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ABSTRACT Pedestrian detection plays an important role in some areas such as autonomous driving, but
due to heavy occlusion and various scales, it is still challenging. In this article, we propose an improved
pedestrian detectionmethod calledDA-Net based on the two-stage detector Feature PyramidNetwork (FPN).
DA-Net adds Dense Connected Block (DCB), a combination of channel-wise attentionmodule (CWAM) and
global attention module (GAM) to the network. FPN can produce features with various scales and semantic
information, which is good for the detection of pedestrians on various scales. Due to many small-scale
targets in pedestrian detection, we only regard the low layers with enough details of targets in FPN as
prediction layers. After several DCBs to deepen the network, prediction layers in our network can encode
richer semantic information of targets, which can make the location of a target more precisely. In order
to highlight visible parts of occluded pedestrians and ignore occluded parts, CWAM weights each channel
of features with different importance. GAM aggregates global information and long-range dependencies
for small-scale and occluded targets. Thus, the combination of CWAM and GAM is not only beneficial for
coping with occlusion problem in pedestrian detection, but also for gaining environmental information for
small-scale targets. Evaluation results on CUHK and CityPersons datasets show that our proposed method
achieves improved performance with log-average miss rate reduction of 9.6% on the CUHK dataset and
6.1% on the Heavy subset of CityPersons dataset compared with FPN.

INDEX TERMS Attention module, dense connected block, feature pyramid network, pedestrian detection.

I. INTRODUCTION
Object detection is one of the essential research fields
in computer vision, whose task is to find all objects
in an image. At present, it is widely utilized in areas
such as military, medicine, and intelligent transportation.
Object detection includes two processes, i.e. location and
classification. In the location stage, models output the
coordinates of objects. Models recognize the categories of
targets in the classification stage. The existing object detec-
tion methods can be mainly divided into two categories:
traditional algorithms based on hand-crafted features [1]–[4]
and algorithms based on features adopted by convolu-
tional neural networks(CNNs) [5]–[7]. CNN-based detec-
tion algorithms can learn the features of target adaptively
with strong generalization and feature expression ability.
CNN-based detection methods also fall into two categories:
one-stage algorithms [7]–[10] and two-stage algorithms [5],
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[6], [11], [12]. One-stage algorithms are based on regres-
sion, like SSD [8] and YOLO [7]. Two-stage algorithms
are based on region proposal network, including RCNN [5],
Fast RCNN [11], Faster RCNN [6], FPN [12], and so on.
Since one-stage algorithms do not have the region proposal
network, their detection speed is fast but detection accuracy
is usually low. Two-stage algorithms extract the region pro-
posals first and then locate the targets, so detection accuracy
is high at the expense of time.

Pedestrian detection is an important branch of object
detection. It has attracted a lot of attention in recent
years [3], [13]–[16] and plays an important role in some areas
such as autonomous driving. Different from general object
detection, pedestrian detection has twomain characters. First,
there are occlusions between pedestrian and pedestrian or
pedestrian and background like cars (seen in Fig. 1). Occlu-
sion may lead to missing targets at some times. Second, from
Fig. 2, we can see that there is a large variety of scales in
the pedestrian dataset CityPersons and many targets have
small scales. Small-scale targets have very little information.
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FIGURE 1. Images with pedestrian targets. From the photos, we can see
some targets with heavy occlusion, various and small scales.

FIGURE 2. Distribution of target scales on CityPersons dataset. The short
size of images is resized to 800. The x-axis, y-axis are the scale and
number of targets respectively. The two red lines represent scale=16 and
32 respectively.

Therefore, it is not totally appropriate to use common object
detection algorithms directly into pedestrian detection. New
and effective algorithms are needed. In the last few years,
lots of algorithms have been proposed to deal with these two
problems. Our method also aims at solving occlusion and
various scales in pedestrian detection.

Attention mechanism in CNNs [17] is modeled on the
characteristics of human attention, expressed as giving dif-
ferent weights to different parts of a target. Many CNNs with
attention mechanism are applied to computer vision tasks

such as object detection [18], [19] and pose estimation [20].
In squeeze-and-excitation networks (SENet) [21], the SE
block contains a lightweight gating mechanism that applies
the network to weight each channel according to their impor-
tance. In pedestrian detection, Faster RCNN+ATT [19] also
exploits channel attention module for heavy occlusion task.
In addition, there are some attention modules used to extract
environmental information. For instance, non-local network
(NLNet) [22] learns to gain long-range dependencies rather
than local information, which is good for detecting targets
with little information. However, NLNet is too complex and
increases too much computation to the structure.

Another challenging problem in pedestrian detection is that
there is a large variation of pedestrian scales and the num-
ber of small-scale targets is especially high. Image pyramid
and feature pyramid structure are common tools to tackle
this problem. SNIP [23] is an example of image pyramid,
which uses a scale normalization method to adapt each res-
olution during multi-scale training. However, SNIP is at the
expense of inference time. Feature maps from different layers
have variant resolutions and receptive fields, so features with
different strides of CNN can be used to cope with scale
variation. Besides, feature pyramid can compensate for time
expenses in the image pyramid. SSD [8] and MSCNN [24]
perform detection with feature pyramid but without fusion
between low-level features and high-level features. FPN [12]
designs a top-down architecture with lateral connections for
building feature maps at multiple scales. It can compen-
sate for missing information in the down-sampling process
of CNNs.

Although attention mechanisms and pyramid structures
are proposed to overcome obstacles in pedestrian detec-
tion, the separate structure is limited to solve the problems
in pedestrian detection. There is a need for a model to
detect pedestrians with various scales and severe occlusion
well. In this article, we propose a network (DA-Net) using
Dense Connected Block and attention modules for pedes-
trian detection. We adopt Feature Pyramid Network (FPN)
with ResNet50 [25] to face with various scales in pedestrian
detection and only use the low layers for prediction. Deep
CNN can extract rich semantic information that is beneficial
for the task of location. Thus, our method applies Dense
Connected Block (DCB) to increase the depth of prediction
layers to gain sufficient information. To reduce the influ-
ence of occluded parts during detection, channel-wise atten-
tion module (CWAM) is introduced to learn channel-wise
weights for visible and occluded parts. Global attention mod-
ule (GAM) is designed for detecting small-scale and occluded
targets because these targets have little information. GAM
can capture contextual information for them. In summary, the
contributions of this article are as follows,

1) FPN with baseline ResNet50 is used for classifica-
tion and location. The high layers for prediction are
removed and only several low layers remain, which
is good for detecting small-scale targets and reducing
computation.
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FIGURE 3. Our proposed structure. {C2, C3, C4, C5} are outputs of ResNet50 from the second stage to the fifth stage. DCB is Dense Connected Block.
CWAM+GAM represents the combination of CWAM and GAM. {P2, P3} are used for location and classification.

2) DCB is utilized to deepen CNN and gain richer seman-
tic information of targets, which is beneficial for loca-
tion task. According to experiment results, we find that
richer semantic information in feature maps is impor-
tant for pedestrian detection.

3) We apply a combination of CWAM and GAM to
detect small-scale and occluded targets accurately.
By weighting each channel of a feature map, CWAM
enables the network to stress the importance of fea-
tures in visible parts of pedestrians. GAM can extract
long-range dependencies and environmental informa-
tion for small-scale and occluded targets.

The rest of this article is organized as follows. Section II
describes our proposed method to tackle problems in pedes-
trian detection.We discuss the experiment results and explore
the effectiveness of each component in our network in
Section III. In Section IV, we draw conclusions on this work.

II. THE PROPOSED METHOD
In this section, we will introduce our proposed struc-
ture in Fig. 3. First, we introduce the whole structure in
Section II-A. Then, we explain each part of the structure,
FPN in Section II-B, DCB in Section II-C, a combination of
CWAM and GAM in Section II-D.

A. FRAMEWORK
Taking speed and accuracy into account, we extend FPN
with ResNet50 for the variety of target scales in pedestrian
detection. The proposed structure is illustrated in Fig. 3. After
the outputs of ResNet50 from the second stage to the fifth
stage, we add DCB to increase the depth of each branch
and obtain richer semantic information for accurate detection.
Then, a combination of CWAM and GAM is employed in our
model. CWAM is proposed to gain weights for each part of
pedestrians. It can enable the network to attach importance

to visible parts of pedestrians by learned weights. We apply
GAM to encode global information and enrich the features of
small-scale and occluded targets. After DCB and the combi-
nation of CWAM and GAM, the high layers are up-sampled
and then added with previous layers. Because there are a
large number of small-scale targets and the low layers have
high resolution and keep more details for them, we only
use low-level feature maps {P2,P3} for classification and
location.

FIGURE 4. Feature Pyramid Network.

B. FEATURE PYRAMID NETWORK
In our framework, we use FPN structure with ResNet50 [25].
FPN builds a feature pyramid structure, which takes a single-
scale image as input and outputs feature maps at multi-
ple levels. Adjacent feature maps in FPN have a stride
of 2. FPN in Fig. 4 consists of three parts, i.e., a bottom-
up pathway, a top-down pathway, and lateral connections.
The bottom-up pathway is the feed-forward computation of
ResNet50, during which it produces feature maps at mul-
tiple scales by down-sampling layers. The feature maps at
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low layers have large resolutions and more details of tar-
gets but are lack of global information. On the contrary,
the feature maps at high layers have small resolutions but
large receptive fields and rich semantic information. Global
information is of great importance for the complicated detec-
tion task. Therefore, in the top-down pathway, the high-level
features are up-sampled by bilinear interpolation and then
enhanced with features from the bottom-up pathway. In this
process, lateral connections adopting convolutional layers
with kernel size 1 are proposed to make fused feature
maps at the same dimensions. During prediction, all pre-
diction layers share classifiers and regressors. Due to the
multi-scale prediction layers, the ability to detect targets
with small and various scales is significantly improved.
In Fig. 2, we know there are plenty of small-scale targets on
CityPersons dataset, so we only apply low layers {P2,P3} for
prediction.

FIGURE 5. Dense Connected Block. Res Block denotes residual block.

C. DENSE CONNECTED BLOCK
In object detection, the task of location needs richer semantic
information. The simplest way to gain richer semantic infor-
mation is to increase the depth of prediction layers. Therefore,
we design a structure called Dense Connected Block (DCB)
to achieve this goal and improve information flow between
blocks. DCB not only contains some convolutional layers
to increase the depth but also has skip connections with
former blocks. The skip connection has two advantages. One
is to avoid the problem of vanishing gradients during back-
propagation. Another advantage is to propagate information
between blocks. We show the layout of DCB in Fig. 5. The
structure can be expressed as follows,

B(Ci) = R(R(Ci)) (1)

Cinew = B(Ci)+ Ci (2)

We denote the outputs of baseline ResNet50 from the second
stage to the fifth stage as {C2,C3,C4,C5}. {C2,C3,C4,C5}

have strides of {4, 8, 16, 32} of the input image respectively.
Ci is one of the feature maps {C2,C3,C4,C5} in Fig. 3. Ci
goes through DCB and the output is Cinew. B represents the
entirety of two residual blocks. R is the residual block shown
in Fig. 6, which is composed of batch normalization, ReLU,
and convolutional layers with kernel size 1 or 3. The structure
shows dense skip connections between convolutional layers,

FIGURE 6. Residual Block. 1× 1 conv, 3× 3 conv, BN, ReLU represent a
convolutional layer with kernel size 1, a convolutional layer with kernel
size 3, batch normalization [26], Rectified Linear Unit [27] respectively.

so we call it as Dense Connected Block. In Section III, wewill
analyze the influence of adding DCB after different layers.

D. A COMBINATION OF CWAM AND GAM
In our structure, we propose a combination of CWAM and
GAM in Fig. 7 to solve the problems of small-scale and
occluded targets at the same time. In this model, we design
a cascade structure of CWAM and GAM. In addition, there
is a skip connection between input and output to propagate
information.

Zi = HG(HC (Cinew))+ Cinew (3)

where HC , HG denote CWAM and GAM respectively.
CWAM can acquire channel-wise information for occluded
targets. GAM is adopted to extract long-range dependencies
for small-scale and occluded targets.

1) CHANNEL-WISE ATTENTION MODULE
As we know, each channel of a feature map is related to
different features of targets. Taking an image with pedestri-
ans as input, we visualize some channels of an intermediate
feature map in Fig. 8(c)-(h) to explain this. We can see that
different channels of the feature map are associated with
different body parts of a pedestrian, such as the head in
Fig. 8(c)(d)(h), the upper body in Fig. 8(d), and the lower
body in Fig. 8(e)(g) respectively. There is much more serious
occlusion in the body regions that Fig. 8(c)-(e) correspond to,
which makes the features of neighboring targets confusing.
On the contrary, the features in Fig. 8(f)-(h) are more obvi-
ous and distinguishable for each pedestrian, which plays a
vital role in detecting them. However, standard convolutional
blocks treat channel-wise features equally, so they have diffi-
culty in dealing with occlusion problem in the task of pedes-
trian detection. This encourages us to explore a channel-wise
attention module (CWAM) to weight each channel of a fea-
ture map. Our CWAM in Fig. 9 can extract inter-channel
relationships to guide the network to concentrate more on the
visible body regions in Fig. 8(f)-(h) and less on the occluded
regions in Fig. 8(c)-(e).

The process of CWAM can be divided into two steps. The
first step is to yield a channel-wise vector. In the second step,
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FIGURE 7. A combination of CWAM and GAM.

FIGURE 8. Visualization of CWAM. (a) is an input of the network. (c)-(h) are different channels of an intermediate feature map. Each
grid in (b) is the weight of channels (c)-(h). The value increases from left to right in (b).

this vector is utilized to weight each channel of a feature map.
These can be stated in detail as follows.

In the first step, the feature map Cinew ∈ Rh×w×c1 passes
through a convolutional layer with kernel size 3 and a ReLU
layer to extract the feature F1 ∈ Rh×w×c1 .

F1 = D(Cinew) (4)

Then, in order to aggregate global information of each chan-
nel and gain channel-wise feature maps, for simplicity, global
average pooling g is applied on F1. For the cth channel of F1,
the operation is as follows,

F2c = g(F1c)

=
1

h× w

h∑
i=1

w∑
j=1

F1c(i, j) (5)

where F1c(i, j) is the pixel in the spatial position (i, j) of the
cth channel in F1. F2c is the value of the cth channel in F2.
After that, we develop two fully connected layers W1, W2 to
gain the relationship between different channels. There is a
ReLU δ between fully connected layers to learn the nonlinear
connection of channels. As we know, fully connected layers
generate plenty of parameters for the network, sowe cut down
the output dimension ofW1 by 16 times to reduce parameters.

F3 = W2(δ(W1(F2))) (6)

Then, a softmax layer is adopted to normalize the range of F3
to [0, 1]. The output V is the channel-wise weight vector of
CWAM.

Vc =
exp(F3c)∑c1
c=1 exp(F3c)

(7)
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FIGURE 9. Channel-Wise Attention Module.

where F3c, Vc are values of the cth channel in F3 and
V respectively. We select and visualize six weight values
of V in Fig. 8(b), each grid of which gradually increases
from left to right and is corresponding to the importance of
channels in Fig. 8(c)-(h) respectively. Due to occlusion, the
channels with features of the front foot and front body in
Fig. 8(c)-(e) have lower weights. On the contrary, the chan-
nels extracting features of regions without occlusion, like the
back foot and lower body in Fig. 8(f)-(h), get relatively higher
weights.

In the second step, we use the learned weights V to rescale
the original feature map F1. In this way, features in F1 have
different importance.

Cinew_1 = V � F1 (8)

where� represents element-wise multiplication. The param-
eters of operations in CWAM are shown in Table 1.

TABLE 1. Parameters of each part in the CWAM. The height, width, and
channel are h, w , c1 respectively. r = c1/16.

2) GLOBAL ATTENTION MODULE
As we know, small-scale pedestrians have fewer pixels than
large-scale pedestrians. Compared with pedestrians without
occlusion, occluded pedestrians lose some information of
body regions. Thus, both small-scale and occluded targets
are lack of information, which makes it difficult to recognize

them. Global and environmental information is needed to
help extract information for them. In our model, we attempt
to adopt a global attention module (GAM) to acquire envi-
ronmental features and enhance inter-spatial relationship for
small-scale and occluded targets (seen in Fig. 10). The pro-
cess is illustrated as follows.

FIGURE 10. Global attention module.

First, we feed the feature map Cinew_1 ∈ Rh×w×c1 into
a convolutional layer W3 to gain the spatial feature E1 ∈
Rh×w×1. Then, we reshape E1 to the size of 1 × 1 × N ,
N = h × w, and a softmax layer is applied to it, which can
convert the values to weights between 0 and 1.

E1 = W3(Cinew_1) (9)

E2j =
exp(E1j)∑N
k=1 exp(E1k )

(10)

where E1j and E2j are values in the jth channel of E1 and E2
respectively. After that, Cinew_1 is reshaped to N × c1 and
multiplied with E2 by matrix multiplication to weight each
spatial pixel in the feature map Cinew_1.

E3 = E2 × Cinew_1 (11)

Next, E3 passes through convolutional layers, a layer normal-
ization, and a ReLU to transform features. And we get the
weight vector E4.

E4 = W5(δ(LN (W4(E3)))) (12)

where W4 represents a channel-downscaling convolutional
layer to reduce the number of channels by 16.W5 is a channel-
upscaling convolutional layer to convert the number of chan-
nels to the original size. LN is layer normalization. δ denotes
ReLU. Finally, E4 is combined with the feature map Cinew_1
by element-wise summation. In this way,Cinew_1 is reinforced
by contextual information E4.

Yi = E4 + Cinew_1 (13)

The parameters of operations in GAM are shown in
Table 2.

III. EXPERIMENTS AND DISCUSSIONS
A. DATASET AND EVALUATION METRICS
CUHK dataset [28] is fromChinese University of Hong Kong
and can be used for pedestrian detection. It contains 9 sets
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TABLE 2. Parameters of each part in the GAM. The height, width, and
channel are h, w , c1 respectively. r = c1/16, N = h×w .

and 1063 images. We divide the dataset into training set
and test set. The training set contains the first 7 sets which
have 807 images and the rest 2 sets consisting of 256 images
constitute the test set. The target size of the pedestrians varies
greatly, and the occlusion problem is severe.

CityPersons dataset [29] is a widely used benchmark
in the task of pedestrian detection. It was built on the
Cityscapes dataset [30], which was collected from multiple
cities and countries across Europe. In the CityPersons dataset,
occlusion between pedestrians is very serious, which causes
difficulties for detection and makes it an ideal dataset for
evaluating the performance of methods. Besides, the CityPer-
sons dataset has a large variation on pedestrians’ scales and
includes many small pedestrians. We only use the original
training and validation datasets that consist of 2975 and
500 images respectively.

We use the metric log-average Miss Rate (denoted
as MR−2) [31] in all of our experiments. MR−2 is computed
by averaging miss rates at 9 false positives per image (FPPI)
points evenly spaced in the range of [10−2, 100] in log space.
And the lower the metric is, the better the algorithm is.
We also use mean Average Precision (mAP) that is an actual
metric to evaluate detection. mAP is an auxiliarymetric in our
experiments. And the higher mAP is, the better the algorithm
is. For CityPersons dataset, we evaluate our methods on the
Heavy subset like [31]. The Heavy subset is widely used in
pedestrian detection to evaluate the effectiveness and robust-
ness of detectors. On the Heavy subset, pedestrians used for
evaluation are at least 50 pixels tall and have the occlusion
range of 35-80 percent. For the CUHK dataset, due to a lack
of visual annotation information of pedestrians, we evaluate
our method on all the test sets.

B. IMPLEMENTATION DETAILS
We adopt FPN structure with ResNet50 as baseline and
fine-tune the model ResNet50 pre-trained on the ImageNet
dataset [32]. We apply stochastic gradient descent (SGD)
with momentum 0.9 and weight decay 0.0005.

During training, the ratio of foreground and background
is 1:3. The RoIs which have IoU (Intersection over Union)
overlap with ground truth bounding box at least 0.5 are
regarded as positive proposals. The remaining RoIs are neg-
ative proposals. We use RoIAlign [33] to remove the harsh
quantization of RoIPool [11] in our experiments. For CUHK

dataset, the short side of input images is 600 pixels and
the large side is 1000 pixels at most. The anchor scales are
{642, 1282}. For CityPersons dataset, the short side of input
images is 800 pixels and the large side is 1600 pixels at
most. We adopt 2 anchor scales of {162, 322} on CityPer-
sons dataset. On both datasets, we choose 3 anchor ratios
of {0.33, 0.4, 0.5}. In addition to flipping images randomly,
no other dataset augmentation is used on the input. In the
test stage, we adopt non-maximum suppression (NMS) [34]
to remove redundant boxes with IoU threshold 0.5. We train
the network with learning rate 0.001 on CUHK dataset and
0.0005 on CityPersons dataset for 10 epochs, and then the
learning rate is reduced by 10 times for another 5 epochs.

C. RESULTS AND ANALYSIS
In this section, we carry out ablation experiments on
CityPersons dataset to show the effectiveness of our structure.
Besides, we compare our proposed method with state-of-the-
art methods.

1) EFFECTIVENESS OF DENSE CONNECTED BLOCK
In this part, we will analyze the influence of DCB. We set up
a series of experiments to find the best DCB arrangement for
pedestrian detection. In these experiments, we add DCB after
{C2}, {C2,C3}, {C2,C3,C4}, {C2,C3,C4,C5} respectively.
For the low-level feature map C2, due to few convolutional
layers it passes through, we increase 2DCBs after it. For high-
level feature maps C3,C4,C5, we increase one DCB after
them.

We compare the results of different settings on CityPersons
dataset. As the results in Table 3 show, original FPNwith only
{P2,P3} for prediction and without DCB gets MR−2 57.7%
on Heavy subset. It reaches the best result of 54.5% when we
add DCB after {C2,C3,C4,C5}. The experiment results can
show that adding DCB after {C2,C3,C4,C5} is very useful
for extracting rich semantic information for classification
and location. To verify our results, we visualize the results
with and without DCB after {C2,C3,C4,C5} in Fig. 11.
We can see that our network with DCB in Fig. 11(c)(d) can
detect pedestrians more accurately than that without DCB in
Fig. 11(a)(b). Thus, we choose this DCB arrangement in our
network as shown in Fig. 3 in the following experiments.

2) INFLUENCE OF THE COMBINATION OF CWAM AND GAM
After adding DCB for richer semantic information,
we add a combination of CWAM and GAM after
{C2new,C3new,C4new,C5new} for getting channel-wise and
environmental information. In this part, we will analyze
the influence of this combination on the Heavy subset of
CityPersons dataset. From Table 4, we can see that if we
add attention modules after {C2new,C3new,C4new,C5new} all,
MR−2 comes to the top 51.6%, 2.9% better than the result
(54.5%) without the combination. Therefore, our attention
modules with CWAM and GAM plays a vital role in pedes-
trian detection, which is effective to extract enough contextual
information and solve the occluded problem at the same time.
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FIGURE 11. Comparisons between our network with DCB and without DCB on CityPersons dataset. The (a)(b) are the detection results of
FPN with 2 prediction layers without DCB. The (c)(d) are the detection results of FPN with DCB. The (e)(f) are the ground truths.

TABLE 3. Comparisons of DCB added after different feature maps on Heavy subset of CityPersons dataset. The bold number indicates the best result.
√

represents that DCB is added after that layer.

3) INFLUENCE OF DIFFERENT PREDICTION LAYERS
In this section, we explore the effectiveness of different pre-
diction layers on the Heavy subset of CityPersons dataset.
The results are shown in Table 5. In the second row, we only
use {P2} for prediction, the MR−2 is very high and the

detection result is especially bad. This is because the {P2}
does not have deep features and its scale is single. This
cannot cope with the variation of target scales.We get the best
MR−2 51.6%with prediction layers {P2,P3}. The results with
prediction layers {P2,P3,P4} and {P2,P3,P4,P5} are 53.5%
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FIGURE 12. Visualization on CityPersons dataset. The images of each row from left to right are the detection results of FPN with 2 prediction
layers, the detection results of our DA-Net, and the ground truths.

TABLE 4. Comparisons of the combination of CWAM and GAM on different feature maps on Heavy subset of CityPersons dataset. The bold number
indicates the best result.

√
represents that attention modules are added after that layer.

and 54.3% respectively, a bit worse than the result of {P2,P3}.
As we can see from Fig. 2, there are lots of small-scale targets
on the CityPersons dataset. The high-level features are good
for the detection of large-scale targets but may lead to some
redundancy for small-scale targets.

4) COMPARISONS WITH STATE-OF-THE-ART METHODS
We compare our method with some state-of-the-art meth-
ods on the validation dataset of CityPersons dataset in
Table 6. Our method gets MR−2 51.6%, 13.2% lower
than Faster RCNN [6] on the Heavy subset. Our method
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TABLE 5. Comparisons of different prediction layers on Heavy subset of
CityPersons dataset. The bold number indicates the best result.

overpasses Faster RCNN+ATT [19] with self attention,
visible-box attention, and part attention (6.7%, 5.7%, 5.1%
lower respectively) on Heavy subset. This can explain
that our attention modules with both CWAM and GAM
is more effective. Besides, compared with RepLoss [35],
we also get better MR−2 on Heavy subset, 5.9%, 7.5%,
5.3% lower than RepLoss with RepGT Loss, RepBox Loss,
and RepGT+RepBox Loss respectively. In addition, we use
the one-stage algorithm YOLOv3 [36] in the CityPersons
dataset and compare it with our DA-Net. YOLOv3 is sim-
ilar to FPN, which has several prediction layers with dif-
ferent resolutions. Although YOLOv3 is faster than ours
in CityPersons dataset, MR−2 of ours is 6.4% lower than
that of YOLOv3. We also compare our algorithm with the

recent state-of-the-art methods like TLL [37], R2NMS [38],
ALFNet [39], CSANet [40], CSP [16]. Our method outper-
forms TLL, R2NMS, TLL+MRF, ALFNet by 2%, 1.7%,
0.4%, 0.3% in MR−2. Besides, our method runs faster than
ALFNet when testing. Although CSANet and CSP have
slightly better results on Heavy subset than ours, the testing
speed of our method is twice faster than them. In Table 6,
we can see that our method gets good results in both MR−2

and test time, which shows our structure is beneficial for
pedestrian detection.

5) EVALUATION ON CUHK DATASET
To verify the generalization capacity of our proposed method,
we train and evaluate our DA-Net on CUHK dataset. From
Table 7, DA-Net on CUHK dataset gets MR−2 37.2%
(9.6% lower than FPN with two prediction layers), mAP
81.9%(4.0% higher than FPN with two prediction layers).
We also show the results without DCB and the combination
of CWAM and GAM to prove their effectiveness. When we
add DCB on the original FPN, MR−2 is 4.3% lower (42.5%
vs 46.8%) and mAP is 3.0% higher (80.9% vs 77.9%). Com-
paring DA-Net with the network without the combination,
we find that our attention modules can improve the MR−2

by 5.3% and mAP by 1.0%. The results show that our DCB
and the combination of CWAM and GAM are both valid for
pedestrian detection.

TABLE 6. Comparisons with state-of-the-art methods on Heavy subset of CityPersons dataset. We bold the Top-2 results. Our method has good results on
Heavy subset in both MR−2 and speed. FPN∗ represents FPN structure with prediction layers {P2, P3}.
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TABLE 7. Results on CUHK dataset. FPN∗ represents FPN structure with
prediction layers {P2, P3}. Combination represents the combination of
CWAM and GAM. The bold number indicates the best result.

6) RESULTS VISUALIZATION ON CHALLENGING SCENARIOS
We visualize the detection results generated by our method
and FPN structure with prediction layers {P2,P3}. We choose
pictures in challenging scenarios with various-scale and
occluded pedestrians. We show the detection results on
CityPersons dataset in Fig. 12. From the visualization results,
we know that our proposedmodel is more accurate and robust
in detecting various-scale and occluded pedestrians.

IV. CONCLUSION
In this article, we add Dense Connected Block, a combina-
tion of channel-wise attention module and global attention
module after the original FPN structure. We only use the
low-level layers of original FPN for prediction to deal with
the detection with lots of small-scale and various-scale tar-
gets. We apply Dense Connected Block to enrich semantic
information. Channel-wise attention module can weight each
channel with different importance, which can guide the net-
work to emphasize visible parts of pedestrians to solve the
occlusion problem.Global attentionmodule is used to acquire
long-range dependencies and environmental information for
small-scale and occluded targets. The combination of those
two modules can keep our network having those two advan-
tages just mentioned at the same time. We conduct a series of
ablation experiments on CityPersons dataset to verify their
effectiveness. Compared with state-of-the-art methods, our
proposed method overpasses most of these methods in both
detection accuracy and speed. Our method getsMR−2 51.6%
on the Heavy subset of CityPersons dataset andMR−2 37.2%
on CUHK dataset, which shows its effectiveness and robust-
ness for occluded and various-scale pedestrians.
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