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ABSTRACT We present a variational autoencoder (VAE) learning framework with introspective training
for conditional image synthesis, and explore conditional capsule encoder by class-wise mask label insertion
for this framework. Our model only consists of encoder (E), generator (G) and classifier (C), where E and
G can be adversarially optimized, and C helps to boost conditional generation, improve authenticity and
provide generation measures for E and G. Discriminator is not necessary in our framework and its absence
makes our model more concise with fewer artifacts and pattern collapse problems. To compensate for the
blurry weakness of VAE-like models, feature matching is introduced into loss functions by means of C to
offer more reasonable measures between real and synthesized images. Moreover, in consideration of the key
role of E in autoencoders as well as the interesting characteristics of capsule structure, conditional capsule
encoder is preliminary explored in the image synthesis model. Class labels participate conditional encoding
by masking high-level capsules of other categories, and capsule loss for the encoder is added to facilitate
conditional synthesis. Experiments on MNIST and Fashion-MNIST data sets show that our model achieves
real conditional synthesis performances with better diversity and fewer artifacts. And conditional capsule
encoder also reveals interesting synthesis effects.

INDEX TERMS Image generation, artificial neural networks, image processing.

I. INTRODUCTION
Image synthesis is an important issue in many visual tasks.
To build generative models for image synthesis, distribution
of images should be learned or simulated. Then by adding
some random ingredients in the generation process, the mod-
els aim to produce realistic but different images from the
real ones [1]–[4]. This task is considered as very difficult
in computer vision fields, since the distribution of sample
images may lie on a high dimensional manifold which is
hard to represent with simple models and low dimension
parameters [5], [6]. Conditional image synthesis is even more
challenging for the sake of condition control. The conditional
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generative model must be able to not only produce synthetic
images, but also generate images of a given category [7].

Owing to the development of deep learning, conditional
image synthesis has achieved great progress by designing
deep convolutional neural networks [5], [6], [8], [9]. Among
these deep generative models, the Conditional Variational
Autoencoder (CVAE) [10] and the Conditional Generative
Adversarial Network (CGAN) [11] are the most typical and
popular models which lead two genres respectively. CVAE
derives from the autoencoder, which encodes the latent vari-
ables based on conditional probability distributions. It is able
to generate images with the architecture of an encoder and a
generator, however the synthetic images are easy to be blurry
since it is hard to estimate the difference between the gen-
erated image and the real image. CGAN realizes conditional
synthesis on the basis of Generative Adversarial Networks

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 153905

https://orcid.org/0000-0002-9038-5535
https://orcid.org/0000-0002-5628-0545
https://orcid.org/0000-0002-0367-9528
https://orcid.org/0000-0003-0148-4900
https://orcid.org/0000-0003-0360-7919


K. Zheng et al.: Conditional Introspective Variational Autoencoder for Image Synthesis

(GANs) [2], where both generator and discriminator are fed
by extra class labels and finally achieve Nash equilibrium by
adversarial training. CGAN is able to produce clearer images,
whereas the capability limit of the discriminator and the game
between encoder and discriminator may result in artifacts and
pattern collapse problems in practical applications.

Based on the above researches, hybrid models combining
different functional networks have been proposed. One out-
standing representative among these hybrid models is CVAE-
GAN [12], which combines encoder, generator, classifier and
discriminator together to build the model. Since the results
from the generator of VAE [1] are usually blurry, naive com-
bination of VAE and GAN does not take effect because they
are easy tasks for the discriminator of GAN. In order to build
an effective hybrid model, CVAE-GAN designs mean fea-
ture matching between various images produced by different
functional network to alleviate gradient vanishing and pattern
collapse. By means of abundant loss functions, CVAE-GAN
is capable of generating samples with fine-grained category,
however, with the price of a complex model, loss functions
with lengthy items and more hyper-parameters. Actually,
we find CVAE-GAN is more difficult to train compared to
other simpler models in our experiments, and we failed to
generate promising results on small datasets.

Recently, Introspective Variational Autoencoder
(IntroVAE) [13] is proposed for synthesizing images. Its
encoder and generator are trained in an introspective way,
therefore, the encoder can somehow take the place of a
discriminator. IntroVAE preserves the advantages of VAE
models, such as stable training and synthesis diversity, and
its inherent adversarial process makes it able to generate
clearer images. Inspired by IntroVAE, we propose an intro-
spective framework for conditional image synthesis. Our
framework consists of three parts: encoder for inference and
discrimination, generator for reconstruction and generation,
and classifier for facilitating conditional synthesis. Moreover,
the classifier helps to alleviate artifacts, meanwhile provides
auxiliary feature measures for anti-blur between real images
and reconstructed images.

In our structure of conditional introspective variational
autoencoder, the encoder network undertakes more complex
tasks than the others: it not only encodes the complicated
original image distribution into the latent variable space,
but also assumes the role of a discriminator to play intro-
spectively adversarial game. With regard to the key role of
encoder, we attempt to introduce some kind of new network
for exploration. Capsule network (CapsNet) presented by
Hinton [14] arouses our attention for its interesting charac-
teristics. Capsule structures pack status of detected features in
the form of vectors, which provide novel andmore reasonable
ways for mining features. Moreover, the dynamic routing
between different capsule levels finds a new approach to
integrate low level features into high level ones. In view
of the above, we try to employ capsule structure in the
encoder network. To our knowledge, capsule network has
been adopted as a discriminator of GAN-type generative

models in some literatures [15], [16], since this implemen-
tation is quite straightforward because CapsNet itself is orig-
inally a classification network. Whereas it is the first work
that capsule is employed in the encoder of an image synthesis
model. Certainly we adopt some specific approach to control
conditional encoding, meanwhile we believe this process-
ing will make full use of the capsule structure and exhibit
potential results. Nevertheless, we also notice that the current
implementation of capsule is far from perfection. As reported
in some literatures [15]–[17], the original CapsNet only out-
performs other convolutional neural networks (CNNs) on
simple data sets such as MNIST, but fails to mine promising
features on more complex ones. Although the capacity of
present capsules are limited which may only make progress
on the simplest hand-written digit synthesis, we believe this
novel idea is of great potential and worthy of investigation.
Our contribution can be concluded as followings:

(1) We design an end-to-end conditional generative model
based on IntroVAE which contains three functional
networks. Encoder and generator are adversarially
trained in an introspective manner, and classifier is
added for conditional synthesis. It is the first work that
applies the introspective manner to conditional image
synthesis as far as we know.

(2) Since classifier is added in this framework, we intro-
duce feature matching for loss evaluations. Features
captured by the classifier provide a good measure
between the generated and the real images, therefore
clearer images can be obtained.

(3) We investigate the capsule structure to construct
the encoder, and design a class-wise capsule mask
approach to control the label participation. In addition,
we supplement capsule loss for encoder to further
facilitate conditional encoding and avoid confusion
between classes. Experimental results have shown the
better clarity and some unique styles of the capsule
encoding.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND
Image synthesis can be divided into two categories:
the unconditional and the conditional. The uncondi-
tional synthesis have firstly been researched and made
progress. Deep Convolutional Generative Adversarial Net-
work (DCGAN) [18] introduces the convolutional network
into the generative model for unsupervised training. This
structure uses the convolutional network to extract the feature
and improve the learning effect of generator network. The
dynamic routing used in [14] is regarded as a more robust
algorithm for feature globalization compared to pooling used
by CNNs, so some researches use CapsNet as the discrimina-
tor in place of CNN to synthesize more diverse and visually
accurate images on the basis of DCGAN [15]. To stabilize the
training process of GANs, Wasserstein GAN (WGAN) [19]
utilizes the Earth Mover Distance as the objective for training
the model.
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Compared with the unconditional, conditional image syn-
thesis can generate images according to some specific con-
ditions. The provided conditions can be object category [11],
attribute [9], description [8], image [4], etc. Conditions are
usually given or learned as binary codes or embedding fea-
tures [4], [8], [9], [11]. Recently, many generative mod-
els [10], [11], [15], [20]–[23] combine the conditions with
the latent vector as the input of models. Based on VAE,
CVAE [10] is developed to model complex structured output
representations for structured output prediction. To condi-
tionally generate images, CVAE modifies the conditional
probability with condition labels for the inputs of both
encoder and decoder. CGAN [11] is a conditional version of
GAN by which some conditions are introduced into the gen-
erator and discriminator. Similar to CGAN, CDCGAN [20],
[21] and CWGAN [22], [23] are proposed for conditional
image synthesis based on GANs [18], [19]. PixelCNN pro-
vides a new approach based on image contexts [7], but its
slow training speed and poor synthesis quality show that this
type of model is far from maturity.

There are also some hybrid models by combining VAE and
GAN. VAE/GAN [24] and Adversarial Autoencoders (AAE)
[25] train the encoder, generator and discriminator to achieve
image generation under unsupervised learning conditions,
while the former utilizes the discriminator in data space and
the latter utilizes the discriminator in latent space. Further-
more, ALI [26] and BiGAN [27] utilize the discriminators in
both data space and latent space. Based on the architecture
of VAE/GAN, CVAE-GAN [12] has added a new classifier
and category labels to achieve fine-grained image generation,
and simultaneously the mean feature matching is introduced
into the loss function to avoid the model collapse problem to
some extent.Moreover, IntroVAE [13] proposes a novel intro-
spective variational autoencoder which can self-evaluate the
quality of generated samples. IntroVAE contains an encoder
network and a generative network, which form an adversarial
relationship without extra discriminators.

B. RELATED WORK
The models which are most closely related to and have partly
inspired our work are reviewed as following:

1) CVAE-GAN
The framework of CVAE-GAN consists of four parts:
encoder, generator, discriminator and classifier [12]. The
functions of its encoder and generator are the same as CVAE,
while the discriminator and generator compete like mean
feature matching based GAN. The mean feature matching
between real samples and synthesized images requires an
objective for the generator which is related to the discrimi-
nator. It is formulated as:

LGD =
1
2

∥∥Ex∼Pr fD(x)− Ez∼Pz fD(G(z))∥∥22 . (1)

where fD(x) denote features on an intermediate layer of
the discriminator. Similarly, the classifier network and the

reconstruction images are also involved in loss functions LGC
and LG with the feature matching idea. Therefore, the final
objective of CVAE-GAN can be assembled with:

L = LD + LC + λ1LKL + λ2LG + λ3LGD + λ4LGC (2)

where LD and LC are loss functions of the discriminator and
classifier, LKL is related to encoder, LG, LGD, LGC are related
to the generator, and λs are four hyperparameters to balance
each item.

2) INTROVAE
IntroVAE selects the encoder of VAEs as the discriminator of
GANs and the generator of VAEs as the generator of GANs
[13]. The objective of VAE is to maximize the variational
lower bound of pθ (x) as the following:

logpθ (x) ≥ Eqφ(z|x)logpθ (x|z)

−DKL
(
qφ (z|x) ||p (z)

)
. (3)

where this evidence lower bound (ELBO) objetive can be
divided into two components: reconstruction error LAE and
the regularization term LREG. LREG is used as the adversarial
training cost function, thus the encoder is trained to minimize
LREG to encourage the posterior qφ (z|x) to match the prior
p(z), as well as to maximize LREG to encourage the poste-
rior qφ

(
z|G(z′)

)
to deviate from the prior p(z). Conversely,

the generator is trained to produce samples that have a small
LREG. Therefore the losses for the model are designed as:

LE (x, z) = E(x)+ [m− E (G(z))]+ , (4)

LG(z) = E (G(z)) . (5)

where E(x) = DKL
(
qφ (z|x) ||p (z)

)
, m is a positive margin,

and [·]+ = max(0, ·). To solve the latent mode collapse
and training instability problems with the above adversarial
manner, LAE is combined with Eq. (4) and (5) respectively.
The addition of reconstruction error builds a bridge between
the encoder and the generator and usually makes the hybrid
model more stable.

3) CAPSULE NETWORK (CAPSNET)
CapsNet is presented [14] where a capsule represents a group
of neurons. The length of capsule’s activity vector is used to
represent the probability that the entity exists and an iterative
routing-by-agreement mechanism is designed to improve the
performance of CapsNet. CapsNet uses margin loss to eval-
uate the length of instantiation vector which represents the
probability that an entity exists. This margin loss is defined
as:

Lc = Tcmax
(
0,m+ − ‖vc‖

)2
+ λ (1− Tc)max

(
0, ‖vc‖ − m−

)2
, (6)

where Tc = 1 marks the presence of a class c, m+ = 0.9,
m− = 0.1 set the length thresholds, and λ = 0.5 down-
weights the loss for absent classes.

VOLUME 8, 2020 153907



K. Zheng et al.: Conditional Introspective Variational Autoencoder for Image Synthesis

FIGURE 1. The architecture of our proposed conditional synthesis model.
It consists of three components, the encoder network, the generative
network and the classification network. Real images are encoded as
latent variables by the encoder, and the generative network learns how to
reconstruct images from the latent variables and generate image from
random latent samples. Synthesized images are then fed into the encoder
to obtain samples’ posterior distribution, which will be matched to the
prior distribution in the training. The real images and generated images
are respectively fed into the classification network for measuring the
classification probability and promoting the conditional generation
effect.

III. METHODOLOGY
A. ARCHITECTURE
To conditionally generate clear and realistic images, the vari-
ational autoencoder learning framework with introspective
training is proposed. As shown in Figure 1, the present archi-
tecture consists of three components: an encoder, a generator
and a classifier.

The encoder is used to map an input image x into
an approximate posterior to match the prior distribution,
so does the encoder network in CVAE which employs tra-
ditional CNNs. Furthermore, similar to the one in IntroVAE,
the encoder here also provides an adversarial mode and then
plays a role in discriminating the generated samples from the
training data. This contributes to generate sharp images.

In our pipeline, we have implemented two different struc-
tures for the encoder. The first one simply employs a tra-
ditional CNN as the encoder network to evaluate the effect
of our framework. Considering the conditional encoding
potential of capsule structure, a Capsule Network (CapsNet)
is employed for an optional implementation. As far as we
know, different from the current work which uses CapsNet
as the discriminator or classifier, this study is the first work
to explore the encoding capacity of CapsNet. The dynamic
routing between capsules is a more robust feature integration
scheme than the traditional max-pooling of CNNs, which
makes high-level capsules have stronger feature expression
ability. Moreover, we are able to achieve conditional encod-
ing by masking high-level capsules of other categories with
the employment of capsules. This is different from other
works in which class labels and input images are encoded
after concatenating them. In order to distinguish our mod-
els realized by two different encoders, we name the former
as CCVAE and the latter as CCapsVAE in the following
expression.

B. CONDITIONAL INTROSPECTIVE ENCODER
Multiple loss functions are designed for the encoder of
CCVAE to achieve conditional introspective training. First
of all, the KL-divergence [28], a classical mathematical tool
which can be used to approximate very complex data distribu-
tions, is employed to regularize the encoder by encouraging
the posterior probability qφ(z|x), where z is the latent vec-
tor corresponding to the input image x, to match the prior
probability p(z). Following the original VAEs [1], we use the
centered isotropic multivariate Gaussian N (0, I ) to describe
the prior probability. Let the posterior probability denote by

qφ(z|x) = N (z;µ, σ 2), (7)

where µ and σ are the mean and variance, respectively,
computed from the output variables of the encoder network.
The input z of the generator G is generally sampled from
N (µ, σ 2). Note that the sampling operation is discrete and
non-differentiable and thus it is hard to perform the gradient-
based back propagation. To address this point, the method of
reparameterization trick [1] is used here, according to which
a random variable ε is first sampled from a Gaussian distri-
bution and then translated and zoomed to z, as the following:

z = µ+ ε � σ, (8)

where ε ∼ N (0, I ), and � means the element-wise multipli-
cation. Then given N data samples, the KL-divergence LKL ,
as the first sub-objective of the encoder, can be computed as
below:

LKL (z;µ, σ) =
1
2

N∑
i=1

(
1+ log

(
σi

2
)
− µi

2
− σi

2
)
. (9)

For conditional image generation, the feature of the a
generated image which belongs to a specific category should
be matched with the average feature of real data in this
category [29]. According to this idea, the feature matching
objective, denoted by LFM here, is used to make the generated
images as distinct and similar as possible to the real data.
Moreover, it also prevents the model from gradient vanishing
and makes the training process more stable. As the second
sub-objective, LFM is composed of two components. The first
component, denoted by Lmse(xr , r), is expressed by the pixel-
wise mean squared error (MSE) function, which measures
the difference between the real image x and the reconstructed
image xr , as following:

Lmse (xr , x) =
1
2

N∑
i=1

∥∥xr,i − xi∥∥2F , (10)

where xr,i denotes the reconstruction of the i-th data xi. A
smaller Lmse(xr , r) suggests that xr and x are closer to each
other. The second component of LFM is the mean feature
matching, denoted by Lmfm(xr , x), similar to the expression
in literature [12], which requires that the feature center of the
reconstructed image xr to match the feature center of the real
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image x, as following:

Lmfm(xr , x) =
1
2

N∑
i=1

∥∥fC (xr,i)− fC (xi)∥∥22 , (11)

where the function fC (·) returns the features on an inter-
mediate layer of the classification network. For simplicity,
we select the input of the last fully connected (FC) layer
of classification network as the features. Then, based on
Formulas (10) and (11), the final feature matching objective
LFM is defined as:

LFM (xr , x) = Lmse(xr , x)+ Lmfm(xr , x). (12)

Moreover, in the training process, two types of fake sam-
ples are used to learn more expressive latent features and
generate more realistic images [30]. They are the recon-
struction samples xr from the posterior qφ(z|x) and the
generated samples xp from the prior p(z), respectively. For
training the model in an adversarial manner, we use the KL-
divergence LKL defined in Formula (9) as the cost function
of the adversarial training. The encoder network is trained
to minimize LKL (z) and maximize LKL (zs), where z and zs
denote the latent vectors corresponding to x and xs (s = r, p),
respectively. Therefore, the total loss function for the encoder
network of CCVAE is defined as:

LE = LKL (z)+ α
∑
s=r,p

[m− LKL (zs)]+

+βLFM (x, xr ) , (13)

where [·]+ = max(0, ·), α and β are the weighting parameters
used to balance the importance of each item, and m is a
positive margin. When LKL(zs) ≤ m, Formulas (13) and (15)
form amin-max game between the encoder and the generator.

C. CONDITIONAL CAPSULE ENCODER
If the encoder of our model is implemented with the cap-
sule network, a novel approach of label participation in
conditional encoding can be employed. Figure 2 demon-
strates the mechanism of the conditional capsule encoder for
CCapsVAE.High-level capsules aremasked by the class label
to obtain conditional capsule features. Except the specified
capsule, all vectors are masked to zero.

For the encoder of CCapsVAE, there are four sub-
objectives jointly trained. Based on the above subsection,
the capsule loss Lc in Formula (6) is added to facilitate
conditional synthesis. Therefore, the total loss function for
the encoder of CCapsVAE is defined as:

LE = LKL (z)+ α
∑
s=r,p

[m− LKL (zs)]+

+βLFM (x, xr )+ Lc, (14)

where notations are the same as Formula (13). The first two
components guarantee the diversity of synthesis and self-
evaluation, LFM enables the reality of generation, and Lc
improves the conditional capsule encoding.

FIGURE 2. Mechanisms of the conditional capsule encoder.

D. GENERATOR AND CLASSIFIER
The implementations of the generator and classifier of
CCVAE and CCapsVAE are coincident. For the generator,
to make the posterior distribution of the generated / recon-
structed images match the prior distribution, the training
objective is defined as the following:

LG = α
∑
s=r,p

LKL (zs)+ βLFM (x, xr ) . (15)

The symbols in Formula (15) have the same meanings to
those in the above-mentioned formulas. The feature matching
based reconstruction loss is also added into this objective to
offer introspective competition and promote more realistic
generation of the generator.

For the classifier, it is implemented by a traditional CNN-
based classification network which is optimized by the cross-
entropy loss function. The features before the last fully con-
nected layer of the classifier are used for feature matching
which facilitates for conditional image generation as men-
tioned above. The details of generator and classifier will be
expounded in Section IV-A.

IV. EXPERIMENTS
A. IMPLEMENTATIONS
On account of our computational power and the estimated
capacity of capsule network, the proposed model is evaluated
on two small datasets:MNIST and Fashion-MNIST.We com-
pare our models with several typical conditional generative
models including state-of-the-art ones. MNIST includes the
handwritten digital data with 10 categories. And Fashion-
MNIST covers a total of 70,000 images from 10 different
categories, with size, format, and training / test set partition
as same as those of the original MNIST dataset. Each image
of these two datasets is composed of 28×28 pixels, and each
pixel is represented by a grayscale value. So the size of every
synthesized image is 28× 28 as well.
In the experiments, the encoder of CCVAE consists of four

convolutional layers, followed by two fully connected layers,
which have 128, 256, 256 and 512 channels with the filter
size of 5 × 5, respectively. All of these convolutional layers
use the stride of 2 and the Leaky ReLU activation.

And the encoder of CCapsVAE uses a Capsule Network
with two convolutional layers and one fully connected layer.
The first convolutional layer includes 256 convolution kernels
with the size of 9 × 9, and every kernel has the stride of 1
and the ReLU activation. The second convolutional layer is
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FIGURE 3. Images conditionally generated by the six models, trained over MNIST. (a) CCVAE, (b) CCapsVAE, (c) CVAE-GAN, (d) CVAE,
(e) CWGAN, and (f) CDCGAN. CCapsVAE is trained for only 11 epochs, CDCGAN for 30, CCVAE and CVAE-GAN for 50, and CVAE and
CWGAN for 100 epochs.

regarded as the Primary Capsule Layer [14] of CapsNet. Here
32×6×6 capsule outputs are produced and each capsule is an
8-dimensional vector. These capsules are routed to the final
fully connected layer by the iterative routing-by-agreement
mechanism. The final layer generates ten 16-dimensional
capsules. Then, these high-level capsules are masked by the
class label for conditional encoding.

The generator consists of a fully connected layer, followed
by five deconvolutional layers. Among these deconvolutional
layers, all of the first four use the same stride of 2 and
the Leaky ReLU activation, whereas they produce 512, 256,
256 and 128 channels with the filter size of 5×5, respectively.
The last deconvolutional layer employs one 5×5 convolution
kernel with the stride of 1 and the tanh activation.

For the classifier, four convolutional layers are employed,
followed by two fully connected layers. The last layer outputs
the classification probability by a softmax function.

To balance the training of the encoder and generator
models, the configuration of the hyper-parameters is: m =
10, α = 0.5, β = 0.25.

B. RESULTS AND ANALYSIS
In this subsection, the experimental results on MNIST and
Fashion-MNIST are exhibited and discussed from both visual
and quantitative aspects.

1) VISUAL RESULTS AND ANALYSIS
From the results shown in Figure 3, we can draw the following
observations:

(1) Realness and artifacts. CCVAE can produce more
realistic images with few artifacts than the existing
methods. CCapsVAE and CWGAN also perform well
with delicate strokes and fewer artifacts. Images from
CDCGAN are unnatural to some extent, and the most
severe artifacts of CVAE-GAN are attributed to the
unsuccessful training.

(2) Clarity and blur. Actually, images with the finest
strokes and sharpest contours are observed from
CCapsVAE, which acts more like GANs. CCVAE gen-
erates images with less blur than CVAE, confirming
that the feature matching has compensated for the
deficiency of MSE.

(3) Synthesis diversity. Diversity of CCVAE is the best
among the involved competitors, where different writ-
ing styles can be observed in the conditional gen-
eration. Synthesized digits of ambiguous classes are
also the fewest, which proves the superiority of the
proposed conditional introspective framework.

(4) Training difficulty. Although the CapsNet is shallow
with only three layers, the CCapsVAE can learn the
features of images faster and generate good-quality
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FIGURE 4. Conditional images generated by (a) CCVAE, (b) CCapsVAE, (c) CVAE-GAN, (d) CVAE, (e) CGAN and (f) CDCGAN, trained over
Fashion-MNIST.

results with fewer training iterations compared to other
models. CVAE-GAN is the most difficult to train
among all the models in our experiments. As shown
in Figure 3(c), we failed to generate promising results
by configurating hyper-parameters with our best
efforts.

Results on the Fashion-MNIST dataset are shown
in Figure 4. For all models, we conduct experiments
without tuning any hyper-parameters. As illustrated in
Figure 4(a) and 4(b), the images generated by CCVAE and
CCapsVAE are clear and realistic enough. On this data set,
CCVAE shows a comprehensive synthesis performance, with
both good diversity and completeness of patterns. CCapsVAE
is able to produce clear patterns, but diversity is somehow
inferior to CCVAE. Textures and patterns on clothing are also
ignored by the capsule encoder, which tends to generate clear
images with homogenous gray levels. All GAN-type models
have poor conditional generation performances on this data
set. Figure 4(e) and Figure 4(f) show the results of CGAN
and CDCGAN after 100 epochs of training. In their columns
labeled ‘‘Ankle boot’’, many other objects appear including
‘‘T-shirt’’, ‘‘Pullover’’ and ‘‘Bag’’, but patterns like ‘‘Ankle

boot’’ does not. Furthermore, the image artifacts generated
by CGAN and CDCGAN are very obvious. CVAE shows
a blurry but not bad result as we expect, and CVAE-GAN
is again difficult to train. Based on the above visual results,
our proposed framework has obvious advantages compared
to other baseline methods, while the capsule encoder seems
to be more suitable for structural feature capture.

2) QUANTITATIVE RESULTS AND ANALYSIS
In addition to the visual observation of experimental results,
the popular inception score [31] is employed as a quantitative
evaluation measure. Since the inception score evaluates the
image quality in terms of diversity and clarity, it is actually
inadequate to reflect the effects of conditional synthesis.
However, due to the lack of commonly accepted metrics for
evaluating whether the generated image is well conditioned,
we just supplement the clarity calculation as another synthe-
sis quality metric for reference. The results on MNIST and
Fashion-MNIST are shown in Table 1, according to which
we have the following observations:

(1) On both data sets, the indicators of CCVAE and
CCapsVAE take the leading places, which validate the
effectiveness of our proposed models.
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TABLE 1. Quantitative results on MNIST and Fashion-MNIST.

(2) Overall, higher inception scores seem to indicate better
synthesis diversity. However, this diversity may only
reflect an overall synthesis effect, not for each condi-
tion. For example, CVAE obtains low clarity values but
fine inception scores on both data sets, which mean the
diversity is good under the measure of metrics. But if
we refer to the visual results, many samples of ambigu-
ous classes will be observed. Moreover, the clarity
metric is partial to GAN-type models in spite of their
artifacts. Although our models show pleasant results
on the quantitative measures, appropriate metrics for
conditional synthesis still remain to be studied.

V. CONCLUSION
In this paper, we propose a conditional variational autoen-
coder for image synthesis. A framework consisting of three
parts is trained in an introspectivemanner to produce realistic,
clear and diverse images. Moreover, the capsule structure is
investigated as the encoder to achieve conditional encoding,
and experimental results have shown us a surprisingly bet-
ter synthesis clarity than we imagine. Our future work will
attempt to realize more complex and realistic image synthesis
of high-resolution. And the encoding of real image distribu-
tion and mining of image essential features for image gener-
ation will be further studied.
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