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ABSTRACT Due to its ease of use and flexibility, the robot operating system (ROS) is increasingly becoming
the most popular middleware for robot applications, even in multiagent systems. Since ROS 1.0 does not
satisfy real-time requirements, ROS 2.0 was developed, and it improved the communication stack with the
real-time data distribution service (DDS) protocol. However, the actual performance level to be expected
is still unknown and can largely depend on the operating system and the kernel being used, the DDS
distribution, and the overall software load of the system. In this article, we present an empirical study that
evaluates the real-time performance of ROS 2.0 in both the system and communication software layers. In the
system layer, the deterministic behavior of the ROS 2.0 nodes is thoroughly observed with regard to whether
the tasks are schedulable and can function within the specified temporal deadline. In the communication
layer, special attention is devoted to the rate of data loss and the overall latency of messages between nodes.
Experiments are performed in various working conditions; for example, the system load is increased to
define the real-time performance of the tasks. For reference, the results are compared with the those from the
traditional ROS variation. Moreover, we implement a multiagent service robot system to verify the suitability
of ROS 2.0 for real-world applications. Our results show that the application of ROS 2.0 is more suitable
than that of ROS 1.0 in terms of real-time performance.

INDEX TERMS Multi-agent system, performance evaluation, real-time operating systems, robot operating

system.

I. INTRODUCTION
With recent aging and low fertility trends found around the
world, robots have emerged as an alternative to compensate
for the lack of human productivity. Interest and demand for
service robots are increasing due to social factors such as
the pursuit of an improved quality of life [1]. Most modern
robotic systems employ a distributed system architecture that
is composed of sophisticated control software synchroniz-
ing tasks on multiple controllers that are connected through
an underlying network. Some examples are multirobot
systems in heterogeneous environments [2], cloud-based
frameworks [3], and industrial robots for large-scale automa-
tion systems [4].

Robot software is developed using complex algorithms,
such as navigation and simultaneous localization and
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mapping (SLAM), which are time consuming to develop.
Nonetheless, interest in the robot operating system (ROS) is
steadily increasing [S5]-[7].

ROS enables easy and rapid software development with
various tools, libraries, and rules to implement complex con-
trol algorithms in various robot platforms. However, since the
robot shares the working environment with humans in real-
time, it can cause physical damage to the user if malfunctions
occur due to system latency. Therefore, real-time constraints
must be satisfied for stable operation [8]. Since ROS does
not satisfy real-time constraints, researchers have proposed
several approaches to making ROS function in real-time.

In [9], a host-guest system was proposed in which real-
time tasks were executed in the guest system and nonreal-
time ROS nodes were operated in the host system. In this
approach, communication overhead was introduced, which
could lead to unexpected delays that affect the overall per-
formance of the system. Moreover, the manufacturing cost is
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also an issue due to the multiple hardware requirements. RT-
ROS in [10] addresses the hardware issue by implementing
a hybrid operating system (OS) in a single-board, multi-
core environment. This hybrid system allocates a real-time
operating system (RTOS) and general-purpose operating sys-
tem (GPOS) on each core, where the real-time and nonreal-
time processes execute, respectively. However, this approach
requires extensive modification of the libraries and packages
of the ROS, which significantly lengthen the development
time. A dual-kernel environment of Xenomai was introduced
by Delgado et al. [11], [12], with the real-time tasks and ROS
nodes connected through the cross-domain datagram protocol
interface. Although the real-time tasks and ROS nodes can
run seamlessly, this approach still used the standard TCP-
based communication layer of the ROS, namely, TCPROS,
which was not suitable for lossy networks (e.g., wireless net-
works) due to their trade-offs in accuracy and performance.

To support real-time communication, ROS 2.0 was devel-
oped with distributed services (DDS) as middleware for
internode communication. DDS also uses the quality of
service (QoS) profile to provide benefits such as real-time
communication, scalability, performance enhancement, and
security [13]. Data transmission uses real-time publish-
subscribe (RTPS) protocol and multicasting and connection-
less transmission methods, such as UDP/IP. These enable
stable operation even in unstable networks where data loss
could occur, such as in wireless networks, for example [14].
To develop a real-time system using ROS 2.0, an indicator
to evaluate whether ROS 2.0 can meet real-time constraints
must be defined.

Current research studies that evaluates the real-time per-
formance of ROS 2.0 are as follows. Chen [15] evaluated the
latency and message loss rate according to the QoS profile
and communication distance of ROS 2.0 DDS in a wireless
network environment. Maruyama et al. [16] extended this
work using data size as the performance metric in various
forms of communication, including rosbridge between ROS
and ROS 2.0. However, the stability of ROS 2.0 is vague
because the experiments were conducted on an idle environ-
ment without an actual system load. Gutiérrez et al. in [17]
presented an extensive evaluation of ROS 2.0, evaluating the
communication stack according to the data size, communi-
cation speed, system load, and network traffic. However, this
study was conducted only at a communication level, which
does not guarantee real-time performance of the development
environment. Thus, it was exceedingly difficult to determine
whether the entire system provided real-time performance
and implementing an ROS 2.0-based system that can satisfy
real-time constraints as a whole is a challenge.

This article aims to provide the indicators that are neces-
sary to implement a ROS-based system that should satisfy
real-time constraints by conducting an empirical study on
the real-time characteristics of ROS 2.0 compared to ROS
1.0. The real-time performance was evaluated based on two
items: the software stack and communication. To evalu-
ate the deterministic behavior under various conditions, the
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evaluation was conducted under the conditions of an envi-
ronment with no system load and an environment with a
system load. A software stack performance evaluation was
performed to evaluate the real-time performance of the devel-
opment software architecture. The performance evaluation
assessed the schedulability of the Linux kernel and ROS
nodes. Linux kernel scheduling latency evaluation was per-
formed to verify that real-time scheduling was possible, and
the ROS node evaluation was executed to verify that each
task was capable of deterministic behavior in a multitasking
environment in which multiple ROS tasks were executed
simultaneously. Since the schedulability of a real-time task
has a great dependence on the timing accuracy of the task,
a timing analysis of real-time tasks was performed, and the
results were represented by the statistical mean, maximum,
minimum, and standard deviation [18]. A system periodicity
analysis was also conducted to evaluate whether the job could
be run within the deadline.

A communication performance evaluation was performed
to evaluate the network performance with respect to the
real-time performance and stability of a ROS. Two met-
rics were evaluated for the message loss rates and latency
according to the data size and communication frequency.
The message loss rate was defined as the ratio of mes-
sages lost from the receiving node during communication
between the two nodes, and the communication latency
was defined as the time difference from the sending point
of the message to its receiving point in a round-trip
communication.

Finally, based on a real-time performance evaluation,
we implemented a multiagent service robot that was able
to satisfy the real-time constraints and verified the effec-
tiveness of the research results by evaluating whether the
implemented system met the real-time constraints. A mul-
tiagent service robot was executed based on ROS 2.0 and
PREEMPT_RT [19] to satisfy the real-time constraints, and
two mobile robots performed navigation to provide services.
Two ROS 2.0 navigation stacks were used for this task.
However, since the navigation stack provided by ROS 2.0 is
not considered for multirobots, the following two problems
must be solved before we can perform navigation of two or
more robots.

The first problem is that when two navigation stacks are
executed, the node names and the coordinate frame (tf) of
the robot overlaps, and thus, the target robot to which the
navigation should be performed cannot be specified. To solve
this problem, the nodes of each robot were grouped, and
a prefix was added to the tf. The second problem is that
the tf of the target robot that is to perform navigation in
the ROS 2.0 Global Planner is hardcoded, and thus, even if
two navigation stacks are used, two or more robots cannot
be driven. To solve this problem, the tf of the target robot
that performed navigation in the global planner was modified
and specified as a parameter. Through these experiments,
we proved that the real-time performance of a ROS 2.0 based
multiagent system is superior in real-time compared to the
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system using ROS 1.0 in terms of the proposed performance
measures.

This article is organized as follows: Section 2 provides a
real-time performance evaluation around the software stack.
Section 3 provides a communication performance evaluation.
Section 4 describes a multiagent service robot that meets real-
time constraints, and the last section consists of conclusions
that were made based on our research.

Il. SOFTWARE STACK EVALUATION
This section describes the performance evaluation of a ROS
software stack that focuses on real-time performance in the
development environment. For ROS-based systems, real-time
scheduling in the OS must be possible to meet real-time con-
straints. Additionally, in a multitasking environment where
multiple nodes are running, each node must meet deadlines.
Therefore, the experiment conducted the performance
evaluation with two metrics: the real-time schedulability of
a Linux kernel that constitutes the software stack, and a peri-
odicity evaluation of the nodes in a multitasking environment.
We confirmed the deterministic behavior of the software
stack, which is an important indicator in determining the
safety of the system, and we evaluated whether the node could
be executed while satisfying the hard temporal deadlines.
In addition, the stress-ng tool [20] was used to generate the
CPU, memory, and I/O loads on the system. This task was
performed to assess whether the system was capable of stable
operation even in unstable environments.

A. SCHEDULING LATENCY

This section details the evaluation of the scheduling latency
between ROS 1.0 and ROS 2.0. The performance eval-
uation was performed using the benchmark tool called
cyclictest [21]. The implemented software stack architecture
is shown in Fig. 1. Because ROS 1.0 does not officially
support any RTOSs, it was implemented on top of the stan-
dard Linux. On the other hand, ROS 2.0 was developed to
meet real-time constraints when implemented on an RTOS.
In this article, we have utilized the Linux kernel patched with
PREEMPT _RT [9].

Fig. 2 shows the results of evaluating the scheduling
latency in an idle environment. The scheduling latency is
defined as the time difference between the actual task acti-
vation time and the configured period. In our evaluation,
we configured a single real-time task to run with a period and
deadline of 1 ms. To ensure that the multicore hardware did
not affect the results, we configured the CPU affinity of the
task to run on CPUO. Fig. 2a shows the scheduling latency
evaluation of the ROS 1.0 system.

It can be seen that the measured maximum latency is
290 us, which is significantly higher than the 11 us of ROS
2.0, as shown in Fig. 2b. Additionally, the ROS 1.0 results
show a vast distribution in comparison to those of the ROS
2.0, where most of the measured data samples are concen-
trated below the maximum value. Therefore, ROS 2.0 sat-
isfied the hard temporal deadlines better than ROS 1.0 and
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FIGURE 1. Software stack architecture of ROS 1.0 and ROS

2.0 implemented on an Intel Core i7 PC. (a) ROS 1.0 Melodic on the
standard Linux kernel. (b) ROS 2.0 Dashing on top of the RT_PREEMPT
patched Linux kernel.
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FIGURE 2. Scheduling latency in an idle environment. (a) ROS 1.0.
(b) ROS 2.0.

enabled deterministic behavior. In addition, ROS 1.0 had
a larger distribution than ROS 2.0 and thus did not have
consistent operation. Therefore, the ROS 2.0 system provided
higher real-time performance than ROS 1.0 and operated
stably.

We performed the same evaluation on an environment
running the stress tool, called stress-ng. In a stressed environ-
ment, the CPUs are constantly running various calculations
to simulate a heavy computational load. The results of the
evaluation are shown in Fig. 3.

We measured a maximum latency of 1280 us and 26 us
for ROS 1.0 and ROS 2.0, respectively. Compared with the
results of the performance evaluations in idle environments,
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FIGURE 3. Scheduling latency in a stressed environment. (a) ROS 1.0.
(b) ROS 2.0.

the maximum latency was increased for both the ROS 1.0 and
ROS 2.0 systems. In this case, ROS 1.0 was not able to satisfy
the deadline of 1 ms. On the other hand, even with a slight
increase in the maximum latency, ROS 2.0 was able to meet
the temporal constraint. With these results, we concluded that
ROS-based robot systems must implement ROS 2.0 to satisfy
real-time constraints.

B. TASK PERIODICITY IN A MULTITASKING
ENVIRONMENT

The schedulability of nodes is highly dependent on the timing
correctness of each node. The periodicity of the system was
analyzed to verify that all of the nodes could run within the
deadline [18]. The behavior of the execution of a node is
illustrated in Fig. 4. The goal of the experiment is to verify
that the nodes implemented in ROS 1.0 and ROS 2.0 can
exhibit deterministic behavior based on periodicity tests.

For the experiment, we created four nodes with different
priorities and periods, as follows. Nodel, shown in (a) of
Fig. 5, has a priority of 97 and a period of 5 ms. Node2 has a
priority of 96 and a period of 10 ms. Node3 has a priority of 95
and a period of 50 ms. Node3 has a priority of 94 and a period
of 100 ms. The nodes were executed to start approximately
at the same time, and then, they were experimented on for
30 minutes. The node with the higher number has the higher
priority.

Boxplots for each node are shown in Fig. 5 to clearly
identify the difference in periodicity between ROS 1.0 and
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FIGURE 4. Timeline that describes the behavior of a ROS node with a
given period.

TABLE 1. Periodicity of ROS 1.0 nodes in an idle multitasking
Environment.

ROS 1.0 Nodel Node2
Metric (ms) Theriod Tiister Tyeriod Tiner
avg. 4.999062  0.016156 9.999163 0.009272
max. 8.012010  3.012010 14.581200 4.584600
min. 1.992630  0.000000 5.415400 0.000000
st. d. 0.026875  0.021498 0.022926 0.020984
ROS 1.0 Node3 Node3
Metric (ms) Tperiod Tiner Tperiod Tier
avg. 49.99910  0.011217 99.99904 0.011097
max. 50.12970  0.147700 100.14200 0.142000
min. 49.85230  0.000000 99.86260 0.000000
st. d. 0.018505  0.014744 0.01851 0.014856

TABLE 2. Periodicity of ROS 2.0 nodes in an idle multitasking
environment.

ROS 2.0 Nodel Node2
Metric (ms) T, period. Tuner T, period. Tmter
avg. 4.999819  0.000569 9.999830 0.000719
max. 5.053560  0.055300 10.023400 0.051460
min. 4.944700  0.000000 9.948540 0.000000
st. d. 0.001726 _ 0.001640 0.001821 0.001682
ROS 2.0 Node3 Node3
Metric (ms) Tperiod Titier Tyeriod Tiner
avg. 49.99974  0.001440 99.99973 0.001296
max. 50.03450  0.050500 100.09200 0.097400
min. 49.94950  0.000000 99.90260 0.000000
st. d. 0.002194  0.001674 0.00418 0.003988

ROS 2.0. The results of the timing analysis are shown with the
statistical average (avg), maximum (max), minimum (min),
and standard deviation (o) values of each timing metric.
Table 1 shows the results of ROS 1.0, and Table 2 shows
the results of ROS 2.0. Since all four nodes had lower jitter
than ROS 1.0, ROS 2.0 satisfied the periodicity and enabled
the deterministic behavior. In addition, the standard deviation
was lower than that of ROS 1.0 and enabled a consistent and
stable system operation. In Table 2, the task with the higher
priority shows a low standard deviation, which means better
deterministic behavior. In Table 1, however, it can be seen that
the priority had no effect on the periodicity.

The same experiment was conducted in an environment
with stress to evaluate the change in the performance in an
unstable environment. Fig. 6 shows the boxplot for each node.
Table 3 shows the results for ROS 1.0, and Table 4 shows
the results for ROS 2.0. In an environment with stress, ROS
1.0 had significantly degraded performance compared to
idle environments on all four nodes. Especially for Nodel,
the maximum jitter increased by more than twice the period
specified.

Unlike ROS 1.0, ROS 2.0 showed no significant perfor-
mance degradation and showed better performance than ROS
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FIGURE 5. Periodicity of each node in an idle multitasking environment.
(a) Node1 (b) node 2 (c) node 3 (d) node 4.

1.0 in an idle environment. ROS 1.0 could cause problems
due to malfunctions when implementing real-time appli-
cations with high CPU and memory utilization, such as
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FIGURE 6. Periodicity of each node in a stressed multitasking
environment. (a) Node1 (b) node 2 (c) node 3 (d) node 4.

navigation and SLAM. Table 3 shows detailed experimental
data. However, ROS 2.0 satisfies real-time constraints and
enables stable system operation even when such applications
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TABLE 3. Periodicity of ROS 1.0 nodes in a stressed multitasking

environment.

ROS 1.0 Nodel
Metric (ms) Tperiod Titter Tyeriod Titter
avg. 4.999929 0.014473 9.99980 0.016139
max. 16.94670  11.946700 24.21960 14.219600
min. 0.000486 0.000000 0.00103 0.000000
st. d. 0.189248 0.188693 0.20538 0.204749
ROS 1.0 Node3
Metric (ms) T eriod Tiiveer Tperiod Tiivter
avg. 49.99969 0.008427 99.99964 0.004417
max. 58.46030 8.460300 104.44700 4.447000
min. 41.98550 0.000000 95.55400 0.000000
st. d. 0.158163 0.157938 0.09101 0.090909

TABLE 4. Periodicity of ROS 2.0 nodes in a stressed multitasking

environment.

ROS 2.0 Nodel
Metric (ms) T, period T/iner T, period Trtngr
avg. 4998924  0.006557 9.998932 0.010649
max. 5.189790  0.192360 10.133600 0.161850
min. 4.807640  0.000000 9.838150 0.000000
st. d. 0.014033  0.012453 0.019689 0.016595
ROS 2.0 Node3
Metric (ms) Tperiod Tiiner Tperiod Tiner
avg. 49.99905 0.008701 99.99908 0.008463
max. 50.12540  0.175900 100.13900 0.139000
min. 49.82410  0.000000 99.87470 0.000000
st. d. 0.015921 0.013367 0.01633 0.014001

TABLE 5. Attributes of the real-time tasks for response time analysis.

Task Period Deadline Exegutlon Priority
Time
Nodel 10 10 3 99
Node2 20 20 5 98
Node3 40 40 10 97
Node4 80 80 15 96

are implemented. In Table 4, the task with the higher priority
shows a low standard deviation, which means better deter-
ministic behavior even in the stressed environment. These
results indicate that the system based on ROS 2.0 is feasible
for real-time applications.

Although ROS 1.0-based systems do not officially support
RTOS, there are studies to support RTOS in ROS 1.0 [12].
However, to implement ROS 1.0 based on RTOS in these
studies, a compatibility check should be performed, and the
porting is complicated. In addition, although ROS 1.0 based
on RTOS can be implemented to satisfy the real-time con-
straints of the software stack, ROS 1.0 does not satisfy the
communication real-time constraints due to its communi-
cation structure using TCPROS. Therefore, the following
sections perform a communication performance evaluation of
ROS 1.0 and ROS 2.0, focusing on real-time performance.

C. TASK RESPONSE TIMES

The schedulability of real-time tasks is verified through the
response time analysis [18] which is based on the analysis of
the worst-case response time. The response time is defined as
the duration in which a task starts its execution from a release
point until it finishes its job as illustrated in Fig. 4. To perform
the response time analysis, we consider four real-time tasks
the following attributes:
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TABLE 6. Response time analysis of ROS 1.0.

ROS 1.0 Nodel Node2
Metric (l’l’lS) T, period. Tr‘ewonse T period Trespouxe
avg. 10.000184 4.803624 19.999967 7.803781
max. 100.039176 ~ 81.813881  44.000271 36.760369
min. 3.009195 3.000146 5.012950 5.000270
st. d. 11.365553 5.433810 1.466066 3.451887
ROS 1.0 Node3 Node4
Metric (ms) Tperiod Tresponse Tyeriod Tresponse
avg. 39.999891 15.041838  79.999020 23.496083
max. 69.106003 68.199445  100.01593 99.134387
min. 13.669573 10.000592  50.646549 15.001000
st. d. 2.491789 5.300730 3.585778 5.950949

Note that we have selected harmonic periods for the tasks
and the deadlines are equal to the period. As we are using the
POSIX library for both ROS 1.0 and ROS 2.0, task priorities
are configured between 1 and 99, with 99 as the highest
priority. The worst-case response time (WCRT), R, of each
task is calculated by the following equation [18]:

Ri +J; .
Ri=Ci+Bi+ Y, {%W-q, i=1,2,...,n
Jj€hp(i) /

ey

Herein, C is the execution time. B, represents the block-
ing time or the instance when a low priority task forcefully
owns resources that are needed by higher priority tasks. This
could occur when the scheduler does not properly exhibit
priority-based pre-emption, or if the task includes locking
mechanisms that are not released, causing a deadlock. J,
denotes the jitter of the task. The WCRT calculation in (1)
should be iterated x number of times until Rf o Rf, or if
the result exceeds the task deadline. For the real-time tasks
in Table 5, we have calculated the WCRT as 3, 5, 21, and
50 respectively for Nodel, Node2, Node3 and Node4. It is
important that the maximum acquired response time should
be approximately equal to the calculated values to ensure that
the system satisfies real-time requirements. Herein, we focus
on the environment under stress for the response time analysis
to build confidence that the system is viable for practical
applications such as multi-agent robot systems.

The experiments were performed for 30 minutes to acquire
a decent number of samples for the four real-time tasks (ROS
Nodes). The results of the timing analysis for the real-time
tasks in ROS 1.0 are shown in Table 6 with the statistical
average (avg), maximum (max), minimum (min), and stan-
dard deviation (st.d) values of each timing metric. Looking
at the results, we could see that all tasks does not satisfy
real-time constraints with remarkably high maximum 7T}eioq-
The measured WCRT for all of the tasks are greater than the
calculated values. We therefore conclude that ROS 1.0 is not
suitable for real-time applications.

Under the same conditions, we investigate the real-time
performance of ROS 2.0 and the acquired results are shown
in in Table 7.

Unlike ROS 1.0, the response times acquired from the
real-time tasks under ROS 2.0 show that all of the real-
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TABLE 7. Response time analysis of ROS 2.0. TABLE 8. Message loss with varying data size and communication

f y
ROS 1.0 Nodel Node2 1
Metric (ms) Tyerioa Tresponse Theriod Tesponse ROS 1.0 Data size (bytes)
avg. 10.000000  3.000282  20.000015  5.000435 Frequency [Hz] 10! 102 10° 10°
max. 10.084113  3.033663  21.421125 5.038722 10 0/18000  0/18000  0/18000 0718000
min. 9917142 3.000122  19.914865  5.000197 12000 00//138%3)%00 (;)/13;(;)00(?0 (;)/13860%0& 46106/431/"1(’;)0%00
st.d 0.010766 __ 0.000987  0.016650 0.001342 200 0/360000 _0/360000  0/360000  134259/360000
ROS 1.0 Node3 Node4 ROS 2.0 Data size (bytes)
Metric (ms) Tyeriod Tresponse Tperiod Tresponse Frequency [Hz] 10! 10 10 10"
avg. 40.000031  20.991573  79.999576  49.995179 10 0718000  0/18000 _ 0/18000 0/18000
max. 41.440690 21.034833  80.984228 50.044174 20 0/36000 0/36000 0/36000 0/36000
min. 39.912590  10.016334  70.475398 15.000722 100 0/180000  0/180000  0/180000  179907/180000
st. d. 0.023966  0.054489  0.064237 0.233633 200 0/360000 _ 0/360000 _ 0/360000 _ 359859/360000
time tasks show periodic behavior with exceedingly small ROS ROS
.. . Node PC RPI3 Node
deviation from the expected task periods. Also, the response
times were approximately equal to the calculated response T —publish oL Wireless
times through equation (1). Thus, ROS 2.0 is very suitable LAN - Subscribe
. . . . o e ubscribe |
for real-time applications at it shows deterministic behav- ol
. . . T . . ; __Publish
ior satisfying periodic and response time requirements of WIFL'SI\\?SS 1
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Ill. COMMUNICATION LEVEL EVALUATION

A ROS-based system is implemented as a distributed system
in which the nodes, which are a viable process on multiple
hardware platforms, run independently and send and receive
data. If the real-time constraints of communication are not
satisfied in such a distributed system, a malfunction may
occur. This malfunction occurs because the data transmission
and reception are not performed with the correct timing due
to the delay time that occurs in the communication between
nodes. Therefore, to provide the communication performance
indicators that are necessary for realizing a ROS-based sys-
tem that satisfies real-time constraints, ROS communication
performance that focuses on real-time performance should
be evaluated. In this article, the communication performance
was evaluated with two metrics, to satisfy the real-time con-
straints and to verify stable communication.

First, message loss evaluation was performed to provide
performance indicators for the message transmission limit
that could be communicated without loss in order to prevent
system malfunction. Second, latency evaluation evaluated the
latency that occurred in the communication between nodes to
verify whether the messages could be sent and received with
the correct timing. The experiment was performed on a PC
and Raspberry Pi 3 (RPI3) and ran for 30 minutes in a 5 GHz
wireless network environment.

A. MESSAGE LOSS

Message loss evaluation was performed on a one-way com-
munication method in which a message sent from a PC
was received at RPI3. To verify the limits that the system
could send and receive messages stably without losing mes-
sages, a performance evaluation was performed according to
the communication frequency and data size. Table 8 shows
the results of the message loss evaluation of ROS 1.0 and
ROS 2.0. In both the ROS 1.0 and ROS 2.0 systems, there was
no message loss regardless of the communication frequency
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FIGURE 7. Timeline describing the behavior of a ROS node with a given
period.

until the data size of the message was 104 bytes. However,
the results tested at 105 bytes data size indicate that there were
message losses at frequencies of more than 100 Hz, which
makes it impossible for stable operation in both systems.

However, when implementing a ROS-based system, a situ-
ation can arise in which a node communicating at a frequency
of 100 Hz or more must be implemented. Therefore, for the
system to be able to communicate stably without losing a
message, the size of the message should not exceed 10* bytes.
In the next section, the communication frequency evaluation
performed up to 10* bytes, which is the data size that enables
stable communication.

B. LATENCY

In this section, we evaluate communication latency on vary-
ing communication frequency and data size within the range
of no message loss as presented in the previous section.
Communication latency was performed for 30 minutes with
a round-trip time (PTT) test. Round-trip latency is measured
as the time it takes for a message to travel from the PC to
RPI3, and from the RPI3 back to the PC. Communication
latency is measured as the difference between the time-stamp
taken before sending the message (T1) in the PC node and the
time-stamp taken just after the reception of the message in the
callback of RPI3 node (T2), as shown in Fig. 7. To compare
performance according to the environment, the experiment
was conducted in an unstable network environment with
an idle network environment and network traffic. Network
traffic was generated on 30 Mbps using iperf3 [22].

Latency evaluation according to the data size was per-
formed with a frequency of 100 Hz and data size of 10!, 10%,
103, and 10* bytes. Fig. 8 shows the results of a performance
evaluation in an idle environment.
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FIGURE 9. Maximum communication latency given the data size in
environments with network traffic.

Fig. 9 shows the results in an unstable environment with
network traffic. In both the idle and unstable environments,
the maximum latency was significantly lower in ROS 2.0 than
in ROS 1.0. While ROS 2.0 showed a minor change in the per-
formance in unstable environments, ROS 1.0 had difficulty
sending and receiving messages with the correct timing due
to latencies. In addition, it did not satisfy real-time commu-
nication constraints, which makes it difficult to operate the
system in an unstable environment.

The results of the performance evaluation according to the
data size showed that ROS 1.0 could not satisfy real-time
constraints in the communication layer and had difficulty
operating the system in an unstable environment. Since ROS
2.0 has a lower latency, it can satisfy these constraints, and
stable operation of the system is possible even in an unstable
environment because the network traffic has an insignificant
effect on the measured performance.

On the other hand, a latency evaluation with varying
communication frequency was performed with a data size
of 100 Bytes. The communication frequencies are configured
as 10, 20, 100, and 200 Hz. Fig. 10 shows the results of the
performance evaluation in an idle environment. Fig. 11 shows
the results in an unstable environment where network traffic
exists. In an idle environment, ROS 1.0 showed a low latency
of 0.29 ms when communicating at frequencies of 10 Hz and
20 Hz but increased to 40 ms above 100 Hz.

In ROS 2.0, the maximum latency increased with increas-
ing frequency, but the increase was not large and maintained a
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environments with network traffic.

low latency overall. In unstable environments, the maximum
latency of ROS 1.0 was 50 ms at 10 Hz and 20 Hz and
increased to over 119 ms at 100 Hz. ROS 2.0 maintained a low
latency of 0.4 ms - 0.9 ms up to 100 Hz and then increased to
2.7 ms at 200 Hz. As before, both ROS 1.0 and ROS 2.0 had
increased maximum latency in unstable environments.

As a result of the performance evaluation according to
the communication frequency, ROS 2.0 showed better per-
formance in both the idle and unstable environments than
ROS 1.0. Unlike ROS 1.0, which is significantly degraded in
an unstable environment, ROS 2.0 showed less performance
degradation. In ROS 1.0, the maximum latency was low in the
experimental results of 10 and 20 Hz in an idle environment,
and thus, the message could be transmitted and received with
accurate timing. However, in other experiments, due to the
high latency, it was not possible to send and receive messages
with the correct timing, which might not satisfy the real-
time constraints and could cause problems in the system
operation. Since ROS 2.0 had a low maximum latency in all
of the experiments, it could send and receive messages with
precise timing regardless of the environment, and thus, it was
able to satisfy real-time constraints and enable stable system
operation.

In the communication latency evaluation, ROS 2.0 showed
better performance with a lower maximum latency than ROS
1.0 and showed a greater performance difference in an unsta-
ble environment with network traffic. The cause of this result
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is the difference between the communication middleware
used in ROS 1.0 and ROS 2.0. ROS 1.0 is not suitable for
networks with loss, such as wireless networks, because it uses
the TCP protocol-based TCPROS as the middleware for its
communications [23].

In contrast, ROS 2.0 uses DDS as the communication
middleware. DDS uses the UDP-based RTPS protocol for
its data transmission and supports various transmission con-
figurations and scalability such as Deadline, Reliability, and
Durability by controlling the data flow through QoS policies.
ROS 1.0 also supports UDP-based UDPROS, but since it
does not support QoS policies, reliable communication is not
possible. Therefore, ROS 2.0, which maintains low latency
and allows messages to be sent and received with the correct
timing, is suitable for implementing a stable communication
system even in a lossy network and in an unstable environ-
ment with traffic.

IV. MULTIAGENT SERVICE ROBOT

To verify the effectiveness of the performance evaluations
conducted in the previous sections, we implemented a ROS-
based multiagent service robot that satisfied real-time con-
straints. A multiagent service robot scenario was written as
a robot that provides serving services in a restaurant. The
environment consisted of two service robots and six tables.
When the user selected the table number and the robot for
the destination, the backend executed the navigation stack of
the selected robot and generated a movement command in
such a way that the selected robot could move to the table
and avoid obstacles. When the service robot arrived at
the table and completed the serving, the back end navi-
gated the robot back to the kitchen. The user was able to check
the current state of the robot in the GUI environment. Since
the multiagent service robot operates in a real environment,
it must satisfy real-time constraints for safe operation without
physical damage caused by a malfunction [8].

A system architecture that meets real-time constraints
was constructed based on the results of Sections 2 and 3.
In this scenario, two mobile robots utilized two different
ROS navigation stacks to provide services. Since the navi-
gation stack consumed a large amount of CPU and memory
resources, we refer to the evaluation results in an unsta-
ble environment with stress when configuring the system
architecture [24], [25].

In the performance evaluation of the software stack, ROS
1.0 did not satisfy the periodicity due to having a large latency
in an unstable environment with a system load, and deter-
ministic behavior was impossible. However, ROS 2.0 could
satisfy the real-time constraints because it maintains deter-
ministic behavior even in a stressed environment. In the
communication performance evaluation, ROS 1.0 was unable
to send and receive messages with the correct timing because
of the increased latencies in the different load scenarios.

On the other hand, ROS 2.0 was less affected by the
message size, communication frequency, and network traf-
fic. It also consistently maintained a low latency, and thus,
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messages could be sent and received stably. For this reason,
a multiagent service robot that met real-time constraints was
implemented with ROS 2.0. In this section, we implemented
a multiagent service robot that consisted of front-end, back-
end, and service robots. It performed a real-time performance
evaluation of the implemented system and verified the oper-
ation of the system in a real environment.

A. ARCHITECTURE

The architecture of a multiagent service robot consists of
the front-end, back-end, and service robots. The front-end
connects the user with the back-end in such a way that the
user can request a service in the GUI environment. The back-
end is responsible for generating control commands for the
service robots using the two navigation stacks, which allows
the two service robots to perform the requested services.
A mobile robot receives a control command from the back-
end and operates in a real environment to provide a service.
Fig. 12 shows the architecture of the multiagent service robot.

B. FRONT-END SOFTWARE

The front-end software allows users to easily and simply
request the functionality provided on the back-end in a GUI
environment. The user can request a service through the
front-end and check the current operation status of the robot.
Front-end platforms that can interact with ROS have Android
[26], [27] and web browsers [28], [29]. If implemented to
operate on the Android platform, the use is limited because
it can only operate on devices with Android OS. Imple-
menting in a web browser is highly accessible because it
does not depend on specific software platforms, such as the
Android OS.

For this reason, the front-end uses a web browser to pro-
vide a GUI environment to the user. For the communication
between the front-end using a web browser and the back-
end based on ROS 2.0, the ros2-web-bridge [30], which can
act as a bridge between the web interface and the ROS 2.0
interface, is applied to the back-end. Accordingly, the front-
end includes the roslibjs library, a JavaScript library that
provides an API for communicating with the ros2-web-bridge
through a web interface.

Based on the roslibjs library, various libraries for inter-
acting with ROS 2.0, such as the ros2djs library for 2D
visualization and ros3djs library for 3D visualization, will
operate. A user request through the browser is sent to the
web interface as a JSON object and to the ros2-web-bridge
using TCP/IP. Data received from ros2-web-bridge is for-
warded to the ROS 2.0 nodes using ROS 2.0 messages. The
communication structure using the ros2-web-bridge is shown
in Fig. 13. The front-end GUI has six table numbers and two
service robots selection buttons that allow the user to select
the tables and robots that they want to have, and a start button
to start serving after selecting the table numbers and robots.
Under each robot selection button, there is a view to check
the operation status of the current robot.
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C. BACK-END SOFTWARE

The goal of the back-end is to generate a two mobile robot
command to provide the requested service from the front-end.
To reliably generate control commands for the mobile robot,
the real-time constraints must be satisfied in the back-end.
If the real-time constraints are not satisfied, a latency occurs
in the control command of the mobile robot, which must be
generated periodically. Since the mobile robot operates based
on a delayed control signal, this aspect could cause physical
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damage due to malfunction. Therefore, to satisfy the real-time
constraints, the back-end software was implemented based on
the real-time Linux kernel with a PREEMPT_RT patch and
ROS 2.0. The kernel used 4.18.16-1t9, the file system Ubuntu
18.04, and the ROS 2.0 Dashing. Fig. 1b shows the back-end
software architecture.

In the back-end, the control commands of the mobile robot
were generated in the ROS 2.0 navigation stack. The follow-
ing nodes were used to implement the navigation stack in
ROS 2.0. The map_server published the map information to
be used in the navigation using the existing map. Here, amcl
was used to estimate the current position of the robot on a map
issued by map_server; map_server and amcl are optional for
implementing the navigation stack, but in multiagent system
scenarios, there is no terrain change. Thus, in the scenario
before the running navigation, we created a map of the envi-
ronment and used a map created in advance.

The dwb_controller corresponds to the local_planner of
ROS 1.0 and was used to regenerate a path to avoid obsta-
cles around the robot. Here, local_costmap is a map used
by dwb_controller to search for obstacles that are detected
dynamically around the robot. Additionally, navfn_planner
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corresponds to the global_planner of ROS 1.0, and it gener-
ates a path from the start point of the robot to the destination.
In addition, global_costmap is a map used by navfn_planner
to create a route to a destination by avoiding static obstacles,
and bt_navigator subscribes to the/move_base_simple/goal
topic, which is the location information for the destination to
be navigated to, and it runs navfn_planner to move the robot
to the specified destination.

The back-end software is responsible for the navigation
of two mobile robots. For the two mobile robots to navi-
gate, two nodes that implement the navigation stack must be
used. Due to the inability of the ROS 2.0 navigation stack
to consider multiple robots, there were two problems in the
implementation of two navigation stacks in this scenario.
The first problem was that the topic and robot frame trans-
formation (tf) information was duplicated when the same
node was executed several times. When the topics and tf
overlap, the navigation stack cannot know which robot and
sensor it should receive data from, and the robot cannot know
which navigation stack to receive control commands from.
Therefore, the system’s operation is impossible. To solve this
problem, grouping by robot was performed on topics, and tf
was used in the robot and navigation stack. The grouping of
topics was solved by assigning namespaces to nodes, and the
grouping of tf was solved by adding prefixes to tf, as shown
in the comparison in Fig. 14.

D. MOBILE ROBOTS

The service robot provides services to users in a real envi-
ronment, where the service robots must satisfy real-time
constraints for accurate and safe navigation. If the real-time
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TABLE 9. Specifications of the mobile robots.

Hardware Specifications
Model Kobuki2 Tetra DS-IV
External L354 x W354 x L473 x W430 x
Size H350 mm H262 mm
Payload Skg 80 kg
Mobile Drive Two-Wheel Two-Wheel
Robot Differential Drive Differential Drive
Speed Max 0.7 m/s Max 2.0 m/s
Axle Track 250 mm 380 mm
Wheel 70 mm 240 mm
Diameter
Model YDLIDAR G4 URG-04LX
Scan Angle 360° 240°
Laser Angul;_ir 026 035
sensor Resolution
Scan 5-12 Hz 10 Hz
frequency
Single Raspberry Pi 3 B+ LattePanda Intel
Board Broadcom Atom x5-
Main Computer BCM2837(1.4 GHz) 78350(1.8 GHz)
board Ram 1 GB LPDDR2 4 GB DDR3L
Operating Ubuntu 18.04, Ubuntu 18.04,
System Kernel 4.19.85- Kernel 4.18.16-
rt30(RT Preempt) rt9(RT Preempt)

constraints are not met, a malfunction caused by the system
latency could prevent the normal execution of the driving
commands received from the back-end software. This cir-
cumstance can lead to situations in which the desired position
is not reached, and physical damage can occur. As shown
in Table 9, we have employed two service robots, namely,
Kobuki2 and Tetra DS-IV. To drive the robots, we have devel-
oped ROS 2.0 driver nodes for each of the robots. These nodes
are responsible for receiving the velocity commands from the
back-end software and actuating the motors attached on each
service robot. The mainboard for driving the Kobuki2 and
Tetra DS-IV is Raspberry Pi 3 B+ and LattePanda,
respectively.

E. EXPERIMENT

In this experiment, we implemented and drove a multiagent
service robot based on ROS 2.0 in a real environment. The
experimental environment consisted of a 3.2 x 8.0 m space.
To be consistent with the results of the performance evaluated
in Section 3, the QoS policies of the DDS were configured to
keep the latest history data with a depth of 10.

The reliability and durability were set to reliable and
volatile, respectively. The History and Depth organized topic
publishing records were to keep records for only the last
10 topics published. Reliability ensured that the topics were
transmitted without being lost, and Durability was configured
to not maintain samples for nodes that participated in late
communication.

F. EXPERIMENTAL ENVIRONMENT MAPPING

To perform navigation based on the generated map, SLAM
was used to create a map of the experimental environment.
The cartographer package was used for the SLAM [31], [32],
and the mobile robot used Kobuki2 to create a map while
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FIGURE 16. Running a multiagent service robot.

driving through keyboard input. The software architecture
used to create the map is shown in Fig. 15.

G. OPERATION TEST

Based on the map generated by SLAM, we tested the
multiagent service robot that provided the serving service.
Fig. 16 shows a running multiagent system. Two service
robots were requested to provide serving services through the
front-end. Robot1 (Kobuki2) provided service to table 3, and
robot2 (Tetra DS-IV) provided service to table 6.

The current driving status of each robot could be checked at
the front-end. In Rviz2 on the back-end, the marker indicates
the route and direction of travel to the destination of the
service robot. The red marker represents robot1, and the blue
marker represents robot2. Robot1 is in the process of return-
ing to the kitchen after arriving at table 4, and robot2 shows
the situation just before arriving at table 1, the destination.

H. PERFORMANCE EVALUATION

To verify that the multiagent service robot implemented based
on ROS 2.0 is more stable than the existing ROS 1.0-based
system, a performance evaluation on the mobile robot operat-
ing in an actual environment was performed. The periodicity
was evaluated to verify that a deterministic operation was
possible on the Kobuki2 node and the Tetra DS-IV node run-
ning the mobile robot. To confirm the effect of the periodicity
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TABLE 10. Statistical analysis of periodicity of Kobuki2 node.

Idle, Jitter[ms] Stress, Jitter[/ms]

ROS1.0 ROS2.0 ROS1.0 ROS2.0
avg. 0.2424 0.1425 0.2452 0.1439
max. 4.0295 2.5651 8.9721 2.9256
min. 0.0000 0.0000 0.0000 0.0000
st. d. 0.3282 0.2744 0.5124 0.016595

evaluation result on the driving of the mobile robot, an actual
experiment was conducted, to follow a Bezier curve [8] in a
real environment.

The real-time task responsible for controlling the robot was
running periodically every 50 ms with the highest priority in
both the idle and stressed environments. Table 10 shows the
result of the jitter (time difference between the actual period
and the expected period) and reveals that ROS 2.0 meets real-
time constraints better than ROS 1.0. In ROS 1.0, the max-
imum jitter is 4.0295 ms in the idle environment, which is
doubled when the system is under stress. Moreover, the stan-
dard deviation (st. d.) also increased, which means that the
system is not deterministic. In ROS 2.0, the maximum latency
is 2.5651 ms in the idle environment and 2.9256 ms in the
environment with stress. The st. d. also showed superior
performance in comparison to ROS 1.0. Fig. 17 displays the
periodicity of the Kobuki2 node running in RPI3.
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TABLE 11. Statistical analysis of periodicity of tetra DS-IV node.

Idle, Jitter[ms] Stress, Jitter[ms]

ROS1.0 ROS2.0 ROS1.0 ROS2.0
avg. 0.1410 0.0199 0.3031 0.0253
max. 2.5642 0.1662 57.482 1.3873
min. 0.0000 0.0000 0.0000 0.0000
st. d. 0.1940 0.0174 1.0360 0.0343

Fig. 18 shows the results of evaluating the periodicity of
the Tetra DS-IV node running on LattePanda in boxplot.
Table 11 shows the results of a timing analysis. It can be seen
that ROS 2.0 has better real-time performance than ROS 1.0.
As aresult, the maximum latency is increased to a value larger
than the set period, indicating that the system is not operating
stably. The maximum latency of ROS 2.0 is 0.1662 ms in
the idle environment and 1.3873 ms in the environment with
stress. Through this, it can be seen that the latency increase
due to stress is low and is less than 1 ms.

To confirm the difference in the driving results of the
mobile robots according to the real-time performance,
the path planning method in reference [8] was used to create a
Bezier curve path. Fig. 19 shows the difference in the driving
path in an unstable environment with stress. The mobile robot
traveled from the starting point (0, 0, 0°) to the target point (2,
3, 0°) at a speed of 0.5 m/s and an acceleration of 0.5 m/s2.
ROS 1.0 did not meet real-time constraints and could not
execute speed commands with the correct timing. As a result,
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FIGURE 19. Bezier curve trajectory tracking in an unstable environment
with stress.

the mobile robot moved off the reference path. However, ROS
2.0 was driven without deviating from the reference path
because it could meet real-time constraints.

In the real-time performance evaluation of the Tetra DS-IV
node and Kobuki2 node, there was a difference in the real-
time performance according to the motherboard and soft-
ware structure, but in both experiments, ROS 2.0 showed
better performance than ROS 1.0. In particular, there was
no change in the performance of ROS 2.0 under stress and
in an unstable environment, but it was confirmed that ROS
1.0 underperformed significantly. Due to this performance
difference, ROS 1.0 could not follow the exact route in the
driving experiment of the mobile robot, but ROS 2.0 was
able to drive the correct route. Therefore, it could be seen
that a ROS 2.0-based system could be operated stably by
satisfying real-time constraints without a notable change in
the performance even in an unstable environment.

V. CONCLUSION AND DISCUSSION

This article provides two contributions for the development
of a ROS-based real-time system. First, it furnishes the
performance evaluation results necessary to implement a
ROS-based system that meets real-time constraints. Second,
it presents a multiagent service robot based on the ROS
2.0-based system architecture that satisfies real-time con-
straints. The system that shares the workspace with the user
in real-time could cause physical damage to the user when
a malfunction occurs due to latency, and thus, the real-time
constraints must be satisfied for stable operations. To verify
that the ROS-based system satisfies real-time constraints and
enables stable operation, a performance evaluation was per-
formed on software stacks and communications with a focus
on real-time performance.

We evaluated whether the ROS application satisfies the
real-time performance. In order to support real-time per-
formance in ROS applications, real-time performance must
be supported in the OS on which ROS is implemented.
ROS 1.0 does not support RTOS, but ROS 2.0 does support
RTOS. Because of these differences, applications based on
ROS 2.0 can satisfy real-time performance, but those on ROS
1.0 do not. In order to verify the real-time performance,
performance evaluation of general Linux and RT_PREEMPT
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with ROS 1.0 and ROS 2.0 were performed. From this result,
it was verified that the RT_PREEMPT-based system can
operate with low latency.

In order to verify real-time performance in multi-node
applications implemented with ROS 1.0 and ROS 2.0, in
an environment where various nodes are running. We evalu-
ated whether preemption and periodicity were well satisfied.
Through this result, it was verified that the node satisfies real-
time performance based on priority in ROS 2.0. On the other
hand, in ROS 1.0, this was not satisfied.

By comparing ROS 1.0 and ROS 2.0, we verified that the
software architecture was suitable for ROS-based real-time
system development. To verify the effectiveness of the per-
formance evaluation, we implemented a multiagent service
robot based on ROS 2.0, which is a useful example of a real-
time system. A multiagent service robot was implemented
based on a scenario in which two robots provide a serving
service that consisted of front-end, back-end, and two service
robots. To implement the scenario, two robots must perform
navigation. Currently, ROS 2.0 does not support more than
two robots in multirobot navigation, and therefore, to operate
the two navigation stacks independently, we grouped tf and
the nodes and modified the navigation stack’s global planner.

To verify whether the multiagent service robot satisfied
the real-time constraints, a periodicity evaluation of the node
that controls the service robot was performed in ROS 1.0 and
ROS 2.0. To verify the results of the performance evaluation,
we have implemented ROS 2.0 on a multiagent robot system
and conducted experiments in a real environment. Through
this approach, we verified that the multiagent service robot
based on ROS 2.0 could satisfy the real-time constraints.
This article will be promising for engineers who want to
develop a stable system that meets real-time constraints based
on ROS. The performance evaluation conducted in various
environments and conditions as well as the implementation
and development of a ROS 2.0-based system satisfying real-
time constraints are both helpful in realizing this system.
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