlike data resampling methods which are incor-
porated at the data level, the cost-sensitive learning method is
incorporated at the algorithmic level by modifying the loss
function. Compared to data resampling methods, the cost-
sensitive learning method is more computationally efficient,
which makes it more suitable for large-size datasets. The cur-
rent paper adopts the scikit-learn Python library to computer
each sample’s weight [34].

B. CLASSIFICATION MODELS
To compare factors contributing to crash severity of passenger
car and truck drivers, the crash outcomes of both drivers
are modelled separately. To examine the performances of
different classifiers on predicting crash severity, this study
uses five classification models, including multinomial logis-
tic regression, Naive Bayes, Classification and Regression
Tree (CART), support vector machine, and eXtreme Gradient
Boosting (XGBoost). This section briefly elaborates on each
model, as well as the classification performance evaluation
metrics.

1) MULTINOMIAL LOGISTIC REGRESSION
In the current study, the crash severity is divided into
three categories: no injury, injury, and fatality. As a tradi-
tional unordered discrete outcome model, the multinomial
logistic regression (MNL) model is suitable for exploring
the potential relationship between contributing factors and
three or more injury outcomes. Besides, theMNLmodel does
not impost sometimes unrealistic restrictions on parameters,
such as normality or homoscedasticity, which makes it a
popular choice in crash severity analysis. The MNL works
by selecting one injury outcome as the base category and
the other injury outcomes are estimated relative to this base
category. A standard MNL model is expressed as [35]:

Pn(i) =
EXP(βiXin)∑
∀IEXP(βIXIn)

(2)

where βi is the estimated coefficients for the injury outcome i,
and Xin stands for independent variables which impact the
injury outcome i sustained by crash n. I represents a set of
possible injury outcomes.
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Based on the results of the MNL model, the impact of
each variable on the injury outcome can be easily inter-
preted by the estimated coefficient or the odds ratio (expo-
nent of the coefficient). Nevertheless, the MNL model does
require careful consideration of the correlation between
each crash contributing factor and the crash outcome,
as well as the possible multicollinearity among contributing
factors.

2) NAIVE BAYES
A Naive Bayes (NB) classifier is a popular supervised learn-
ing algorithm based on the Bayes theorem. It is called
‘‘Naive’’ because a NB classifier has a strong assumption of
conditional independence between each pair of explanatory
variables, given the class variable value. In other words, a NB
classifier assumes that each explanatory variable contributes
independently and equally to the class variable. Based on the
Bayes theorem, the probability of class variable Y = y given
that the explanatory variable X = (x1, x2, . . . , xn) can be
describes as:

P(Y = y|X = (x1, . . . xn)) =

P(Y = y)
n∏
i=1

P(xi|Y = y)

P(X = (x1, . . . xn))
(3)

Then, the Maximum A Posteriori (MAP) probability could
be used to estimate P(Y = y) and P(xi|Y = y). It should be
noted that NB classifiers are a set of classification algorithms
but not a single classifier. Different NB classifiers are mainly
different due to the assumptions regarding the distribution of
P(xi|Y = y) . The current paper adopts a Gaussian NB algo-
rithm which assumes that P(xi|Y = y) follows the Gaussian
distribution.

3) CART MODEL
The Classification and Regression Tree (CART) model
is one of the most popular machine learning models,
which has been widely used in traffic safety analysis [7],
[31], [36], [37]. Compared with most regression models,
the CART model does not impose any predefined relation-
ship between explanatory variables and the class variable.
As indicated by the model name, the CART model could
handle both classification and regression tasks depending
on the nature of the target variable. In the current study,
the target variable is the injury severity of drivers, which is
a discrete variable. Hence, a classification tree is developed.
The CART modeling procedure includes two major steps:
tree growing and tree pruning. Starting at the root node, tree
growing aims to recursively partition the class variable to
minimize the impurity of two child nodes. To this end, during
each step, the CART model needs to select an explanatory
variable as the splitter which can improve the purity of two
child nodes most significantly. There are several indicators to
measure the purity improvement, of which the Gini index is
most commonly used. And this study selects the Gini index
to measure the impurity of any child node. The tree keeps
growing by recursively partitioning the class variable based

on the Gini index. At some point, all samples within each
child node belong to the same class and a saturated tree is
generated. This saturated tree is most probably overfitting and
could lead to high misclassification rate when classifying a
new dataset. As such, this saturated tree should be pruned by
adjusting parameters which control the tree growing, such as
the maximum depth of the tree, the maximum number of leaf
nodes in a tree, and the minimum number of samples required
to be at a leaf node.

4) SUPPORT VECTOR MACHINE
The support vector machine (SVM) model is a widely used
non-parametric machine learning model of the recent years,
mostly because of its sound theoretical foundation and supe-
rior predictive performance. Originally proposed by Cortes
and Vapnik [38], the SVM model is based on the struc-
tural risk minimization principle and the statistical learn-
ing theory. Similar to the CART model, the SVM model
can also handle both classification and regression problems.
For classification problems, the SVM model can map the
input vector into a high dimensional feature space. Gener-
ally speaking, many hyperplanes can separate the data into
different groups in the feature space. The purpose of the
SVM model is to construct an optimal hyperplane which
can maximize the margin between these groups. The opti-
mal hyperplane is known as the maximum-margin hyper-
plane, and it can be represented by quadratic optimization
modeling.

Although the SVMmodel was originally designed for two-
category classification problems, it can be extended for deal-
ing with multi-category classification problems after some
modifications. In the current paper, the prevailing one-versus-
one approach is used. For a classification problem with N
classes, the one-versus-one approach trains N(N−1)/2 binary
SVM models for all possible pairs of classes. Each binary
model may predict one class label and the label with the most
predictions or votes is determined as the severity level of the
crash.

5) XGBoost MODEL
XGBoost stands for eXtreme Gradient Boosting. Origi-
nally proposed by Chen and Guestrin [39], XGBoost has
been widely used in various machine learning competitions
to achieve state-of-the-art results. XGBoost is a scalable
tree-boosting system with the purpose of achieving extreme
execution speed and model performance. As an advanced
implementation of gradient boosting machines, XGBoost is
also an ensemble tree method that aims to create a strong clas-
sifier based on a series of weak learners. The most commonly
used weak learners are CARTs. A single CART might fail
to incorporate predictive power from multiple feature space
regions, which is why it is called a weak learner. In contrast,
by iteratively training a set of weak classifiers, ensemble
methods have been proven to be much more accurate than
a single classifier [40]. The objective function of XGBoost
consists of training loss and regularization term, which can
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be written as:

obj(θ) =
n∑
i

l(yi, ŷi)+
t∑

k=1

�(fk )+ constant (4)

where θ stands formodel parameters which need to be learned
from the training data; ŷi is model prediction for the ith data
sample; yi is the actual label of the ith data sample; l is the loss
function of the ith data sample, measuring howwell the model
can fit the training data; �(fk ) stands for the regularization
term, which is used to control the complexity of the model
and avoid overfitting; fk is a scoring function to estimate the
output in the kth tree, and t is the total number of trees.
Training all CARTs at once is very difficult. Instead,

XGBoost adopts an additive training strategy. At training
step t , the model prediction ŷti is the summation of the pre-
diction at step t−1 and the score of a new tree, which can be
written as:

ŷti = ŷt−1i + ft (xi) (5)

To this end, the objective function at step t is:

objt (θ ) =
n∑
i

l(yi, ŷti )+
t∑

k=1

�(fk )+ constant

=

n∑
i

l(yi, ŷ
t−1
i + ft (xi))+�(ft )+ constant (6)

The model parameter θ is updated at each step t according
to the new objective function. The loss function in XGBoost
can take various forms, such as mean squared error or logis-
tic loss. Besides, XGBoost supports custom loss functions.
The regularization term is a major contribution of XGBoost,
which is given as:

�(f ) = γT +
1
2
λ

T∑
j=1

w2
j (7)

where γ stands for the complexity parameter of each leaf; T is
the total number of leaves; λ is used to scale the penalty; w is
the vector of scores on leaves.

6) CLASSIFICATION PERFORMANCE EVALUATION
Probably the most intuitionistic metric in evaluating classifi-
cation model performance is the overall accuracy, which can
be derived from the confusion matrix in Table 2.

TABLE 2. Confusion matrix for 2-class classification.

The overall accuracy is calculated as:

Accuracy =
TP+ TN

TP+ TN + FN + FP
(8)

In general, the overall accuracy can be used to evaluate
how accurately the classification model can predict the test-
ing data. However, when the dataset is imbalanced, relying
merely on the overall accuracy might produce biased evalu-
ation. For instance, when a model tries to classify a dataset
with 95 negative instances and 5 positive instances, it can
easily achieve a 95% accuracy by classifying all instances
as negative. Apparently, this high accuracy is doubtable, and
the corresponding classification model might fail to be infor-
mative. In this article, geometric mean (G-mean) is selected
to evaluate the classification performance of the proposed
models together with the overall accuracy. As a widely used
metric in imbalanced learning field [3], [6], [41], G-mean
aims to maximize the accuracy of each class while keeping
these accuracies balanced. For a n-class classification prob-
lem, G-mean is calculated as:

G− mean =
n
√
class1accuracy×class2accuracy×· · ·×class n accuracy

(9)

As shown in Equation (9), G-mean is not affected by the
number of instances within each class. In addition, the area
under the curve (AUC) is also calculated to further compare
the classification performance of each modeling scenario.

C. MODEL RESULTS INTERPRETATION
The purpose of developing a crash severity analysis model
is to uncover the relationship between various features and
crash outcomes. Subsequently, corresponding administra-
tive and engineering countermeasures could be implemented
to alleviate the crash severity. As such, the interpretabil-
ity of the model output is as important as its accuracy.
The output of a linear model, such as MNL, is straight-
forward and easy to understand: the parameter value of
each feature could be used to measure the impact of this
feature on the model outcome. However, such models are
only able to uncover linear relationships. On the other
hand, more sophisticated machine learning models, such as
XGBoost or random forest, are able to uncover more com-
plicated relationships and predict crash severities with rela-
tively high accuracy [10]. Nevertheless, these models could
be difficult to interpret. A common approach to explain these
models’ results is to calculate the importance of features
based on gain or split counts. But this approach could suffer
from inconsistency, i.e., the order in which a feature is added
to the model could significantly affect the importance of this
feature [11], [42].

This study adopts a novel approach called SHAP (Shap-
ley Additive Explanations) to explain the output of machine
learning models. Originally proposed by Lundberg and
Lee [11], SHAP is designed to explain the output of any
machine learning model in a consistent and accurate way
based on game theory and local explanation. Generally
speaking, SHAP measures the importance of a feature by
comparing model predictions with and without this particular
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feature. Unlike other feature attribution approaches, SHAP is
able to compute the exact SHAP value of each feature for
each individual instance. As an additive feature attribution
method, SHAP develops a linear explanationmodel g for each
instance within the dataset:

g(z′) = φ0 +
M∑
i=1

φiz′i (10)

where g is the explanation model used to explain the
model prediction on an instance; M is the number of fea-
tures in the model; φi is the SHAP value for a feature
i; z′i = 1 if a feature i is present and z′i = 0 other-
wise. The SHAP value for a feature i is calculated by
comparing the model predictions with and without this
feature. Since the order in which features are added to
the model could affect the model prediction, all possible
orders are permuted, and the SHAP value is calculated as a
weighted summation. This can be described in the following
equation:

φi =
∑
S⊆M/i

|S|!(M − |S| − 1)!
M !

[fx(S ∪ {i})− fx(S)] (11)

where S is the subset of features used in the model; M
is the number of features; fx(S ∪ {i}) and fx(S) are the
model predictions with and without feature i. In this way,
the individual prediction in the model could be accurately
explained. The second term in Equation (11) indicates that
the φi could be negative, meaning feature i could have a
negative impact on the model output. For a classification
problem, a SHAP value matrix with the same size of the input
data could be obtained for each possible model output. The
average of the absolute SHAP value of feature i is used to
measure the impact of this feature on the model output. The
current study uses Python library SHAP to calculate SHAP
values [11].

V. RESULTS AND DISCUSSION
The dataset is randomly divided into training and testing
subsets according to a 7:3 ratio. The passenger car driver
models and truck driver models are separated developed.
The classification performances are reported in Table 3 and
Table 4, respectively. These tables include overall accuracy,
per-class accuracy, G-mean and AUC for each clas-
sification model and each data imbalance treatment
approach. As shown in Table 3, for the passenger car driver
crash severity analysis, the highest G-mean is achieved when
XGBoost is used with the cost-sensitive learning approach
(G-mean = 58.23%). And the associated overall accuracy
is 60.37%. The second-best result of G-mean is achieved
when XGBoost is combined with the hybrid data prepro-
cessing approach (G-mean = 56.82%). Nevertheless, the
overall accuracy in this scenario is significantly lower (overall
accuracy= 46.94%). Besides, XGBoost combined with cost-
sensitive learning achieves the highest AUC (0.72) as well.
As for the truck driver crash severity analysis, results in

Table 4 reveal that the highest G-mean is also achieved
when XGBoost is combined with the cost-sensitive learning
approach (G-mean = 55.55%). And the associated overall
accuracy is 63.57%. Although the AUC of this modeling
scenario is lower than that of XGBoost model trained on
the imbalanced dataset, the per-class accuracy and G-mean
are greatly improved. The second-best G-mean is achieved
when the decision tree model is combined with the hybrid
data preprocessing approach (G-mean = 51.84%).
Then, SHAP is adopted to explain the results of the best-

performingmodeling scenarios. Figure 2 and Figure 3 present
the impact of factors on passenger car driver and truck driver
crash severity, respectively. The factors are sorted in descend-
ing order based on the average of the absolute SHAP values.
It’s worth mentioning that units of SHAP values depend on
the selected classificationmodel. For XGBoost, SHAP values
have log odds units.

As shown in Figure 2, the crash configuration is the
strongest predictor for passenger car driver injury severity.
Besides, the gender of the passenger car driver, the traffic
control device, roadway configuration and the age of the
passenger car driver also have significant impacts on crash
outcomes. On the other hand, weather condition, road surface
condition and the truck age have the least impact on passenger
car driver crash outcomes.

Turning to factors affecting crash severity of truck drivers
(Figure 3), crash configuration is also the strongest predictor,
followed by the gender of the passenger car driver, roadway
configuration, the age of the truck driver, and the traffic
control device. Meanwhile, the passenger car age, the gender
of the truck driver and road alignment have the least impact
on truck driver crash outcomes.

Although feature importance figures are useful, they con-
tain no information beyond average impacts of features on
model output magnitude. For more informative explanations,
the contribution of each feature on a specific crash outcome
should be illustrated. Figure 4 and Figure 5 presents the
impact of features on passenger car driver and truck driver
fatal crashes, respectively. In SHAP, these figures are called
summary plots, which combine feature importance with fea-
ture effects. The features (y-axis) are sorted in descending
order according to their global impact on the model output
(in this case, fatal crashes). Each point on the summary plot
represents a SHAP value (x-axis) for a feature in a crash.
The color represents the value of a feature. Overlapping
points are plied up to show density. Again, for XGBoost,
SHAP values on the x-axis have units of log odds.

As shown in Figure 4, the crash configuration is the single
most important predictor for passenger car driver fatalities.
In crashes involving vehicles travelling in the same direction,
passenger car drivers are less likely to suffer from fatalities.
Other crash configuration (such as head-on crashes, left/right
turn crashes, and different direction sideswipe crashes) would
increase the fatality risk of the passenger car driver. The
traffic control device is the second most important predic-
tor. Crashes occurred in places with some kind of traffic
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TABLE 3. Classification performance by data imbalance treatment approaches for the passenger car driver crash severity analysis.

FIGURE 2. Importance of features on passenger car driver crash severity.

control devices (such as traffic signals, stop signs, and warn-
ing signs) are less likely to result in passenger car driver

FIGURE 3. Importance of features on truck driver crash severity.

fatalities. Properly installing traffic control devices could be
an economical and effective method to reduce fatality risks
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TABLE 4. Classification performance by data imbalance treatment approaches for the truck driver crash severity analysis.

FIGURE 4. Impact of features on passenger car driver fatalities.

in passenger car-truck crashes. In general, older passenger
car drivers are more likely to suffer from fatalities. Besides,

FIGURE 5. Impact of features on truck driver fatalities.

compared to female drivers, male passenger car drivers are
more prone to fatal crashes. As such, traffic safety education
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campaign targeted at older male passenger car drivers should
be promoted. It’s worth noting that passenger car safety
device usage is not the most important feature, but driving
without safety belts could significantly increase the fatality
risk, given the long tail in the plot. Although the gender of the
truck driver is one of the least influential factors, it seems that
the presence of female truck drivers could reduce the fatality
risk of the passenger car driver.

Compared with Figure 4, most features in Figure 5 have
similar effects on truck driver fatalities. For instance, truck
drivers are also more likely to suffer from fatalities in crashes
involving vehicles travelling in different directions. Crashes
occurred at intersections are less likely to result in truck
driver fatalities. Nevertheless, six features exhibit opposite
effects on passenger car driver and truck driver fatalities,
including the age of the passenger car driver, crash hour,
the passenger car age, road surface condition, weather con-
dition and the truck age. Compared to younger passenger car
drivers, older drivers are more prone to fatalities. However,
the presence of older passenger car drivers would reduce the
fatality risk of truck drivers. This result further emphasizes
the vulnerability of older passenger car drivers. Regarding the
crash hour, crashes occurred earlier in the day (0:00∼6:59)
would increase the fatality risk of passenger car drivers but
decrease the fatality risk of truck drivers. This is probably
due to passenger car drivers are more likely to be affected by
fatigue compared to truck drivers on night shift, who have
more experience in this condition. Newer passenger cars are
less prone to passenger car driver fatalities, but more prone
to truck driver fatalities. This may be due to a newer car
has more safety features and better mechanical condition.
When road surface is covered with ice, truck drivers are more
likely to suffer from fatalities. With higher center of gravity,
trucks are more prone to rollover on icy road, leading to fatal
injuries. Likewise, icy road surface would increase the fatality
risk of passenger car drivers in some cases. But in other cases,
it might decrease the fatality risk. This is probably due to
some passenger car drivers are more cautious in this situation.
As such, they tend to reduce speed to avoid severe crashes.
Regarding weather condition, snow would always decrease
the fatality risk of truck drivers. But it might increase the
fatality risk of passenger car drivers in some cases. Compared
to older trucks, newer trucks (within 5 years) are less prone
to truck driver fatalities as the small values of V_YEAR_t
(the truck age) are associated with negative SHAP values
in Figure 5. Nevertheless, Figure 4 suggests that newer trucks
would slightly increase the passenger car drivers’ fatality
risks.

VI. CONCLUSION
This study aims to explore factors affecting the passenger
car driver and truck driver crash severity. For the modeling
purpose, crashes involving one passenger car and one truck
from 2007 to 2017 in Canada are collected and processed.
To compare the classification performance of different

classifiers, this study uses five different classification mod-
els: multinomial logistic regression, Naive Bayes, Classifica-
tion and Regression Tree (CART), support vector machine,
and eXtreme Gradient Boosting (XGBoost). In view of
the imbalanced crash severity distribution, four data imbal-
ance treatment approaches are separately applied, including
over-sampling, under-sampling, a hybrid method combin-
ing under-sampling and over-sampling, and a cost-sensitive
learning method. Each classification model is combined with
one data imbalance treatment approach to generate the classi-
fication result. In light of the data imbalance issue, this study
selects geometric mean (G-mean), overall accuracy, and AUC
to evaluate the classification performance. To improve the
interpretability of classification model results, a recently pro-
posed approach called SHAP (Shapley Additive Explana-
tions) is applied.

For the passenger car driver crash severity analysis,
XGBoost combined with cost-sensitive learning gener-
ates the best result (G-mean = 58.23%, overall accu-
racy = 60.37%, AUC = 0.72). Likewise, regarding the
truck driver crash severity analysis, the best result is also
achieved by combining XGBoost with cost-sensitive learn-
ing (G-mean = 55.55%, overall accuracy = 63.57%, AUC
= 0.70). G-mean in the current study outperforms the
best results in previous literature regarding the 3-class
classification [6], [7].

To make the XGBoost model results more informative,
this study adopts a recently proposed approach called SHAP.
Based on game theory and local explanation, SHAP is
designed to explain the result of any machine learning model
in a consistent and accurate way. Impacts of features on
passenger car driver and truck driver injury severity are sep-
arately reported. Additionally, to explore factors affecting
driver fatalities, impacts of features on passenger car and
truck driver fatal crashes are presented. Among all these
features, most of them have similar effects on passenger
car driver and truck driver fatalities. However, six features
exhibit opposite effects, including the age of the passenger
car driver, crash hour, the passenger car age, road surface
condition, weather condition and the truck age. Results of
the current study could provide some valuable insights to
alleviate severity of passenger car-truck crashes. For instance,
both passenger car and truck drivers should be aware that
wearing safety belts could significantly reduce their fatality
risks in crashes. Besides, properly installing traffic control
devices (such as traffic signals, stop sign or warning sign)
could be an economical and effective method to reduce
fatality risks in passenger car-truck crashes. Passenger car
drivers should be extremely cautious when driving between
midnight to 6 am, especially on roads with heavy truck traffic.
Besides, traffic safety education campaign targeted at elderly
male passenger car drivers should be promoted. They should
be more careful when driving on truck corridors. Traffic
administration department should set up more safety warning
signs on curved roads and mountain roads. For a snowy
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country like Canada, timely clearing of snow and icing on
the road is essential to improve traffic safety, especially on
truck corridors.

This study demonstrates that XGBoost combined with
cost-sensitive learning is a decent method to identify factors
affecting injury severity when data is highly imbalanced.
Besides, SHAP could be a valuable tool for interpreting
results of crash severity analysis models.

VII. STUDY LIMITATIONS
Meanwhile, the study limitations should be noted. Firstly,
variables used in this study could be expanded to increase
the reliability of model results. Examples include traffic
flow information prior to the crash, speeding, driver fatigue,
and working experience of the truck driver, etc. Secondly,
although this study applies four different approaches to han-
dle the data imbalance issue, other methods in imbalanced
learning field are also worth exploring. For instance, Genera-
tive Adversarial Networks (GAN) seem promising in improv-
ing the performance of imbalanced learning models. Future
studies should test the potential of GAN in traffic safety
analysis. Thirdly, this study uses only police-reported crash
data for modeling. Future studies should consider building
models with data generated from traffic simulators. Then,
the performance of different models could be compared.
Lastly, the quality of model results is only as good as the input
data. All crashes are recorded and coded by police officers
based on the best available information. As such, some errors
in the data are inevitable, which might affect the quality of
model results.
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