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ABSTRACT Pythagorean fuzzy set, characterized by membership function and non-membership function,
has received increasing attention in recent years. In this paper, a new approach to decision making is
proposed based on Pythagorean fuzzy preference relation and its additive consistency. Firstly, the concepts
of Pythagorean fuzzy preference relations and its additive consistency are introduced, and followed by a
discussion of their desirable properties. Then, a linear goal programming model is proposed to determine the
consistency of PFPRs. For the PFPRs that does not satisfy the consistency, the consistency index is defined
to measure the degree of consistency, and a consistency adjustment algorithm is proposed. Finally, based on
the additive consistency, a new algorithm for decision making is presented. An example of CIM(Computing
In Memory) is provided, and in comparison with other methods, the validity and rationality of the proposed
method are verified.

INDEX TERMS Pythagorean fuzzy preference relations, additive consistency, consistency adjustment,
decision making, computing in memory.

I. INTRODUCTION
In multiple criteria decision making (MCDM) process,
a decision maker (DM) need to make a pairwise comparison
of alternatives or criteria, so as to propose his/her preference
in a set of n alternatives or criteria, and establish a preference
relation to reflect the DM’s judgment. Analytic hierarchy
process (AHP) [1] is one of the most commonly used and
most powerful methods for solving MCDM. It chooses the
optimal solution from multiple alternatives according to the
preferences provided by decision makers. The AHP provides
a convenient framework for the derivation of multiplicative
preference relations based on pairwise comparisons. In recent
years, with the introduction of fuzzy logic and fuzzy methods
into AHP, fuzzy preference relations have received more and
more attention [2]–[4].

Due to the complexity of objective things and the uncer-
tainty of actual problems, it is often difficult for DM to
express his/her judgments with precise numerical values.
In order to express this ambiguity and uncertainty, different
uncertain preference relations are proposed. such as interval
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fuzzy preference relations [5]–[7], interval multiplicative
preference relations [8], reciprocal fuzzy preference rela-
tions [9], and triangular fuzzy preference relations [10],
trapezoidal fuzzy preference relations [54]–[57], hesitant
fuzzy linguistic preference relation [61]. Saaty [8] introduce
interval multiplicative preference relations and propose a
Monte Carlo simulation method to generate priority weights
from the interval multiplicative preference relations. Many
methods have been proposed to derive priority weights from
interval multiplicative preference relations, such as goal
programming models [11], [12] and convex combination
method [13]. Xu and Chen [14] give additive and multi-
plicative transitivity conditions for interval fuzzy preference
relations based on normalized crisp weights and present some
linear programming models for deriving priority weights.
hou [60] propose an optimal group continuous logarithm
compatibility measure for interval multiplicative preference
relations based on the COWGA operator. By using interval
arithmetic, Wang and Li [15] introduce new definitions of
additive consistent, multiplicative consistent andweakly tran-
sitive interval fuzzy preference relations. Xu [16] made a sur-
vey on different kinds of preference relations and discussed
their properties.
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As an extension of the fuzzy set [17], Atanassov [18], [19]
introduced the concept of intuitionistic fuzzy sets (IFSs),
the sum of its membership degree and non-membership
degree is less than or equal to 1. Up to now, IFSs have been
widely applied in real-life MCDM problems, the studies of
methods of MCDM problems with IFSs have received exten-
sive attentions [20]–[24], and the applications of MCDM
problems based on IFSs have attracted widespread attention
of researchers. Szmidt [25] generalize fuzzy preference rela-
tions to intuitionistic fuzzy preference relations and discuss
how to reach consensus with intuitionistic fuzzy preference
relations in group decision making. Xu and Yager [26] intro-
duce a new similarity measure between IFSs and apply it to
consensus analysis in group decision making with intuitionis-
tic fuzzy preference relations. Xu [27] defines multiplicative
consistent intuitionistic fuzzy preference relations based on
intuitionistic fuzzy number operations, and develops a new
group decision making method by using intuitionistic fuzzy
aggregation operators. Xu et al. [28] by directly employ-
ing the membership and non-membership degrees in intu-
itionistic fuzzy judgments, they propose a new definition of
multiplicative consistent intuitionistic fuzzy preference rela-
tions and develop two algorithms to estimate missing values
for incomplete intuitionistic preference relations. Xu [29]
presents an error-analysis-based approach to determine pri-
ority interval weights for both consistent and inconsistent
intuitionistic fuzzy preference relations. Gong et al. [30] give
another multiplicative consistency definition for intuitionistic
fuzzy preference relations based on the corresponding mem-
bership degree interval fuzzy relations with multiplicative
consistency and propose goal programming approaches to
obtain priority weights. Gong et al. [31] further define addi-
tive consistent intuitionistic fuzzy preference relations and
establish some optimization models to obtain intuitionistic
fuzzy weights from intuitionistic fuzzy preference relations.

In recent years, Pythagorean fuzzy sets (PFSs) proposed
by Yager [32], [33] is an useful extension of the concept
of Atanassov’s intuitionistic fuzzy sets (IFSs) [18]. PFSs
have more powerful abilities than IFSs do in modeling the
uncertainty of practical decision making problems, because
it satisfies the condition that the square sum of its mem-
bership degree and non-membership degree is equal to or
less than 1. Yager [33] gave an example to illustrate this
situation: the membership degree and the non-membership
degree of one alternative in a criterion are

√
3
2 and 1

2 , it is

easily seen that
√
3
2 +

1
2 ≥ 1, thus this situation cannot be

described by using the IFSs, but (
√
3
2 )2+( 12 )

2
≤ 1 holds.

Obviously, PFSs have more capability than IFSs do in mod-
eling the vagueness of practical multiple attribute decision
making (MADM) problems. Yager [32], [33] proposed a
series of aggregation operators: Pythagorean fuzzy weighted
average (PFWA) operator, Pythagorean fuzzy weighted
geometric average (PFWG) operator, Pythagorean fuzzy
weighted power average (PFWPA) operator, Pythagorean
fuzzy weighted power geometric (PFWPG) operator, and

applied them to MADM problems. Peng and Yang [34]
discussed their relationships, and also proposed a method
called superiority and inferiority ranking (SIR) multiple
attribute group decision making (MAGDM). At the same
time, inspired by soft set theory [35] and linguistic set the-
ory [36], they proposed Pythagorean fuzzy soft sets [37]
and Pythagorean fuzzy linguistic sets [38], respectively.
Yager and Abbasov [32] studied the relationship between the
Pythagorean fuzzy numbers (PFNs) and the complex num-
bers and concluded that Pythagorean degrees are a subclass of
complex numbers. Wang and Li [39] presented Pythagorean
fuzzy interaction power Bonferroni mean aggregation oper-
ators in multiple attribute decision making. Xu [40]
defined the algorithms to detect and rectify multiplicative
and ordinal inconsistencies of fuzzy preference relations.
Zhang and Xu [42] presented a technique for finding the best
alternative based on its ideal solution under the Pythagorean
fuzzy environment. Xu [41] propose the algorithms to iden-
tify and rectify ordinal inconsistencies for incomplete fuzzy
linguistic preference relations. Chen [43] defined an extended
ELECTRE approach in Pythagorean fuzzy sets. Later on,
Garg [44] presented a novel accuracy function for interval-
valued PFSs and apply it to solve the decision-making prob-
lem. A correlation coefficient between the two PFSs has
been proposed by Garg [45] by showing the advantages as
compared to the existing correlation coefficients under IFSs
environment.

This paper focuses on PFPRs and its additive consis-
tency, and a linear goal programming model is developed to
determine whether the PFPR has additive consistency. For
PFPRs that do not meet the consistency, a consistency index
is defined to measure its consistency degree, and an algo-
rithm for consistency adjustment is presented to adjust the
PFPR until its consistency reaches an acceptable range. The
remainder of this paper is organized as follows. In Section 2,
we will briefly review some basic concepts and operations,
including IFSs, IFPRs, PFSs, and so on. In section 3, a linear
goal programming model is defined to determine the additive
consistency of PFPRs, for the PFPRs that does not meet the
consistency, a consistency adjustment algorithm is proposed.
In section 4, we develop an approach to decision making
based on Pythagorean fuzzy preference relation (PFPR) and
its additive consistency. And in Section 5, we will provide
two practical examples to illustrate the developed approaches
respectively. Section 6 ends this paper with some concluding
remarks.

II. PRELIMINARIES
A. FPRS AND IFPRS
In this section, we briefly review some basic concepts, includ-
ing fuzzy preference relation (FPR) and its additive consis-
tency, intuitionistic fuzzy preference relation (IFPR) and its
additive consistency and Pythagorean fuzzy set (PFS).

For a decision-making problem, let X = {x1, x2, . . . , xn}
be a finite set of alternatives, where xi(i = 1, 2, . . . , n)
denote the ith alternatives. In the decision-making process,
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a DM need to provide his/her preferences for each pair of
alternatives, and then construct a preference relation matrix,
which can be defined as follows.
Definition 2.1 [5]: A preference relation P on set X is

characterized by a function µP : X × X → D, where D is
the domain of representation of preference degrees. These
preference relations can be mainly classed into three cate-
gories: multiplicative preference relations, fuzzy preference
relations, linguistic preference relations.
Definition 2.2 [46]: A fuzzy preference relation R

on set X is represented by a complementary matrix
R = (rij)n×n ⊂ X × X with

rij ≥ 0, rij + rji = 1, rii = 0.5

for all i, j = 1, 2, . . . , n. (1)

where rij denotes the degree that the alternatives xi is pre-
ferred to xj. In particular, rij = 0.5 indicates that there is no
difference between alternative xi and xj; rij > 0.5 indicates
that the alternative xi is preferred to xj, especially, rij = 1
means that the alternative xi is absolutely preferred to xj; and
rij < 0.5 indicates that the alternative xj is preferred to xi,
especially, rij = 0 means that the alternative xj is absolutely
preferred to xi.
Definition 2.3 [47]: A fuzzy preference relation

R = (rij)n×n is called an additive consistency FPR, if it
satisfies the following condition:

rik = rij + rjk − 0.5,

for all i, j, k = 1, 2, · · · , n. (2)

Since rij = 1 − rji for all i, j, k = 1, 2, · · · , n, it follows
from (2) that 1−rji = (1−rki)+(1−rkj)+0.5. Then, we have
rki = rkj + rji − 0.5, add it to (2), we can get

rij + rjk + rki = rkj + rji + rik ,

for all i, j, k = 1, 2, · · · , n. (3)

For a fuzzy preference relation R = (rij)n×n, if there exists
a normalized crisp weight vector ω=(ω1, ω2, . . . , ωn)T such
that

rij = 0.5(ωi − ωj)+ 0.5,

for all i, j, k = 1, 2, · · · , n. (4)

where
n∑
i=1
ωi = 1 and ωi ≥ 0 for i = 1, 2, · · · , n, then R is

additive consistent [22], [23], [48].
Due to the complexity, ambiguity and uncertainty of

decision-making problems, it is difficult to be convinced to
express the DM’s preference information with exact num-
bers. For this case, Atanassov [7] proposed intuitionistic
fuzzy sets (IFSs) composed of membership function and non-
membership function.
Definition 2.4. [18], [19]: Let a set X be fixed. An IFS A

in X is shown as follows:

A = {< x, µA(x), vA(x) > |x ∈ X}.

Which is characterized by a membership function
µA : A → [0, 1] and a non-membership function
vA : A→ [0, 1] with the condition:

0 ≤ µA(x)+ vA(x) ≤ 1 for all x ∈ X .

where µA(x) and vA(x) represent the membership degree and
the non-membership degree of the element x ∈ X to the set A,
respectively. For each IFS A on X , πA(x) = 1−µA(x)−vA(x)
is called the indeterminacy degree of the membership of the
element x ∈ X to the set A.
According to the concept of IFS, the concept of IFPR is

defined as follows.
Definition 2.5 [27]: An intuitionistic fuzzy preference

relation (IFPR) B on set X is represented by a matrix
B = (bij)n×n ⊂ X × X with bij =< (xi, xj), µ(xi, xj),
v(xi, xj) >, for all i, j = 1, 2, . . . , n. For convenience, for
all i, j = 1, 2, . . . , n, let bij = (µij, vij), where bij is an
intuitionistic fuzzy number composed by the certainty degree
µij to which xi is preferred to xj and the certain degree vij to
which xi is non-preferred to xj, and πij = 1 − µij − vij is
interpreted as the uncertainty degree to which xi is preferred
to xj.

Furthermore, for all i, j = 1, 2, . . . , n, µij and vij satisfy
the following characteristics:

µij, vij ∈ [0, 1], 0 ≤ µij + vij ≤ 1,

µji = vij, µii = vii = 0.5. (5)

Consistency is a very important issue for all kinds of pref-
erence relations, and the lack of consistency in a preference
relation may result in unreasonable conclusions. For IFPR,
several different consistency have been proposed, of which
there are two main types: the additive consistency and the
multiplicative consistency. Xu [49], Gong et al. [31], and
Wang [48] proposed some different definitions of additive
consistent IFPR, respectively.
Definition 2.6 [50]: Let B = (bij)n×n be an IFPR with

bij = (µij, vij), (i, j = 1, 2, · · · , n), if there exists a vector
ω=(ω1, ω2, . . . , ωn)T such that

µij ≤ 0.5(ωi − ωj + 1) ≤ 1− vij, for all

i, j = 1, 2, . . . , n. (6)

where ωi ∈ [0, 1](i = 1, 2, · · · , n) that
∑n

i=1 ωi = 1. Thus,
B is called an additive consistent IFPR.
Definition 2.7 [48]:An intuitionistic fuzzy preference rela-

tion B = (bij)n×n with bij = (µij, vij) is called additive
consistent, if it satisfies the following transitivity:

µij + µjk + µki = µkj + µji + µik ,

for all i, j, k = 1, 2, · · · , n. (7)

where µij = vji for all i, j = 1, 2, . . . , n, it follows from (2.7)
that

vij + vjk + vki = vkj + vji + vik ,

for all i, j, k = 1, 2, · · · , n. (8)
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B. PYTHAGOREAN FUZZY SETS(PFSS) AND ITS BASIC
OPERATIONS
Definition 2.8. [51]: Let S be a fixed set, A Pythagorean
fuzzy set (PFS) P on S can be represented as the following
mathematical symbol:

P =
{
< s,P(µp(s), vp(s)) > |s ∈ S

}
.

where µp(s) : S → [0, 1] and vp(s) : S → [0, 1] are
the membership degree and non-membership degree of s to
P, respectively. For each s ∈ S, it satisfies the condition:
0 ≤ (µp(s))2 + (vp(s))2 ≤ 1. The degree of indeterminacy

of s to P is πP(s) =
√
1− (µp(s))2 − (vp(s))2. For simplicity,

Zhang and Xu [31] called P(µp(s), vp(s)) as a Pythagorean
fuzzy number (PFN), denoted by β = P(µβ , vβ ),

where µβ , vβ ∈ [0, 1], πβ =
√
1− (µβ )2 − (vβ )2 and

(µβ )2 + (vβ )2 ≤ 1.
Definition 2.9. [42]: For any PFN pi = (µi, vi)(i =

1, 2, . . . , n), the score function of pi is defined as follows:
s(pi) = (µi)2 − (vi)2. (9)

where s(pi) ∈ [−1, 1].
Definition 2.10. [34]: For any PFN pi = (µi, vi)

(i = 1, 2, . . . , n), the accuracy function of pi is defined as
follows:

a(pi) = (µi)2 + (vi)2. (10)

where a(pi) ∈ [0, 1].
By use the score function and accuracy function, we can

compare the size of two different PFNs, and for any two PFNs
p1, p2,
(1) if s(p1) > s(p2), then p1 � p2;
(2) if s(p1) < s(p2), then p1 ≺ p2;
(3) if s(p1) = s(p2), then,

1) if a(p1) > a(p2), then p1 � p2;
2) if a(p1) < a(p2), then p1 ≺ p2;
3) if a(p1) = a(p2), then p1 ∼ p2.

Definition 2.11. [52]: Let Pj = (µj, vj)(j = 1, 2) be two
PFNs, then the distance between P1 and P2 can be defined as
follows:

d(P1,P2) =
1
2
(|µ2

1 − µ
2
2| + |v

2
1 − v

2
2| + |π

2
1 − π

2
2 |). (11)

Theorem 2.1: The distance d(P1,P2) between two PFNs
P1 and P2 satisfies the following properties:

1. d(P1,P2) ≥ 0;
2. d(P1,P2) = 0 if and only if P1 = P2;
3. d(P1,P2) = d(P2,P1).
Definition 2.12. [53]: Let pi = (µpi , vpi ) (i = 1, 2, · · · , n)

be a collection of PFNs and ω=(ω1, ω2, · · · , ωn)T be the
weight vector of pi(i = 1, 2, · · · , n), with ωi > 0,∑n

i=1 ωi = 1, λ > 0, then a generalized Pythagorean fuzzy
weighted average (GPFWA) operator is a mapping PFWA:
pn→ p, where

GPFWA (p1, p2, · · · , pn)

=

(
(
n∑
i=1

ωiµ
λ
pi)

1/λ, (
n∑
i=1

ωivλpi)
1/λ

)
. (12)

Especially, if λ = 1, the GPFWA operator reduces to
the Pythagorean fuzzy weighted averaging (PFWA) oper-
ator [53]; if λ = 2 the GPFWA operator reduces to
the Pythagorean fuzzy power weighted averaging (PFPWA)
operator [53]; And ifωi = 1

n , the Pythagorean fuzzyweighted
average (PFWA) operator becomes Pythagorean fuzzy arith-
metic average (PFAA) operator, where

PFAA(p1, p2, · · · , pn) = (
1
n

n∑
i=1

µi,
1
n

n∑
i=1

vi) (13)

Theorem 2.2 (Idempotency): Let pi = (µpi , vpi )
(i = 1, 2, · · · , n) be a collection of PFNs, and λ > 0,
ω=(ω1, ω2, · · · , ωn)T be the weight vector of them,∑n

i=1 ωi = 1. If all pi(i = 1, 2, · · · , n) are equal, i.e., ∀i,
pi = p, then

GPFWA (p1, p2, · · · , pn) = p.

Theorem 2.3 (Boundedness): Let pi = (µpi , vpi )
(i = 1, 2, · · · , n) be a collection of PFNs, and λ > 0,
ω=(ω1, ω2, · · · , ωn)T be the weight vector of them,∑n

i=1 ωi = 1. Assume that p− = (min
i
µpi ,max

i
vpi ),

p+ = (max
i
µpi ,min

i
vpi ), then

p− ≤ GPFWA (p1, p2, · · · , pn) ≤ p+.

Theorem 2.4 (Monotonicity): Let pi = (µpi , vpi )
(i = 1, 2, · · · , n) and p′i = (µp′i , vp′i ) be two collections of
PFNs, and λ > 0, ω=(ω1, ω2, · · · , ωn)T be the weight vector
of them,

∑n
i=1 ωi = 1. If ∀i, µpi ≤ µp′i , vpi ≤ vp′i , then

GPFWA (p1, p2, · · · , pn) ≤ GPFWA
(
p′1, p

′

2, · · · , p
′
n
)
.

III. ADDITIVE CONSISTENCY IMPROVING APPROACH
In this section, PFPR and its additive consistency are defined.
Based on the additive consistency of PFPR, a model for
determining Pythagorean weights is presented. Based on
Pythagorean fuzzy weight information, a PFPR with addi-
tive consistency is constructed. In addition, this section also
proposes a consistency index to measure the Pythagorean
fuzzy preference relationmatrix, in order to judgewhether the
PFPRs has acceptable consistency. For the PFPRs with unac-
ceptable consistency, the algorithm of consistency adjustment
is proposed.

A. ADDITIVE CONSISTENCY OF PYTHAGOREAN FUZZY
PREFERENCE RELATIONS
Definition 3.1: A Pythagorean fuzzy preference relation
(PFPR) P on the set X is represented by a matrix P =
(pij)n×n ⊂ X×X with pij =< (xi, xj), µ(xi, xj), v(xi, xj) > for
all i, j = 1, 2, · · · , n. For convenience, we let pij = (µij, vij),
for all i, j = 1, 2, · · · , n, where pij is a Pythagorean fuzzy
value composed by the certainty degree µij to which xi is
preferred to xj and the certainty degree vij to which xi is non-
preferred to xj. Furthermore, µij and vij satisfy the following
conditions:

0 ≤ µ2
ij + v

2
ij ≤ 1, µij = vji,

vij = µji, µii = vii = 0.5 for all i, j = 1, 2, · · · , n.
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Definition 3.2: A PFPR P = (pij)n×n with pij = (µij, vij)
is called an order consistent PFPR, if it satisfies pis ≥ pit
for all i ∈ {1, 2, · · · , n}, where s ∈ {1, 2, · · · , n} and
t ∈ {1, 2, · · · , n}.
Example 3.1: Let X = {x1, x2, x3, x4} be a set of alterna-

tives, suppose that there is a PFPR on X , which is shown as
follows:

P =



(

√
2
2
,

√
2
2

) (0.4, 0.3) (0.5, 0.3) (0.7, 0.4)

(0.3, 0.4) (

√
2
2
,

√
2
2

) (0.6, 0.5) (0.8, 0.6)

(0.3, 0.5) (0.5, 0.6) (

√
2
2
,

√
2
2

) (0.5, 0.4)

(0.4, 0.7) (0.6, 0.8) (0.4, 0.5) (

√
2
2
,

√
2
2

)


.

According to the PFPR P, it is obvious that pis ≥ pit
for all i ∈ {1, 2, · · · , n}, where s ∈ {1, 2, · · · , n} and
t ∈ {1, 2, · · · , n}. Since pi2 ≥ pi1, pi3 ≥ pi2 and pi4 ≥ pi3 for
all i ∈ {1, 2, · · · , n}, which denote the alternative x2 is better
than x1, the alternative x3 is better than x2, the alternative x4
is better than x3, then PFPR P indicating that the ranking is
that x4 � x3 � x2 � x1.
We can see that intuitionistic fuzzy preference relations can

be viewed as a degeneration of Pythagorean fuzzy preference
relation. Based on the additive consistency of intuitionistic
fuzzy preference relation, a new definition of additive con-
sistency is introduced by directly employing the membership
and non-membership degrees in a Pythagorean fuzzy prefer-
ence relation.
Definition 3.3: For a Pythagorean fuzzy preference relation

(PFPR) P = (pij)n×n with pij = (µij, vij)(i, j = 1, 2, · · · , n),
if there exists a s vector ω=(ω1, ω2, . . . , ωn)T such that

µij ≤

√
2
2

(ωi − ωj + 1) ≤
√
1− (vij)2,

for all i, j = 1, 2, · · · , n. (14)

where ωi ∈ [0, 1](i = 1, 2, · · · , n) that
∑n

i=1 ωi = 1. Then,
P is called an additive consistent PFPR.
Definition 3.4: A Pythagorean fuzzy preference relation

P = (pij)n×n with pij = (µij, vij) is called additive consistent,
if it satisfies the following additive transitivity:

µ2
ij + µ

2
jk + µ

2
ki = µ

2
kj + µ

2
ji + µ

2
ik

for all i, j, k = 1, 2, · · · , n.

As µij = vji, µji = vij for all i, j = 1, 2, · · · , n, it follows
from (3.1) that

v2ij + v
2
jk + v

2
ki = v2kj + v

2
ji + v

2
ik

for all i, j, k = 1, 2, · · · , n.

And we can also get the following equation

µ2
ij + µ

2
jk + µ

2
ki = v2ij + v

2
jk + v

2
ki

for all i, j, k = 1, 2, · · · , n. (15)

Theorem 3.1: A Pythagorean fuzzy preference relation
P = (pij)n×n with pij = (µij, vij) is additive consistent if and
only if s(pij) = s(pik )− s(pjk ) for all i, j, k = 1, 2, · · · , n.

Proof: If P = (pij)n×n is an additive consistent
Pythagorean fuzzy preference relation, the according to Def-
inition 3.4, we have µ2

ij+µ
2
jk +µ

2
ki = µ

2
kj+µ

2
ji+µ

2
ik for all

i, j, k = 1, 2, · · · , n. As µji = vij for all i, j, k = 1, 2, · · · , n,
we can get µ2

ij − v2ij = µ2
ik − v2ik − (µ2

jk − v2jk ). Therefore,
it follows from that s(pij) = s(pik ) − s(pjk ) for all i, j, k =
1, 2, · · · , n. In other words, if s(pij) = s(pik ) − s(pjk ) for all
i, j, k = 1, 2, · · · , n, then by reversing the aforesaid proof
of the necessary condition, we can get µ2

ij + µ
2
jk + µ

2
ki =

µ2
kj + µ

2
ji + µ

2
ik for all i, j, k = 1, 2, · · · , n.

Definition 3.5: A Pythagorean fuzzy preference relation
P = (pij)n×n is weak transitive if s(pij) ≥ 0 and s(pjk ) ≥ 0
imply s(pik ) ≥ 0, for all i, j, k = 1, 2, · · · , n.
Theorem 3.2: If a Pythagorean fuzzy preference rela-

tion P = (pij)n×n is additive consistent, then P is weakly
transitive.

Proof: If s(pij) ≥ 0 and s(pjk ) ≥ 0, we have µ2
ij−v

2
ij ≥ 0

and µ2
jk − v

2
jk ≥ 0. Since P = (pij)n×n is additive consistent,

it follows from Theorem 3.1 that s(pik ) = s(pij) + s(pjk ) =
(µ2

ij−v
2
ij)+ (µ

2
jk−v

2
jk ) for all i, j, k = 1, 2, · · · , n. Therefore,

one can obtain s(pik ) ≥ 0. By Definition 3.5, the proof of
Theorem 3.2 is completed.
Definition 3.6: A Pythagorean fuzzy weight vector

ω̃ = (ω̃1, ω̃2, · · · , ω̃n)T with ω̃i = (ωµi , ω
v
i ),ω

µ
i , ω

v
i ∈ [0, 1],

and (ωµi )
2
+ (ωvi )

2
≤ 1 for i = 1, 2, · · · , n is said to be

normalized if it satisfies the following conditions:

n∑
j = 1
j 6= i

ω
µ
j +

√
1− (ωvi )

2 ≤ 1,
n∑

j = 1
j 6= i

√
1− (ωvj )

2 + ω
µ
i ≥ 1

for i = 1, 2, · · · , n. (16)

Let

p̃ij = (p̃µij , p̃
v
ij) =


(√

2
2 ,
√
2
2

)
i = j(√

(ωµi )
2+(ωvj )

2

2 ,

√
(ωvi )

2+(ωµj )
2

2

)
i 6= j

(17)

Then the following result is obtained.
Theorem 3.3: Assume that the elements of the matrix

P̃ = (p̃ij)n×n are defined by Eq. (17), then P̃ is a Pythagorean
fuzzy preference relation.

Proof: It is obvious that p̃µij = p̃vji, p̃
µ
ji = p̃vij for all

i, j = 1, 2, · · · , n.
Since ωµi , ω

v
i ∈ [0, 1] and (ωµi )

2
+ (ωvi )

2
≤ 1, it follows

that

0 ≤

√
(ωµi )

2 + (ωvj )
2

2
≤ 1,

0 ≤

√
(ωvi )

2 + (ωµj )
2

2
≤ 1.
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and 
√
(ωµi )

2 + (ωvj )
2

2

2

+


√
(ωvi )

2 + (ωµj )
2

2

2

=
(ωµi )

2
+ (ωvj )

2

2
+

(ωvi )
2
+ (ωµj )

2

2

=
(ωµi )

2
+ (ωvj )

2
+ (ωvi )

2
+ (ωµj )

2

2

≤
1+ 1
2
= 1.

thus:

0 ≤


√
(ωµi )

2 + (ωvj )
2

2

2

+


√
(ωvi )

2 + (ωµj )
2

2

2

≤ 1.

According to Definition 3.1, P̃ = (p̃ij)n×n is an PFPR, which
completes the proof.
Theorem 3.4: The PFPR P̃ = (p̃ij)n×n in which the ele-

ments p̃ij(i, j = 1, 2, · · · , n) are defined as in Eq. (17) is
additive consistent.

Proof: From Eq. (17),

(p̃µij )
2
+ (p̃µjk )

2
+ (p̃µki)

2

=
(ωµi )

2
+ (ωvj )

2

2
+

(ωµj )
2
+ (ωvk )

2

2
+

(ωµk )
2
+ (ωvi )

2

2

=
(ωµi )

2
+ (ωvi )

2
+ (ωµj )

2
+ (ωvj )

2
+ (ωµk )

2
+ (ωvk )

2

2
(p̃vij)

2
+ (p̃vjk )

2
+ (p̃vki)

2

=
(ωvi )

2
+ (ωµj )

2

2
+

(ωvj )
2
+ (ωµk )

2

2
+

(ωvk )
2
+ (ωµi )

2

2

=
(ωµi )

2
+ (ωvi )

2
+ (ωµj )

2
+ (ωvj )

2
+ (ωµk )

2
+ (ωvk )

2

2

It is obvious that (p̃µij )
2
+ (p̃µjk )

2
+ (p̃µki)

2
= (p̃vij)

2
+ (p̃vjk )

2
+

(p̃vki)
2, According to Definition 3.4, it is certified that the

PFPR P̃ = (p̃ij)n×n is additive consistent, which completes
the proof.

From Theorem 3.3, one can easily obtain the following
corollary.
Corollary 3.1: For a PFPR P = (pij)n×n in which

pij = (µij, vij), if there exists a normalized Pythagorean fuzzy
weight vector ω̃ = (ω̃1, ω̃2, · · · , ω̃n)T such that

pij = (µij, vij)

=


(

√
2
2
,

√
2
2

) if i = j√ (ωµi )
2
+ (ωvj )

2

2
,

√
(ωvi )

2
+ (ωµj )

2

2

 if i 6= j
.(18)

where ω̃i = (ωµi , ω
v
i ), ω

µ
i , ω

v
i ∈ [0, 1], (ωµi )

2
+ (ωvi )

2
≤ 1,

and
n∑

j = 1
j 6= i

ω
µ
j +

√
1− (ωvi )

2 ≤ 1,
n∑

j = 1
j 6= i

√
1− (ωvj )

2 + ω
µ
i ≥ 1

for i = 1, 2, · · · , n, thenP = (pij)n×n is an additive consistent
Pythagorean fuzzy preference relation.

Inspired by Corollary 3.1, we can develop a method to
derive the priority weight vector from PFPRs.

B. LINEAR GOAL PROGRAM MING MODEL FOR
GENERATING PYTHAGOREA FUZZY WEIGHT
This section develops a linear goal programming model for
deriving Pythagorean fuzzy weights from PFPR.

As presented above, for the purpose of obtaining a rea-
sonable result, the PFPR given by the DM should satisfy
additive consistency which can be expressed as Eq. (18)
according to Corollary 1. However, in practical situations
of decision making, it is too difficult for a DM to construct
such an additive consistent PFPR. Hence, it is expected that
the deviation between the given PFPR and its corresponding
additive consistent PFPR should be as small as possible. As a
result, we introduce the deviation variables as follows:

εij =

√
(ωµi )

2 + (ωvj )
2

2
− µij, i, j = 1, 2, . . . , n, j 6= i, (19)

ηij =

√
(ωvi )

2 + (ωµj )
2

2
− vij, i, j = 1, 2, . . . , n, j 6= i. (20)

As can be seen, the smaller the absolute deviations are,
the more exact the results are. Thus, the following frac-
tional programming model can be established to derive the
Pythagorean fuzzy weights (M1), as shown at the bottom of
the next page.
Theorem 3.5: M1 is equivalent to the following M2, as

shown at the bottom of the next page.
Proof: Because of µij = vji and µji = vij, the deviation

of the upper diagonal elements is equal to the deviation of the
lower diagonal elements. Hence, we only need to consider the
deviation of the upper (or lower) diagonal elements. That is
to say, the objective functions of M1 and M2 are equivalent,
which completes the proof.

In order to simplify the calculation, in the following,
we will use M2 for further discussion.

If ε+ij =
|εij|+εij

2 and ε−ij =
|εij|−εij

2 , then εij = ε
+

ij − ε
−

ij and∣∣εij∣∣ = ε+ij + ε
−

ij , where ε
+

ij ≥ 0, ε−ij ≥ 0 and ε+ij · ε
−

ij = 0.

Similarly, if η+ij =
|ηij|+ηij

2 and η−ij =
|ηij|−ηij

2 , then ηij =
η+ij − η

−

ij and
∣∣ηij∣∣ = η+ij + η−ij , where η+ij ≥ 0, η−ij ≥ 0 and

η+ij · η
−

ij = 0.
Thus, M2 can be further expressed and simplified as

follows:
Theorem 3.6: The PFPR P = (pij)n×n is an additive

consistent preference relation if and only if J∗ = 0, where
J∗ is the optimal value of the objective function.

Proof: If P = (pij)n×n is an additive consis-
tent PFPR, then the deviation of both the member-
ship and non-membership degrees should be equal to 0,
which indicates that J∗ = 0. If J∗ = 0, i.e.,∑n−1

i=1
∑n

j=i+1 ε
+

ij + ε
−

ij + η
+

ij + η
−

ij = 0, since ε+ij ≥

0, ε−ij ≥ 0, η+ij ≥ 0, η−ij ≥ 0, for all i, j = 1, 2, . . . , n,
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then we can derive that ε+ij = ε−ij = η+ij = η−ij = 0 for all
i, j = 1, 2, . . . , n. That is to say, the PFPR P = (pij)n×n is
equal to its corresponding additive consistent PFPR, which
completes the proof.

M3, as shown at the bottom of the page, can be solved
by using some optimization computer packages, such as
MATLAB and LINGO. Thus, the optimal objective function
value J∗ and the optimal Pythagorean fuzzy weight vector
can be yielded. If J∗ = 0, the given PFPR P = (pij)n×n
is additive consistent in which case the derived Pythagorean
fuzzy weight vector is reasonable. If J∗ 6= 0, P does not
have additive consistency, so we need to consider whether

P have acceptable consistency. If P has acceptable additive
consistency, the next calculation can be performed; if P does
not have acceptable additive consistency, we will adjust it
with an additive consistency adjustment algorithm until it
reaches acceptable additive consistency. Once the result is
consistent with decision maker’s preferences, the calculation
process ends. Otherwise, the decision maker should reeval-
uate the alternatives to construct a more acceptable con-
sistent PFPR P = (pij)n×n, or the process will stop as
the repetition times reach the maximum number which we
specified previously. The adjustment algorithm for additive
consistency will be introduced as below.

Min J =
∑n

i=1

∑n

j=1

∣∣εij∣∣+ ∣∣ηij∣∣

s.t.



√
(ωµi )

2
+ (ωvj )

2

2
− µij − εij = 0, i, j = 1, 2, . . . , n; i 6= j√

(ωvi )
2
+ (ωµj )

2

2
− vij − ηij = 0, i, j = 1, 2, . . . , n; i 6= j

ω
µ
i , ω

v
i ∈ [0, 1], (ωµi )

2
+ (ωvi )

2
≤ 1, i = 1, 2, . . . , n

n∑
j = 1
j 6= i

ω
µ
i +

√
1− (ωvi )

2 ≤ 1,
n∑

j = 1
j 6= i

√
1− (ωvj )

2 + ω
µ
i ≥ 1, i = 1, 2, . . . , n

. (M1)

Min J =
∑n−1

i=1

∑n

j=i+1

∣∣εij∣∣+ ∣∣ηij∣∣

s.t.



√
(ωµi )

2
+ (ωvj )

2

2
− µij − εij = 0, i, j = 1, 2, . . . , n; i 6= j√

(ωvi )
2
+ (ωµj )

2

2
− vij − ηij = 0, i, j = 1, 2, . . . , n; i 6= j

ω
µ
i , ω

v
i ∈ [0, 1], (ωµi )

2
+ (ωvi )

2
≤ 1, i = 1, 2, . . . , n

n∑
j = 1
j 6= i

ω
µ
i +

√
1− (ωvi )

2 ≤ 1,
n∑

j = 1
j 6= i

√
1− (ωvj )

2 + ω
µ
i ≥ 1, i = 1, 2, . . . , n

(M2)

Min J =
∑n−1

i=1

∑n

j=i+1

(
ε+ij + ε

−

ij + η
+

ij + η
−

ij

)

s.t.



√
(ωµi )

2
+ (ωvj )

2

2
− µij − ε

+

ij + ε
−

ij = 0, i = 1, 2, . . . , n− 1; j = i+ 1, . . . , n√
(ωvi )

2
+ (ωµj )

2

2
− vij − η

+

ij + η
−

ij = 0, i = 1, 2, . . . , n− 1; j = i+ 1, . . . , n

ω
µ
i , ω

v
i ∈ [0, 1], (ωµi )

2
+ (ωvi )

2
≤ 1, i = 1, 2, . . . , n− 1

n∑
j = 1
j 6= i

ω
µ
i +

√
1− (ωvi )

2 ≤ 1,
n∑

j = 1
j 6= i

√
1− (ωvj )

2 + ω
µ
i ≥ 1, i = 1, 2, . . . , n− 1

ε+ij ≥ 0, ε−ij ≥ 0, η+ij ≥ 0, η−ij ≥ 0, i = 1, 2, . . . , n− 1; j = i+ 1, . . . , n

(M3)
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C. ALGORITHM FOR IMPROVING ADDITIVE CONSISTENCY
In this section, we define the consistency index of PFPR
and develop a feasible algorithm for improving con-
sistency degree of PFPR without achieving acceptable
consistency.
Definition 3.7: Assume two PFPRs P1 = (p1ij)n×n =

(µ1
ij, v

1
ij)n×n and P

2
= (p2ij)n×n = (µ2

ij, v
2
ij)n×n, then

d(P1,P2) =
1

n(n− 1)/2

∑
i<j

1
2
(|(µ1

ij)
2
− (µ2

ij)
2
| + |(v1ij)

2

−(v2ij)
2
| + |(π1

ij )
2
− (π2

ij )
2
|) (21)

is called the distance between P1 and P2.
Definition 3.8: Assume a PFPR P = (pij)n×n with pij =

(µij, vij), and its additive consistent PFPR P̃ = (p̃ij)n×n with
p̃ij = (µ̃ij, ṽij), to make P approximate P̃ as much as possible,
we define CI (P) as a consistency index (CI) of the PFPR P
as follows.

CI (P) =
1

n(n− 1)/2

∑
i<j

1
2
(|(µij)2 − (µ̃ij)2| + |(vij)2

−(ṽij)2| + |(πij)2 − (π̃ij)2|). (22)

According to Definition 3.7, the CI (P) can be used to mea-
sure the distance between P and P̃.
Theorem 3.7: The consistency index CI (P) between two

PFPRs P and its additive consistent PFPR P̃ satisfies the
following properties:

1. 0 ≤ CI (P) ≤ 1;
2. CI (P) = 0 if and only if P = P̃.
Additionally, according to Theorem 3.7, the smaller

the CI (P), the more consistent the PFPR P. Especially,
CI (P) = 0 if and only if P is an additive consistent
PFPR.

In most cases, it is unrealistic to construct an additive
consistent PFPR due to the reason that decision makers must
be affected by many factors in the decision-making process.
Based on this, a definition of acceptably additive consistent
PFPR will be further developed to allow a certain of level of
acceptable deviation.
Definition 3.9: Let P = (pij)n×n be a PFPR. Given a

threshold value CI , if the additive consistency index satisfies
the following,

CI (P) ≤ CI (23)

then we call a PFPR P with acceptably additive consistency.
The value of CI can be determined according to the pref-

erences of the decision maker or the actual situation of the
problem. Which is a question worthy of further discussion in
the future.

Due to the complexity of objective things and the limita-
tions of human cognition, the PFPR P constructed by DMs
often has unacceptable additive consistency, i.e.,CI (P) ≥ CI .
In order to obtain more reasonable results, DMs need to
construct a new PFPR based on additive consistency. To help

the DMs to obtain an additive consistent PFPR, we pro-
vide the following formula to adjust or repair the inconsis-
tent PFPR P(t) = (p(t)ij )n×n until it has acceptably additive
consistency.
Theorem 3.8: Let P(t+1) = (p(t+1)ij )n×n be a PFPR defined

by Eq. (24), as shown at the bottom of the next page. Then,
we have CI (P(t+1)) ≤ CI (P(t)).

Proof: CI (P(t+1)), as shown at the bottom of the next
page, where P̃(0) = P̃(i), i = 1, 2, . . . , t + 1, which com-
pletes the proof. Moreover, CI (P(t)) ≥ 0, for each t . Thus,
the sequence {CI (P(t))} is monotonically decreasing and has
lower bounds.

Consistency means that decision makers do not have
conflicts when expressing their preferences. If PFPR
P = (pij)n×n does not have acceptable consistency,
we should adjust it to achieve acceptable consistency before
using it to resolve decision problems. We propose the
following algorithm to modify P = (pij)n×n that do
not have acceptable consistency to meet the consistency
requirements.

Algorithm 1
Input: The original PFPR P = (pij)n×n with pij =

(µij, vij), the parameter σ ∈ (0, 1) that is the trade-off param-
eter between the inconsistent preference relation and the
corresponding consistent preference relation, the maximum
number of iterations t∗, and the threshold value CI ∈ (0, 1].
Output: The adjusted PFPR P̄ = (p̄ij)n×n with p̄ij =

(µ̄ij, v̄ij), and the consistency index CI (P̄).
Step 1: Let P(0) = (µ(0)

ij , v
(0)
ij )n×n = P = (µij, vij)n×n,

t = 0. By calculating M3, construct the additive consistent
PFPR P̃(0) = (µ̃(0)

ij , ṽ
(0)
ij )n×n with respect to P

(0) based on Eq.
(17), where P̃(0) = P̃(i), i = 1, 2, . . . , t + 1.
Step 2: Compute the consistency index CI (P(t)) by Eq.

(22), i.e.,

CI (P(t)) =
1

n(n− 1)/2

∑
i<j

1
2
(|(µ(t)

ij )
2
− (µ̃(t)

ij )
2
|

+|(v(t)ij )
2
− (ṽ(t)ij )

2
| + |(π (t)

ij )
2
− (π̃ (t)

ij )
2
|).

Step 3: If CI (P(t)) ≤ CI or t ≥ t∗, then go to Step 5;
otherwise, go to Step 4.
Step 4: Let P(t+1) = (p(t+1)ij )n×n = (µ(t+1)

ij , v(t+1)ij )n×n,
where 

µ
(t+1)
ij =

√
(1− σ )(µ(t)

ij )
2 + σ (µ̃(t)

ij )
2

v(t+1)ij =

√
(1− σ )(v(t)ij )

2 + σ (ṽ(t)ij )
2

π
(t+1)
ij =

√
1− (µ(t+1)

ij )2 − (v(t+1)ij )2

=

√
(1− σ )(π (t)

ij )
2 + σ (π̃ (t)

ij )
2

Set t = t + 1 and go to Step 2.
Step 5: Let P̄ = P(t). Output the modified PFPR P̄ and its

consistency index CI (P̄).
Step 6: End.
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FIGURE 1. Algorithm 1: Consistency checking and improving process.

The proposed algorithm can be described by using
FIGURE. 1.

IV. METHOD FOR DECISION MAKING WITH PFPR
In this section, we develop an approach to decision mak-
ing based on Pythagorean fuzzy preference relation (PFPR)
and its additive consistency, which can be described as
Algorithm 2.

The proposed algorithm can also be described by using
FIGURE. 2.

V. NUMERICAL EXAMPLES
This section presents a numerical example to validate the
proposed models. In this paper, since

√
2
2 is irrational number,

we make
√
2
2 ≈ 0.7071.

FIGURE 2. Algorithm 2: an approach to decision making based on PFPR.

A. EXAMPLE AND COMPARISON ANALYSIS
As the big data, cloud computing, AI and other fields devel-
oping at a high speed, the contradiction of the increasing
data calculation volume, flexibility demand and the execution
is gradually sharp. Computing-in-memory (CIM) based on
DRAM integrates Computing and storage closely, which can
partially relieve the ‘‘von neumann bottleneck’’, reduce data
handling between on-chip cache and Memory, and greatly
improve Memory access efficiency.

During the research of the CIM in recent years, r&d
institutions have all taken the following four factors,


µ
(t+1)
ij =

√
(1− σ )(µ(t)

ij )
2 + σ (µ̃(t)

ij )
2

v(t+1)ij =

√
(1− σ )(v(t)ij )

2 + σ (ṽ(t)ij )
2

π
(t+1)
ij =

√
1− (µ(t+1)

ij )2 − (v(t+1)ij )2 =
√
(1− σ )(π (t)

ij )
2 + σ (π̃ (t)

ij )
2

. (24)

CI (P(t+1))

= d(P(t+1), P̃(t+1)) = d(P(t+1), P̃(t))

=
1

n(n− 1)/2

∑
i<j

1
2
(|(µ(t+1)

ij )2 − (µ̃(t)
ij )

2
| + |(v(t+1)ij )2 − (ṽ(t)ij )

2
| + |(π (t+1)

ij )2 − (π̃ (t)
ij )

2
|)

=
1

n(n− 1)/2

∑
i<j

1
2
(|(1− σ )(µ(t)

ij )
2
+ σ (µ̃(t)

ij )
2
− (µ̃(t)

ij )
2
| + |(1− σ )(v(t)ij )

2
+ σ (ṽ(t)ij )

2
− (ṽ(t)ij )

2
|

+|(1− σ )(π (t)
ij )

2
+ σ (π̃ (t)

ij )
2
− (π̃ (t)

ij )
2
|)

=
1− σ

n(n− 1)/2

∑
i<j

1
2
(|(µ(t+1)

ij )2 − (µ̃(t)
ij )

2
| + |(v(t+1)ij )2 − (ṽ(t)ij )

2
| + |(π (t+1)

ij )2 − (π̃ (t)
ij )

2
|)

= (1− σ )d(P(t), P̃(t)) ≤ CI (P(t)).
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Algorithm 2
Step 1: Construct the PFPR matrix P = (µij, vij)n×n based

on the decision-making information; and set the values of the
predefined consistency threshold CI .

Step 2: If P satisfies the order consistency, i.e., P satisfies
that pis ≥ pit for all i ∈ {1, 2, . . . , n}, where s ∈ {1, 2, . . . , n}
and t ∈ {1, 2, . . . , n}, then the ranking of the alternatives can
be obtained; Otherwise, go to Step 3.
Step 3: According to M3, a goal programming model can

be developed, we get the optimal normalized Pythagorean
fuzzy weight vector:

ω̃ = (ω̃1, ω̃2, · · · , ω̃n)T = ((ω̃1µ, ω̃1v),

(ω̃2µ, ω̃2v), . . . , (ω̃nµ, ω̃nv))T

and the optimal deviation values ε+ij ≥ 0, ε−ij ≥ 0, η+ij ≥
0, η−ij ≥ 0, for i, j = 1, 2, . . . , n. If J∗ = 0, the given PFPR
P = (pij)n×n is additive consistent, then go to Step 8; If J∗ 6=
0, the given PFPR P = (pij)n×n is not consistent, then go to
Step 4.
Step 4: Construct the additive consistent PFPR

P̃ = (µ̃ij, ṽij)n×n with respect to P based on Eq. (17).
Step 5: Utilize Eq. (22) to calculate the consistency index

CI (P). If CI (P) ≤ CI , go to Step 7; Otherwise, go to Step 6.
Step 6: Utilize Algorithm 1 to modify the PFPR that do

not achieve acceptable consistency degree. After implemen-
tation of Algorithm 1, we can get PFPRs P′ = (p′ij)n×n =
(µ′ij, v

′
ij)n×n with acceptable consistency; then, go to Step 7.

Step 7: Utilize the Pythagorean fuzzy arithmetic averag-
ing operators Eq. (13) to aggregate all p′ij(i, j = 1, 2, . . . , n)
into a collective Pythagorean fuzzy value p′i(i = 1, 2, . . . , n)
of the alternative xi(i = 1, 2, . . . , n) over all the other alter-
natives.

Step 8: Rank all p′i(i = 1, 2, . . . , n) by means of the score
function Eq. (9) and the accuracy function Eq. (10), and then
rank all the alternatives xi(i = 1, 2, . . . , n) and select the best
one in accordance with the values of p′i(i = 1, 2, . . . , n).

access speed, storage capacity, computing speed,and delay
time(CAS),into consideration in the design of hardware struc-
ture optimization and software algorithm improvement,such
as 3D stacked DRAM with CIM [62], approxPIM(A new
CIM architecture for solving the problem of bandwidth and
power mismatch between processor and memory ) [63] and a
mathematical framework integrated with 3D stacked DRAM
accelerators [64].

So,An excellent CIM system is affected by many factors,
including
x1 : access speed
x2 : storage capacity
x3 : computing speed
x4 : delay time(CAS)
Consider the case that a company prepare to know the

importance of these factors for the design of CIM, and
because decision makers lack the corresponding expertise,
many uncertain messages are generated. Then by pairwise

comparison of xi and xj (i, j = 1, 2, 3, 4), the decision maker
construct a Pythagorean fuzzy preference relation (PFPR)
P(0) as follows P(0), as shown at the bottom of the next page.

Step 1: Set σ = 0.5,CI = 0.1 [58], [59] and the maximum
number of iterations t∗ = 10.

Step 2: By calculating M3, the following linear goal
program is established Min J , as shown at the bottom of the
next page.

Solving this model by an appropriate optimization com-
puter package, it follows that the optimal objective value
J = 1.68, which implies that PFPR P̃ is non-additive con-
sistent, and we get the optimal Pythagorean fuzzy weights
vector as:

ω̃ = (ω̃1, ω̃2, ω̃3, ω̃4)T

= ((0, 0.9024), (0.1754, 0.4950),
×(0.1311, 0.5657), (0, 1.0000))T .

Utilize Eq. (17), a PFPR P̃(0) with complete additive con-
sistency is constructed as follows P̃(0), as shown at the bottom
of the next page.

Step 3:ByEq. (22), calculate the additive consistent index
CI (P(0)) = 0.2121. Since CI (P(0)) > CI , PFPR P(0) is
unacceptable additive consistent, then, go to Step 4.

Step 4: Utilize Algorithm 1 to modify the PFPR P(0).
After implementation of Algorithm 1, we can get CI (P(3)) =
0.0530. Since CI (P(3)) < CI , we can get PFPRs P(3) with
acceptable consistency is shown as follows P(3), as shown at
the bottom of the next page.

Step 5: Utilize the Pythagorean fuzzy arithmetic aver-
aging operators Eq. (13) to aggregate all p(3)ij (i, j = 1,
2, . . . , n) into collective Pythagorean fuzzy value
P(3)1 = (0.5471, 0.6472), P(3)2 = (0.6494, 0.4578),
P(3)3 = (0.6195, 0.4929), P(3)4 = (0.5167, 0.7182).

Step 6: Rank all p(3)i (i = 1, 2, 3, 4) by means of the
score function s(p(3)i )(i = 1, 2, 3, 4), and we can obtain
s(p(3)1 ) = −0.1540, s(p(3)2 ) = 0.2121, s(p(3)3 ) = 0.1408,
s(p(3)4 ) = −0.2488.
Step 7: The ranking of the score function of four alterna-

tives is s(p(3)2 ) > s(p(3)3 ) > s(p(3)1 ) > s(p(3)4 ).
Step 8: The ranking of the four alternatives is

x2 � x3 � x1 � x4.

B. COMPARISON WITH OTHER METHOD
Because of the value ranges of PFN and IFN are different,
in the comparative analysis, we first convert PFN into IFN,
and the converted preference relation matrix is denoted as P∗,
as shown at the bottom of the next page.

Wang [48] proposed linear programming models for deriv-
ing intuitionistic fuzzy weights from intuitionistic fuzzy pref-
erence relations. Using the above method to deal with P∗,
it follows that the optimal objective value J∗ = 1.8508, and
the optimal intuitionistic fuzzy weight vector is:

ω∗= (ω∗1, ω
∗

2, ω
∗

3, ω
∗

4)

= ((0.1033, 0.6417),(0, 0.1417),(0.0383, 0.2167),(0, 1)),
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P(0) =


(0.7071, 0.7071) (0.3500, 0.6500) (0.4000, 0.7000) (0.8000, 0.3000)
(0.6500, 0.3500) (0.7071, 0.7071) (0.7000, 0.3000) (0.5000, 0.6000)
(0.7000, 0.4000) (0.3000, 0.7000) (0.7071, 0.7071) (0.9000, 0.2000)
(0.3000, 0.8000) (0.6000, 0.5000) (0.2000, 0.9000) (0.7071, 0.7071)


Min J = ε+12 + ε

−

12 + η
+

12 + η
−

12 + ε
+

13 + ε
−

13 + η
+

13 + η
−

13 + ε
+

14 + ε
−

14 + η
+

14 + η
−

14

+ε+23 + ε
−

23 + η
+

23 + η
−

23 + ε
+
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−
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+
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−
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+
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−

34 + η
+

34 + η
−

34

s.t.
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2
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(
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+
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(
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(
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ω
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3
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(
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0 ≤ ωµ4 ≤ 1, 0 ≤ ωv4 ≤ 1,
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+
(
ωv4

)2
≤ 1,

ε+12 ≥ 0, ε−12 ≥ 0, η+12 ≥ 0, η−12 ≥ 0, ε+13 ≥ 0, ε−13 ≥ 0, η+13 ≥ 0, η−13 ≥ 0,
ε+14 ≥ 0, ε−14 ≥ 0, η+14 ≥ 0, η−14 ≥ 0, ε+23 ≥ 0, ε−23 ≥ 0, η+23 ≥ 0, η−23 ≥ 0,
ε+24 ≥ 0, ε−24 ≥ 0, η+24 ≥ 0, η−24 ≥ 0, ε+34 ≥ 0, ε−34 ≥ 0, η+34 ≥ 0, η−34 ≥ 0,

P̃(0) =


(0.7071, 0.7071) (0.3500, 0.6500) (0.4000, 0.6448) (0.7071, 0.6381)
(0.6500, 0.3500) (0.7071, 0.7071) (0.4188, 0.3621) (0.7179, 0.3500)
(0.6448, 0.4000) (0.3621, 0.4188) (0.7071, 0.7071) (0.7132, 0.4000)
(0.6381, 0.7071) (0.3500, 0.7179) (0.4000, 0.7132) (0.7071, 0.7071)



P(3) =


(0.7071, 0.7071) (0.3500, 0.6500) (0.4000, 0.6590) (0.7314, 0.5726)
(0.6500, 0.3500) (0.7071, 0.7071) (0.5040, 0.3476) (0.6701, 0.4265)
(0.6590, 0.4000) (0.3476, 0.5040) (0.7071, 0.7071) (0.7642, 0.3606)
(0.5726, 0.7314) (0.4265, 0.6701) (0.3606, 0.7642) (0.7071, 0.7071)



P∗ =


(0.5000, 0.5000) (0.1225, 0.4225) (0.1600, 0.4900) (0.6400, 0.0900)
(0.4225, 0.1225) (0.5000, 0.5000) (0.4900, 0.0900) (0.2500, 0.3600)
(0.4900, 0.1600) (0.0900, 0.4900) (0.5000, 0.5000) (0.8100, 0.0400)
(0.0900, 0.6400) (0.3600, 0.2500) (0.0400, 0.8100) (0.5000, 0.5000)


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Then the score functions are computed as:

s(ω∗1) = −0.5384, s(ω
∗

2) = −0.1417, s(ω
∗

3)

= −0.1784, s(ω∗4) = −1.

Since s(ω∗2) > s(ω∗3) > s(ω∗1) > s(ω∗4), the four alterna-
tives can be ranked as x2 � x3 � x1 � x4.

VI. DISCUSSIONS
Based on the numerical examples and comparative study,
the characteristic of the proposed method is summarized as
follows.

1) As the proposed model aim to derive the Pythagorean
fuzzy priority weights by minimizing derivation of via a
linear programming model, it can be observed that the model
is built on PFN. As mentioned above, PFN have more pow-
erful abilities than IFN do in modeling the uncertainty of
practical decision-making problems. From this perspective,
it can be concluded the proposed model has a wider range of
applications.

(2) The specific implementation steps of the two methods
are different. Wang [48]’s method developed a linear goal
programming model to obtain its intuitionistic fuzzy weights,
and then the best alternatives is selected. In the proposed
models, we develop a linear goal programming model to
obtain its Pythagorean fuzzy weights, and for the PFPR that
does not satisfy the consistency, the consistency index is
defined to measure the degree of consistency, and a consis-
tency adjustment algorithm is proposed, this method makes
our results more accurate.

(3) Finally, the proposed adjustment algorithm can be used
to improve the additive consistency of a PFPR. By solving
this algorithm, not only can the additive consistency of a
PFPR be improved, but also can make reference for decision
makers before making decisions.

However, the proposed methods still have some limita-
tions. First, it needed to solve a linear programming model to
obtain the Pythagorean fuzzy weights with additive consis-
tency, and for PFPR that does not meet consistency, it needs
to be adjusted, it may be a bit complex compared with other
methods. However, these models can be easily solved by
using some optimization packages, such as Lingo, MATLAB
and CPLEX. In addition, the threshold of the additive consis-
tency index is assumed to be given by decision makers. We
argue that it will be more convincing if the threshold can be
determined by using some automatic methods.

VII. CONCLUSION
As a new type of preference relation, PFPR not only expands
the application scope of preference relations, but also more
fully expresses the views of decision makers. In this paper,
we mainly discussed the application of PFPR in decision
making. Firstly, we defined PFPR and its additive consistency
based on IFPR, and discussed some properties that satisfy
the additive consistency of PFPR. Secondly, we developed a
linear goal programming model for generating Pythagorean
fuzzy weight based on the additive consistency of PFPR.

Then, for PFPRs that do not satisfy additive consistency, we
defined the consistency index of PFPR and develop a feasible
algorithm for improving consistency degree of PFPR. In the
next section, we developed an approach to decision-making
based on PFPR and its additive consistency. The proposed
decision-making process and models may be used in many
real-world applications in which the DMs may be able to
provide his/her preferences for alternatives to a PFN, this was
confirmed in the final section of this paper.

During the PPFR research process, we can find that there
are some new directions that should be considered in future
research, such as the application of PFPR in group deci-
sion making, the multiplicative consistency of PFPR and the
consensus reaching process of groups in Pythagorean fuzzy
environment.
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