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ABSTRACT Extreme disasters may cause the power supply to the distribution system (DS) to be interrupted.
The DS is forced to operate in island mode and forms an islanded microgrid (MG). In order to improve the
post-disaster resilience of the DS and to provide longer power supply for as many loads as possible with
limited generation resources, this paper proposes a multi-agent deep reinforcement learning (DRL) method
which realizes a dual control on the source and load sides of theMG. The problem of resilience improvement
is converted to a sequential decision making problem, where the objective is to maximize the cumulativeMG
utility value over the power outage duration. A multi-agent DRL model is proposed to solve the sequential
decision making problem. A dual control policy including energy storage management and load shedding
strategy is put forward to maximize the utility value of the MG. A reinforcement learning (RL) environment
based on OpenAI and OpenDSS for islanded MG is constructed as a simulator, which has a general interface
compatible with, and also can be published to, OpenAI Gym. Numerical simulations are performed for an
MG equipped with wind turbines, diesel generators, and storage devices to validate the effectiveness of the
proposed method. The influences of available generation resources and power outage duration on the control
policy are discussed, which validates the strong adaptability of the proposed method in different conditions.

INDEX TERMS Control optimization, load shedding, microgrid, OpenAI, OpenDSS, reinforcement learn-
ing, resilience.

I. INTRODUCTION
A. BACKGROUND
Recent years, the frequent occurrence of extreme disasters,
such as earthquake, hurricane and flood, has exerted a sig-
nificant impact on the normal operation of infrastructure and
resulted in significant inconvenience and economic losses to
residents due to the loss of electricity, water and communi-
cation. A Congressional Research Service study in 2012 esti-
mates the inflation-adjusted cost of weather-related outages
at 25 to 70 billion dollars annually in the U.S. [1]. The
severe power outages caused by these extreme disasters have
highlighted the importance and urgency of improving the
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resilience of distribution system (DS). Resilience is used to
measure the ability of a DS to withstand and recover from
extreme disasters [2].

B. RELATED WORKS
In the last decades, various methods are proposed to enhance
the resilience of power grid, and these methods can be mainly
divided into two categories based on the timeline: pre-disaster
preparation and post-disaster decision making.

From the viewpoint of pre-disaster preparation, some stud-
ies focus on the natural disaster impacts on electric power
systems, trying to understand the causes of the blackouts
and explore ways to prepare and harden the grid [3]–[5].
A resilient defender-attacker-defender game framework is
proposed in [6] to coordinate the hardening and distributed
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generation resource allocation with the objective of minimiz-
ing the system damage against disasters. In [7], the weather
information is integrated into the distribution damage assess-
ment which helps to understand how different weather met-
rics impact the distribution grid. Some others, from the per-
spective of post-disaster decision making, focus on faster
restoration of the system. Research of using microgird (MG)
to restore the DS is reviewed in [5], [8]. Research [9] pro-
poses a novel distribution system operational approach by
forming multiple MGs energized by DG from the radial
distribution system in real-time operations to restore crit-
ical loads from the power outage. A hierarchical energy
management framework based on multi-MGs is proposed
in [10] for resilience enhancement. A cost-effective system-
level restoration scheme is presented in [11] to improve power
grid resilience. An MG dispatch solution is proposed in [12]
for emergency electric service restoration after a disaster.
A methodology for MG management and control to maxi-
mize the duration of electricity supply in emergency situa-
tions is proposed in [13]. The feasibility of control strategies
to be adopted for the operation of an MG when it becomes
isolated is described in [14].

Microgrids (MGs) can enhance post-disaster resilience by
improving generation availability (e.g., fuel cells, microtur-
bines, wind turbines, photovoltaic panels) when the utility
power of the DS is unavailable [5]. During extreme natu-
ral disasters and aftermath, the generation resources within
the DS are limited and hard to supplement due to the
direct or indirect damage to power grid and transportation
[12]. Therefore, it is necessary to manage the generation
resources within the system appropriately to prevent a com-
plete outage. In addition, load shedding can be adopted where
the non-critical load is shed gradually for continuous power
supply to critical load [2], [13].

However, the uncertainties in renewable energy, load, sys-
tem energy storage and the power outage duration, as well as
the complex hybrid control at both load side and source side
bring many technical challenges. These uncertainties make
prediction to the future more troublesome, and how to make
decisions based on known information becomes more diffi-
cult. The complex hybrid control at both load side and source
side results in a large search space and high optimization cost,
and the strategy updating becomes more difficult.

To address these challenges, effective methods are
required. Classical optimization/convex optimization is one
of the conventional methods. It has the following special char-
acteristics: need a specific mathematical model but require
the prediction of the future. Robust optimization (RO) and
stochastic programming (SP) can deal with the uncertainty.
They often formulate a multi-stage or multi-layer optimiza-
tion problem and transform the problem into a determinis-
tic problem to solve. But the computation time and model
complexity of this kind of method will be enormous in com-
plicated and high-dimension scenarios, and the feasibility
cannot be guaranteed. Meanwhile, the solution obtained by
RO or SP is a pre-determined solution. This means that the

actual operation plan is implemented according to the pre-
determined solution, and real-time control cannot be realized.

In research [15], the state-based strategy is proposed. The
strategy is made based on observed states during the unfold-
ing events. Both RO and SP are not suitable for mapping
sequentially real-time varying states to optimal strategies.
To overcome the problem, Markov decision process (MDP)
is employed to make state-based decisions in a stochastic
environment caused by weather events. It chooses the action
according to the MDP state (or the available information at
each decision point). Although dynamic programming can
be used to solve the MDP problem, it cannot deal with the
uncertainty. It also has the weakness of the curse of dimen-
sionality . The state space is huge in the high-dimension
problem. Approximate dynamic programming (ADP) or RL
can be used to deal with the curse of dimensionality. The
policy learned by RL can realize real-time control.

Since AlphaGo was proposed in 2016 and defeated a
world champion in the game of Go [16], deep reinforcement
learning (DRL) has set off a new research boom again. With
model-free algorithm and empirical learning, DRL solves
many of the tough problems of the past, such as robot control
[17], autonomous driving [18] and many kinds of games
playing [16]. DRL is such a powerful tool in the scenarios
with large uncertainties that can handle the aforementioned
challenges effectively. After sufficient learning, well-learned
RL agent can obtain a decision policy to realize real-time
control. Some researchers also use RL to control MG [19]
and DS [20]. But the application of DRL in resilience control
is under-researched. Inspired by the successful application of
DRL in the game field, this paper uses DRL to enhance the
post-disaster resilience of DS, and this method relies only on
current information without prediction of the future.

C. CONTRIBUTIONS
In this paper, we consider in the aftermath of a natural dis-
aster, the power supply of the DS is interrupted. The outage
duration of DS depends on the repair process and the severity
of the damage caused by a disaster. Before the repair process
of DS is completed, the DS has to supply its loads with
its internal resources. In order to improve the post-disaster
resilience of the DS, a longer power supply to as many
loads as possible with limited generation resources over the
power outage duration of the DS is necessary. In this paper,
the resilience enhancing problem is converted to a decision
making problem, a hybrid control including the energy stor-
age management and load shedding policy is proposed to
make full use of limited generation resources within the sys-
tem, thus improving the resilience. The major contributions
of this paper include:

• A multi-agent DRL model based on MDP is developed
for the sequential decision making problem. A dual
optimal control policy on the source and load sides is
achieved to improve the resilience. Test results validate
the strong adaptability of the proposed method under
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various conditions such as different available generation
resources and MG power outage duration.

• A RL environment for islanded MG operation based
on OpenAI Gym is constructed and is used as the task
simulator, which provides an easy-to-use interface of RL
tasks. Limitations of the generation resources and power
flow, as well as the uncertainties within the MG, are all
considered in the environment.

The remainder of this paper is organized as follows.
Section II formulates the decision making problem for an
MG with limited generation resources. Section III develops
the MDP and RL models for the sequential decision making
problem and proposes a multi-agent DRL control algorithm.
Section IV describes the islanded MG model and constructs
an RL environment based on OpenAI Gym. In Section V,
the numerical results are presented to validate the proposed
algorithm. Conclusions are drawn in Section VI.

II. PROBLEM FORMULATION
A. GENERIC MG MODEL
An MG is a small-scale low voltage DS that comprises con-
trollable loads, several small modular generation and storage
systems, and provides electrical and heat [combined heat and
power (CHP)] supply to local loads [21]. The MG can be
generalized into four types of devices from the standpoint of
energy generation and consumption: intermittent distributed
generators (DGs), such as wind turbines and photovoltaic
modules; dispatchable DGs, such as fuel and natural gas
generators; local loads with different priorities; and electric
energy storage devices. It is worth noting that some devices
in the MG have varying operating characteristics. Due to the
influence of weather, human behaviours, and other factors,
the output power of intermittent DGs and load demand have
great uncertainties and vary significantly under different con-
ditions. Continuous operation of dispatchable DGs and stor-
age devices depends on the available generation resources,
i.e., fuel reserve (FR) of DGs and state of charge (SOC) of
battery storage devices [2].

When a disaster strikes DS and interrupts the generation
availability from the main power grid, the islandedMG forms
and has to use internal generation resources to power its loads.
After a period of time TD, which is often the power outage
duration of DS, the DS service is restored thanks to the repair
of power grid staffs. DS returns to normal conditions.

B. SEQUENTIAL DECISION MAKING PROBLEM FOR AN
ISLANDED MG
1) PROBLEM DESCRIPTION
In order to improve the resilience of the DS, a longer power
supply to as many loads as possible with limited generation
resources within time TD is necessary. Utility value of the
system power supply can be used as a measure to the post-
disaster resilience. A more adequate and reasonable utiliza-
tion of the energy after a disaster can result in a more resilient
power system. The problem of resilience improvement can be

converted to increase the cumulative utility value of the DS in
time period TD. The purpose of the islanded MG control is to
achieve a policy maximizing the cumulative MG utility value
over the time period TD with the limited generation resources.

2) PROBLEM MODELING
The islanded MG control problem over the time period TD is
modeled as a sequential decision making problem. Sequential
decisions are characterized by a decision-maker choosing
among various actions after taking an observation of the
system at different points in time, in order to control and
optimize the performance of a dynamic stochastic system
[22].

In this paper, the decision at each point in time is the
dispatchable DGs output control on the source side and load
shedding action on the load side. The objective is tomaximize
the cumulative MG utility value over the time period TD and
can be written as

max
π

∫ TD

0
Rπ (t)dt (1)

where π represents the decision policy. TD is the time period
for MG control, usually is the power outage time of DS,
it can be also selected by the MG operator. After TD the
DS is restored or the supplemental generation resources are
available. Rπ (t) is the utility value function of MG under
policy π . R(t) can be measured by the load supply income,
planned and unplanned outage loss. At time instant t it can
be calculated as

R(t) =
NL∑
k=1

(oLk )
T bLkpLk (t) (2)

with

bLk = [iLk , c
p
Lk , c

u
Lk ]

T (3)

oLk = [I(sLk = n), I(sLk = p), I(sLk = u)]T (4)

where pLk (t) denotes the active power of load Lk at t . NL
is the number of total loads. bLk reflects the supply income
and outage cost of Lk in $/kWh; iLk , c

p
Lk , c

u
Lk are the supply

income, planned and unplanned outage cost of Lk , respec-
tively. oLk reflects the operation state vector of load Lk ,
sLk represents the power supply status of Lk which includes
normal operation n, planned outage p, and unplanned outage
u. I(x) is an indicator function. If x is true, the value is 1,
otherwise it is 0.

Time period TD can be also discretized into N decision
stages, and the objective in (1) is then expressed as

max
π

N∑
n=1

Rπ (n) (5)

where Rπ (n) is the utility value of each decision point in time.
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3) CONSTRAINTS
During the normal operation of microgid, the constraints
including power flow and resources should be satisfied,

Pi(t)− jQi(t) = V ∗i (t)
∑
j∈i

YijVj(t) (6)

Vmin
i ≤ Vi(t) ≤ Vmax

i (7)

|Il(t)| ≤ Imax
l or |Sl(t)| ≤ Smax

l (8){
Pmin
g ≤ Pg(t) ≤ Pmax

g

Qmin
g ≤ Qg(t) ≤ Qmax

g
(9)

Eg(t) ≤ EMg (10)

i, j ∈ B l ∈ L g ∈ G (11)

where B, L, G are sets of buses, lines, and DGs in the
MG, respectively; Pi(t) and Qi(t) are the injected active and
reactive power of bus i at time t , respectively; Vi(t), Vmin

i
and Vmax

i are the voltage of bus i, and its lower and upper
limit; V ∗i (t) is the conjugate of Vi(t); Yij is the admittance;
Il(t) and Sl(t) are the current and apparent power of line l
at time t , Imax

l and Smax
l are their upper limits; Pg(t) and

Qg(t) are the active and reactive power of DG g at time t .
Eg(t) is the available generation resource of DG g at time t ,
and EMg is the maximum possible value of Eg. In this paper,
Eg is used to represent the fuel reserve of DGs or the SOC
of the battery devices, measured by the equivalent electric
energy in kWh. The energy conversion efficiency is taken
into consideration during the computation of Eg. In the case
of this paper, the scale of MG is relatively small. Micro gas
turbine and energy storage battery are commonly used for
power supply. The output of power supply changes sharply
to ensure that the MG can maintain stability under the rapid
change of load demand. Therefore, the ramp constraints of
DGs are ignored in this paper.

It is challenging to solve the problem of formula (1)-
(11) using traditional optimization methods. Inspired by the
successful application of RL in the game field, learning based
methods can be adopted to handle this problem. By estab-
lishing decisionmakingmodel, designing learning algorithm,
building learning environment and verifying the effective-
ness, the solution can be effectively derived. These steps will
be described in detailed in the following sections.

III. MULTI-AGENT DRL MODEL OF POST-DISASTER
CONTROL OF MG
In this section, RL model based on MDP is developed for
the sequential decision making problem. The basic informa-
tion about MDP and RL will be described in Section III-A.
Corresponding MDP and RL models are established in
Section III-B. A multi-agent DRL model developed for this
decision making problem is proposed in Section III-C.

A. MDP MODEL FOR THE SEQUENTIAL DECISION
MAKING PROBLEM
A MDP is a discrete time stochastic control process which
provides a mathematical framework for modeling deci-

sion making in situations where outcomes are partly ran-
dom and partly under the control of a decision-maker.
A MDP usually comprises: a state space S, a action
space A, an initial state distribution with density p0(s0),
a stationary transition dynamics distribution with condi-
tional density p(st+1|st , at ) satisfying the Markov property
p(st+1|s0, a0, s1, a1, · · · , st , at ) = p(st+1|st , at ), for any tra-
jectory s0, a0, · · · , sT , aT in the state-action space, where
st ∈ S, at ∈ A, and a reward function r : S ×A→ R.
In this MG sequential decision making problem, the MDP

elements can be designed as follows: the state should be
designed to include the information required to make appro-
priate decision, including power flow, system remaining
available generation resources, and the remaining power out-
age time.

s = [PL ,QL ,PG,QG,VM ,EG, tr ] (12)

where PL ,QL ,PG,QG denote the active and reactive power
of load demand and DGs, respectively. VM denotes the volt-
age magnitude of system, EG is the remaining available gen-
eration resources of DGs, tr ∈ [0,TD] is the remaining power
outage time. The action is dispatchable DGs output control
and load shedding action.

a = [PG,QG,LS ] (13)

where LS denotes the load shedding action. The reward
should be consistent with the system objective, so the utility
value of the MG Rπ (t) can be designed as a reward.

r =
NL∑
k=1

(oLk )
TbLkpLk (14)

In the MDP, if the probabilities or rewards are unknown,
the problem is one of RL [23], the transition probabili-
ties can be accessed through a simulator that is typically
restarted many times from a uniformly random initial state.
In this MDP, it is impossible to get the transition probabilities
because of the uncertainties, so RL can be used to solve this
problem.

B. RL MODEL
We study RL and control problems in which an agent interact
with an environment by sequentially choosing actions over
a sequence of time steps, in order to maximize a cumula-
tive reward. A policy in RL is used to select action in the
MDP. The agent interacts with the environment using its
policy and gives a trajectory of states, actions, and rewards
s0, a0, r0, s1, a1, r1, · · · , sT , aT , rT over S × A × R. The
returnGt is total discounted reward from time-step t onwards,

Gt = rt + γ rt+1 + · · · =
∑∞

k=0
γ krt+k (15)

where γ is the discount factor indicating how much the next
step affects the current step, 0 < γ < 1. Value function
V π (s) or action-value function Qπ (s, a) are defined to be the
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expected return,{
V π (s) = E[G0|s0 = s;π ]
Qπ (s, a) = E[G0|s0 = s, a0 = a;π ]

(16)

where the initial state s0 is s, initial action a0 is a. The agent’s
goal is to obtain a policy which maximizes the cumulative
discounted reward from the initial state. The optimal policy
is defined as: π > π ′ ⇔ V π (s) > V π

′

(s),∀s ∈ S, we have
the optimal Q∗(s, a) = maxπ Qπ (s, a).
Q-learning is a classical RL algorithm. In Q-learning,

a value called Q-value Q(s, a) is stored for each state s and
action a. Q-value function is updated by Bellman equation.

Q(s, a) = Q(s, a)+ α[r + γmax
a′
Q(s′, a′)− Q(s, a)] (17)

whereα is the learning rate, s′ is the resulting state after taking
action a in state s, a′ is an action that can be selected in state
s′. In state s, the action-choosing policy of Q-learning is to
select the action a that maximizes Q(s, a) according to ε-
greedy algorithm.

When there is a large state space, Q-learning is not quite
practical where a very big Q-table is needed to storage Q-
value for each state and action. Deep Q-network (DQN) [24],
[25] refers to a neural network function approximator with
weights θ as a Q-network to fit Q-value function. The Q-
network can be trained byminimizing the loss function Lk (θk )
that changes at each iteration k ,

Lk (θk ) = E[(yk − Q(s, a; θk ))2] (18)

where yk = Es′∼S [r + γmaxa′Qk (s′, a′; θk−1)|s, a] is the
target for iteration k . Differentiating the loss function with
respect to the weights we arrive at the following gradient:

∇θkLk (θk ) = Es,s′∈S,a∈A[(r + γmax
a′
Qk (s′, a′; θk−1)

−Q(s, a; θk ))∇θkQ(s, a; θk )] (19)

DQN solves problems with high-dimensional observation
spaces successfully. Nevertheless, the curse of dimensionality
is serious when the action space is high-dimensional or con-
tinuous. Deep Deterministic Policy Gradient (DDPG) [26]
is proposed to solve the continuous control problem which
combines actor-critic approach with DQN and Deterministic
Policy Gradient (DPG) algorithm [27]. Compared to DQN,
DDPG adds an actor network to generate a specific action
according to the current state at = µθ (st ). The actor is
updated by following applying the chain rule to the expected
return from initial state with respect to the actor parameters:

∇θµJ ≈ Est∼ρβ [∇θµQ(s, a; θ
Q)|s=st ,a=µ(st ;θµ)]

= Est∼ρβ [∇aQ(s, a; θ
Q)|s=st ,a=µ(st )

∇θµµ(s; θµ)|s=st ] (20)

where J is the expected return G0 from initial state. ρβ is
the initial state distribution. θQ and θµ are the parameters of
critic-network and actor-network, respectively. Details about
DDPG is available in [26].

C. MULTI-AGENT DRL MODEL
The islanded MG control is a discrete-continuous hybrid
action space control problem. On the source side, the DGs
output control is continuous control. On the load side, the load
shedding control is discrete control. If only one agent is used
to deal with such a discrete-continuous hybrid action space
control problem, the policy update will be extremely difficult.

P-DQN is proposed in [28] to cope with the discrete-
continuous hybrid action control problem in game King of
Glory. But its continuous action is a low-level parameter
which is associated with the high-level discrete action. Both
the discrete and continuous action must be executed simulta-
neously. In our decision making problem, the actions on load
and source sides have the same level and can be executed at
different time. That makes P-DQN not straightly usable.

We propose a double agent DRL model, which has a load
agent and a DGs agent on the load and source sides, respec-
tively. The two agents control the MG together for maximum
utility value. The design mechanism of double agent DRL
model is shown in FIGURE 1. The load agent and DGs
agent are achieved using DQN and DDPG, respectively. Two
agents interact with the environment independently, without
communication with each other. They get the same state from
the environment, execute their own actions to alter the state
of the environment and get their own rewards according to
reward shaping. However, in this mechanism, to one agent,
the other agent becomes part of the environment, so the two
agents interact with and influence each other essentially.

Two agents receive the same state st specified in
Section IV-A. They can also conduct feature selection consid-
ering the difference of their tasks. The action of load agent aLt ,
a discrete value such as aLt = 0, 1, 2, . . ., is the load shedding
action LS specified in Section IV-A, and each of the discrete
value represents shedding specific priorities of loads in the
MG. The action of DGs agent aGt is the output of controllable
DGs. The merged action at = (aGt , a

L
t ) will be executed on

the islanded MG.
Another important task is how to design the rewards of

two agents. Because of the difference in the tasks of two
agents, reward shaping should be used to redesign the reward
for better learning performance. Note that the load agent
decides how much power the system needs, and the DGs
agent decides how to provide it. Since load agent has direct
influence on the utility value of MG, it is designed as a far-
sighted agent with a large γ of 0.99whose goal is tomaximize
the utility value of MG over TD. The reward of load agent is
designed as

rLt = R(t) =
∑
Li

(oLi )
TbLipLi (t) (21)

it is exactly the MG utility value at t .
Nevertheless, on the source side, an explicit expression of

control objective is hard to obtain, although we know the
ground truth that the regulation of generation resources can
truly influence the power supply duration of MG, thus influ-
encing the resilience. A simple thought is to set the rewards

VOLUME 8, 2020 153459



H. Nie et al.: Optimizing the Post-Disaster Control of Islanded MG: A Multi-Agent DRL Approach

FIGURE 1. Design mechanism of double agent DRL model. The double agent DRL model has a load agent and a DGs agent on the load and source sides,
respectively. The load agent and DGs agent are achieved using DQN and DDPG, respectively. Two agents interact with the environment independently,
without communication with each other.

of two agents the same, but the convergence of this design is
so poor in our multiple experiments that a new reward design
is needed. Inspired by the idea of optimal power flow (OPF),
we introduce a factor fG to measure the resilience potential
of each generator. Considering that the key to improving
resilience is to use limited resources to provide more durable
power for more loads, the generator with greater and more
durable power supply potential is regarded as the one with
higher resilience potential. On the source side, improving the
resilience means minimizing "resilience potential cost", just
like minimizing the economic cost of OPF. The reward of
DGs agent and resilience potential are designed as

rGt = −
∑
Gi

fGi (t)pGi (t)− σH (pG(t)) (22)

fGi (t) = SGiEGi (t) (23)

where rGt is the reward for DGs agent. fGi is the resilience
potential factor of DG Gi, it depends on the DG capacity
SGi and remaining sources EGi (t). σ is the penalty factor,
H (pG(t)) represents the violation of constraints described in
(7)-(10). The violation is added to reward rGt as penalty. DGs
agent is designed as a short-sighted agent with a small γ
of 0.01 whose goal is to optimize the resilience potential
cost at time t . In this way, in the long run, the load shedding
strategy ensures continuous power supply for as many loads
as possible. In the short term, the generator output strategy
guarantee the optimal resilience potential cost.

Under this kind of mechanism the two agents may interact
with each other. If one agent performs not so well, the other

will be influenced. For example, the load agent is so stupid to
shed all loads all the time, and the DGs agent can not work
at all under this case. Our solution is training the two agents
alternately until the two agents can work together well. When
one agent is learning, the other stays fixed, and exchanges
training with the other. Considering that the effect of the load
agent on the utility value of the system is more direct, we will
train the load agent for first. The full algorithm of this double-
agent DRL is shown as Algorithm 1. Initialize DGs agent and
Load agent with DDPG and DQN, respectively. The training
scenarios are generated by sampling the prior probability
distributions described in Appendix. At each decision point
of an episode, choose action use ε-greedy method. After
conducting the action, storage the experience in replay buffer.
Train the two agents iteratively, and update the neural net-
work based on the gradient information. The policy obtained
after training is evaluated in the test scenario. In our design
mechanism, the two agents have no communication with
each other. How to introduce an appropriate communication
mechanism to improve control performance is left as future
work.

IV. RL ENVIRONMENT OF ISLANDED MG
There are mainly two objects in RL: environment and agent.
The environment is an object the agent interacts with and
tries to learn about. Sometimes there are so many uncer-
tainties in the environment that what the agent can do is
interacting with the environment constantly to acquire expe-
riences to improve itself. Furthermore, the environment also
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Algorithm 1 Double-Agent Deep Reinforcement Learning Using DQN and DDPG
For DGs Agent:
Randomly initialize critic network QG(s, aG; θQG ) and actor µ(s; θµ) with weights θQG and θµ

Initialize target network QG′ and µ′ with weights θQG ′← θQG and θµ′← θµ

Initialize replay bufferRG
For Load Agent:
Randomly initialize critic network QL(s, aL; θQL ) with weights θQL
Initialize target network QL ′ with weights θQL ′← θQL

Initialize replay bufferRL
Initialize 1� NTI � M for training iteration
for episode = 1,M do
flag = int(episode/NTI )%2
Initialize a random process N for action exploration
Receive initial state s
for t = 1,TD do

With probability ε select a random action at
With probability 1− ε select action at = [aGt , a

L
t ]

Load action aLt = max
aL

QL(st , aL; θQL )

DGs action aGt = µ(st ; θ
µ)+Nt according to current policy and exploration noise

Execute action at and observe rt ,st+1
Storage transition (st , aLt , r

L
t , st+1) inRL and (st , aGt , r

G
t , st+1) inRG

if flag == 0 then
Sample a random minibatch of N transitions (st , aLt , r

L
t , st+1) fromRL

Set yLi = rLi + γ
L max

aL ′
QL ′(si+1, aL

′
; θQL

′

)

Perform a gradient descent step on L =
∑

i (y
L
i − QL(si, a

L
i ; θ

QL ))2/N
Update the target networks : θQL

′

← τθQL + (1− τ )θQL
′

end if
if flag == 1 then
Sample a random minibatch of N transitions (st , aGt , r

G
t , st+1) fromRG

Set yGi = rGi + γ
GQG′(si+1, µ′(si+1; θµ

′

); θQG
′

)
Update critic by minimizing the loss: L =

∑
i (y

G
i − QG(si, a

G
i ; θ

QG ))
2
/N

Update the actor policy using the sampled policy gradient:
∇θµJ ≈

∑
i ∇aGQG(s, a

G
; θQG )|s=si,aG=µ(si)∇θµµ(s; θ

µ)|s=si/N
Update the target networks: θQG

′

← τθQG + (1− τ )θQG
′

θµ
′

← τθµ + (1− τ )θµ
′

.
end if

end for
end for

provides agents with a platform to train and test. In this paper,
the environment and agent are exactly MG and MG operator,
respectively.

In this section, we will introduce how to establish an RL
environment. This environment is exactly a game of islanded
MG control, in which the agent need to learn to control the
grid to keep it stable for a period of time, and the quality of the
operation is reflected in the game score. Firstly, the uncertain-
ties from the components, such as DGs, loads, wind turbines
and batteries, within the MG will be described. Then an RL
environment for islanded MG operation based on OpenAI
Gym [29] and OpenDSS [30] is constructed, which has a gen-
eral interface compatible with OpenAI Gym. The mechanism
for how uncertainty is reflected in the environment will be
introduced.

A. UNCERTAINTIES WITHIN THE MG
In the real world, for an agent, the environment is unknown
and full of uncertainty. The task of agent is to learn to
understand the environment. The uncertainties within theMG
are mainly from renewable energy, load demand [31], system
energy storage [2] and the power outage duration [3] of DS.

Renewable energy in MG mainly includes wind turbines
and solar panels. Their power outputs are intermittent and
uncertain because of the weather situation and other fac-
tors. We often use beta distribution to describe their outputs
uncertainties [31]–[33]. Meanwhile, the uncertainties of load
demands can be described using normal distribution [31].
The system energy storage and the power outage duration
TD are usually different under different circumstances. For
example, when the DS is out of power, different resource
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FIGURE 2. Design mechanism of environment. The environment is an object the agent interacts with and tries to learn about. An RL environment for
islanded MG operation based on OpenAI Gym and OpenDSS is constructed. The uncertainties from the components, such as DGs, loads, wind turbines
and batteries, within the MG are considered.

allocation schemes may cause the system energy storage to
vary greatly. Moreover, many factors involving power system
characteristics, geographic characteristics, climatic variables
and repair process will influence the power outage duration
TD. Both system energy storage and power outage duration
TD are important for the decision-maker to control the MG.
In this paper, in order to simulate the senses with different
system energy storage and power outage duration, we use
uniform distribution to describe the uncertainties of them.
The detailed uncertainty model of these elements are shown
in Appendices.

B. ISLANDED MG RL ENVIRONMENT BASED ON OpenAI
AND OpenDSS
In order to construct a platform to train and test the DRL algo-
rithms, an islanded MG control platforms based on OpenAI
and OpenDSS is constructed. It is available to researchers in
related fields. OpenAI Gym is a toolkit for developing and
comparing the performances of RL algorithms, and defines
the interface standard between agent and environment. Non-
linear power flow equations are used for power flow anal-
ysis and OpenDSS are used as power flow simulation tool.
OpenDSS is a comprehensive electrical power system simu-
lation tool primarily for electric utility power DS. OpenDSS
serves as the DS power flow simulation tool in this environ-
ment design. A large amount of simulation data, which is used
for training of RL, is readily obtained by performing power
flow simulation based on OpenDSS.

In RL, the agent obtains observation or state information
from the environment, then takes action to execute on the
environment and gets reward to improve its policy. When
we build an RL environment, the design of state, action, and
reward should be considered. In this MG control problem,

the state, action and reward are designed as (12), (13) and
(14), respectively.

The design mechanism of this MG control RL environ-
ment is shown in FIGURE 2. The interaction between agent
and environment and the flow of environment design in one
episode is described. In each episode, the agent completes a
full game playing until the simulation time arrives the power
outage duration TD, which means the game of MG control
terminates. Then, a new game restarts and the agent learns
during a large number of games playing.

In one episode, the flow of environment design is as fol-
lows:

(1) Start. A new episode starts.
(2) Parameters initialization. Initialize the MG case, and

the related parameters including the power outage dura-
tion TD and available generation resources which can
be obtained by sampling their probability distribution
models described in Section III-A. In different episodes,
TD and available generation resources at t = 0 may be
different. In the begining of each episode, the probability
model of power outage duration TD and available genera-
tion resources are sampled to generate the specific TD and
available generation resources, just like the blue boxes
and arrows in the left part of FIGURE 2.

(3) State resets. Environment gives the reset state to the
agent. This is the initial state where the agent begins to
control the MG.

(4) Receive and execute action. Environment receives action
from the agent. The action is executed on the environ-
ment, and OpenDSS is used as a simulation tool to cal-
culate the power flow.
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TABLE 1. Device Information of the MG.

(5) Calculate reward. The MG utility value in this time step
is calculated. In this environment, we divide one day into
96 time steps, i.e. 15 minutes per time step.

(6) Environment changes. As Section III-A describes,
the output of wind turbines and load demands have strong
uncertainties, their real values in each time step can be
obtained by sampling their probability distribution mod-
els, just like the green boxes and arrows in the left part
of FIGURE 2. The outputs of wind turbines and load
demands will be set according the sampling results.

(7) State update. After executing the action, state of the
environment transfers to the next state, and the next state
can be obtained after simulation.

(8) Determine if the game is over. The information involving
next state, reward, if the game is over, and attached
information are given to the agent. If the game is over,
this episode terminates. Otherwise, go to next time step
and repeat procedure (4)-(8) until the game ends.

The purple boxes attached to the flow in FIGURE 2 are cor-
responding PYTHON functions. They describe how to imple-
ment the corresponding functions. The interface between
agent and environment is designed according to the standard
of OpenAI Gym.

V. SIMULATION RESULTS
In this section, we validate our methods through several case
studies. OpenDSS is used as power flow simulation tools.
Python 3.6.5 is used to realize the RL agent. The calculation
is realized on a desktop PC with a 2.60GHz CPU(Intel(R)
Xeon(R) E5-2670 0) and 64GB RAM.

A. CASE INFORMATION
The MG used to validate the proposed method is shown
in FIGURE 3, which includes 7 buses (B1, B2, . . . , B7,
excepts the point of common coupling PCC), 1 transformer
Tr, 2 battery storage systems BT1 and BT2, 1 diesel generator
DG1, 2 wind turbines WT1 and WT2, and 4 loads L1, L2,
L3 and L4 with various priorities. The specific parameters of
the MG are shown in Table 1.
The energy source in this case includes 2 battery storage

systems, 1 diesel generator and 2 wind turbines. BT1, with
a capacity of 500kVA and rated power of 400kW, is served
as the master source in the MG and used to balance system
power flow. Thus, bus B2 is the slack bus . Both BT2 andDG1
have a rated generation power of 50kW. They are considered

FIGURE 3. Topology of the microgid.

TABLE 2. Supply Income and Outage Loss for Load of Different Load
Subsets.

TABLE 3. Load Shedding Action.

as adjustable DGs. The wind turbines are considered to be
non-adjustable and recognized as negative loads. The loads
are classified into 3 subsets according to their priorities:
primary load L1, secondary loads L2 and L3, and tertiary load
L4. Their supply income, planned and unplanned outage loss
are defined in Table 2. Correspondingly, load shedding action
LS can be defined as shedding loads with different priorities
and is shown in Table 3. Load shedding strategy is be used
to shed less critical loads gradually to ensure the continuous
power supply to the more critical loads. As the load shedding
action LS changes from 0 to 3, more critical loads will be
shed.

B. BASE CASE STUDY
The outage duration of DS is up to the repair process and
the severity of the damage caused by the disaster. The power
outage duration of blackout in the United States and Canada
on August 14th of 2003 [34] reached 29 hours. The India’s
Blackout [35] in 2012 lasted for nearly 2 days. In order to
simulate the operation of DS in extreme situations, the outage
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FIGURE 4. The utility values with different policies.

duration of DS is chosen up to 30-40 hours in this paper.
Assume that the MG is disconnected from a DS with full
generation resources available, and the time period TD is set
equal to 35 hours, the initial available generation resources
are assumed to be 100%. Each train and test scenario is
generated according to the probability distribution models
described in Section IV-A. Therefore, the agent encounters
a brand new scenario during the test.

In order to demonstrate the effectiveness of the proposed
method, we use several strategies for comparison. On the
load side, constant load shedding strategies that use actions
LS = 0, LS = 1, and LS = 2, respectively are proposed.
They are denoted as Strategy 0, Strategy 1 and Strategy 2,
respectively. The control policy with only load agent and
double agents are denoted as Strategy 3 and Strategy 4. On the
source side, manual adjustment (MA) method is proposed
for comparison, the controllable DGs are used in the order
of resilience potential factor described in (23) from low to
high in each regulation. That means we will use the DGs with
low resilience potential factor for first. All the DGs output
are controlled except Strategy 4 using manual adjustment
method. The test results are shown in FIGURE 4, FIGURE 5,
FIGURE 6, and FIGURE 7.

FIGURE 4 shows the MG utility values with different
control policies. The MG utility values under all strategies
first increase with time TD in about the first 10 hours. The
MG remains normal operation during this period. As TD
further increases, however, the MG utility values under Strat-
egy 0 and Strategy 1 begin to decrease, while MG utility
values under others keep increasing. This is because under
Strategy 0 and Strategy 1 the heavy load causes the system
master battery to run out, as shown in FIGURE 6. While
under Strategy 2 the system only remains primary load supply
(LS = 2), and under Strategies 3 and 4 the system sheds
load of lower priority gradually as shown in FIGURE 5. Also,
FIGURE 5 shows the status of loads. In the initial period of
time, LS = 0 and no load is shed. Then, load L4 is shed when
LS = 1. Gradually, more loads are shed with the consumption

FIGURE 5. The load shedding action.

FIGURE 6. The master battery remaining resources.

of system resources; all the loads are shed when LS = 3.
Strategy 2 is the most conservative strategy as it only supplies
the primary load, its utility value may exceed that of Strategy
4 if time TD continues to increase. It can also be seen from
FIGURE 7 that the remaining resources of the system under
Strategy 2 is the maximum. However, at the time instant of
TD = 35 h, Strategy 4 maximizes the MG utility value.

The difference between Strategy 3 and Strategy 4 is the
DGs control policy, which causes the difference in the load
shedding action. As shown in FIGURE 8, the difference of
two policies is the output of DG1. Under manual adjustment
the output of DG1 is more conservative. The DGs control
policy under RL is bolder, which not only meets the load
demand but even charges the master battery at some time
instant as shown in FIGURE 6. This manner ensures that
the master battery has sufficient resources. For this reason,
Strategy 4 will not shed all loads in later stages as shown in
FIGURE 5.

FIGURE 9 shows the outputs of 3 adjustable devices and
the loads demand (include the negative loads: wind turbines)
in one test scenario under the double RL agent strategy.
With the consumption of system resources, more loads are
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FIGURE 7. The remaining resources with different policies.

FIGURE 8. DGs output of RL and Manual Adjustment.

FIGURE 9. Outputs of adjustable devices and Loads demand under
strategy 4.

gradually shed. As seen from FIGURE 9, the loads demand
becomes relatively smaller as time increases. The overall
power supply is slightly larger than loads demand because
of the power losses in the transmission lines. BT1 serves as
the master source and is used to balance system power flow.

FIGURE 10. The utility values with 5 strategies under different scenarios.

It discharges when there is heavy load and charges whenmost
loads are shed to adsorb the outputs of wind turbines.

Sample the probability distributions described in the
appendix and randomly generate 10 test scenarios. Assume
that the MG is disconnected from a DS with full generation
resources available, and the power outage duration is also
set equal to 35 hours. The utility values with 5 strategies
under different scenarios are shown in FIGURE 10. Among
these 10 test scenarios, the utility value of Strategy 4 (double
agents) remains highest . The utility values of Strategy 3 (only
load agent) are closed to those of Strategy 4 in certain scenar-
ios but remains second highest in most scenarios. The utility
values of all strategies fluctuate in different scenarios because
of the uncertainty of loads and wind turbine. The results in
different test scenarios demonstrate that the proposed method
can cope with the uncertainty well in the system.

C. CASE STUDY UNDER VARIOUS CONDITIONS
For a givenMG, the initial available generation resources and
the power outage duration TD for MG control will influence
the control policy. In this section, the proposed method is
tested under variations of these factors. The results demon-
strate that the proposed method is able to adapt to various
conditions to make full use of the limited resources and
maximize the utility value of the MG.

1) INITIAL AVAILABLE GENERATION RESOURCES
When the MG is disconnected from the DS, the initial avail-
able generation resources are assumed to be 80%, 85%, 90%,
95%, and 100%, respectively. The duration TD for MG con-
trol remains constant.

The MG utility values with double agents under vari-
ous initial available generation resources are shown in FIG-
URE. 11, and the load shedding actions are shown in FIG-
URE. 12. In FIGURE. 12, we can see that with the decrease
of initial available generation resources, the time for the agent
to shed load of the same level is advanced, the ‘‘bigger’’ load
shedding action occupies more proportion.
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FIGURE 11. The utility values under various initial storage.

FIGURE 12. Load shedding action with RL.

TABLE 4. Utility Value of Different Strategies With Different Initial
Resources ($, at TD = 35 h).

Table 4 shows the utility value of different strategies at
TD = 35 h, and the utility value of double RL agents control
policy remains the largest during EG(0) varies. It demon-
strates the capability of the proposed method to adapt to
various generation resource conditions.

2) POWER OUTAGE DURATION TD FOR MG CONTROL
In this case, the power outage duration TD for MG control is
changed from 30 h to 40 h with an interval of 2 h, while the
initial available generation resources remain constant.

The MG utility values of different strategies with different
TD are shown in Table 5. Table 5 shows the MG utility value
of double agents (Strategy 4) is the largest in every TD. Table 6
shows the proportion of each load shedding action in each TD,

TABLE 5. Utility Value of Different Strategies With Different TD ($,
EG(0) = 100%).

TABLE 6. Load Shedding Action Frequency of RL With Different TD (%,
EG(0) = 100%).

FIGURE 13. Loads demand simulation(per unit value).

more loads are shed with TD increases. It indicates that more
generation resources are used for the power supply of high
priority load.

The agent can automatically adjust the load shedding strat-
egy according to the length of control period. The results
indicate that the capability of the proposed method to adapt
to various control time period.

D. PERFORMANCE EVALUATION
RL is a kind of method which make decision based on the
information of current state. It follows the Markov property.
It does not require the future information and takes action
according to the current state. However, many of the previous
state-of-art methods, such as classic optimization methods,
robust optimization, dynamic programming, etc., require the
prediction for the future to make decision. Moreover, in the
high dimension problem, the computational costs are huge.

Although there is no prediction for the future, RL can
learn the trends of the future through the training process on
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FIGURE 14. Wind turbine outputs simulation(per unit value).

historical data, thusmaking the decision. In this paper, several
constant load shedding strategies are proposed as compar-
isons. Among these strategies, the performance of double
agent RL is the best. The training process takes about 10 hours
on a desktop PC with a 2.60GHz CPU(Intel(R) Xeon(R)
E5-2670 0) and 64GB RAM to achieve the aforementioned
training effect. After training, in one test scenario, the well-
learned RL agent can derive the solution within one second.
The training speed of can be further improved by using GPU
and parallel simulation techniques.

Theoretically, those kinds of method which utilize the
future information can achieve better performance than
RL. That is because they get more information. There-
fore, in this paper we do not take this kind of methods as
comparison. In [36], the RL method can achieve an effect
close to the optimization benchmark with perfect forecast.
In [19], the proposed cooperative RL algorithm can do bet-
ter than scenario-based algorithm. In our latest research, a
well-learned reinforcement learning agent without the pre-
diction for the future can achieve a performance close to
the state-of-the-art dynamic programming which has perfect
prediction, but with less computation time. The calculation
time of the dynamic programming is about 2 minutes, while
the RL can yield close results within one second. The author
believes that how to utilize the information of future in RL is
also a problem worthy of study.

VI. CONCLUSION
In this paper, a resilience enhancing problem is converted
to a decision making problem. A multi-agent DRL model is
proposed to control an islanded MG with limited generation
resources. An RL environment for islanded MG operation
based on OpenAI Gym is constructed, which has a general
interface compatible with and can be published to OpenAI
Gym. The proposed RL policy is applied to an MGwith wind
turbines, diesel generators and storage devices. It realizes a
dual control: the energy storage management on source side

and load shedding policies on the load side. The policy maxi-
mizes the utility value of theMG in a limited time period, thus
improving the resilience. Test results demonstrate its effec-
tiveness under various conditions such as different available
generation resources and MG control time periods.

Our future work will use a larger scale case to validate the
proposed method’s ability to scale up, consider using par-
allel simulation to accelerate the agent training process and
try to introduce an appropriate communication mechanism
between agents to improve control performance.

APPENDICES
The uncertainties of renewable energy can be described as
beta function,

f (x) = xα−1(1− x)β−1 (24)

p =
α

α + β
(25)

σ 2
=

αβ

(α + β)2(α + β + 1)
(26)

where α, β are shape parameters of beta function. Beta func-
tion models the occurrence of real power values x when a
certain prediction value p has been forecasted. α, β can be
calculated as follows,

α =
p2(1− p)
σ 2 − p (27)

β =
p(1− p)2

σ 2 − (1− p) (28)

where p is the normalized predicted power output, σ 2 is the
variance of the beta distribution.

Generally speaking, there is a positive correlation between
forecast error and predicted power output, a linear fit for
the standard deviation as a function of the predicted power
proposed in [33] is as follows:

σW = 0.249p+ 0.035 (29)

With the predicted DG outputs and the three formulas
above, the parameters of beta functions for the current pre-
diction data can be calculated. Meanwhile, the uncertainties
of load demands can be described using normal distribution
[31]:

f (x) =
1

√
2πσ

exp

(
−
(x − p)2

2σ 2

)
(30)

and a linear fit for the standard deviation σL of load as a
function of the predicted power p can be

σL = 0.1p (31)

The fluctuation of profiles of loads demand and wind tur-
bine outputs are shown in FIGURE 14 and FIGURE 13 (per
unit value). 1000 profiles of loads demand and the output of
wind turbine are shown, and the dashed lines are the average
value.
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