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ABSTRACT We not only collected 1102 samples form 3 different breast invasive carcinoma (BRCA)
datasets, which included a TCGA dataset and 2 GEO datasets, but also collected 23 other cancer datasets,
one of which included more than 100 samples. Using these datasets, we topologically inferred miRNA-
mediated subpathway activity profiles, which integrated gene expression profiles, prior gene interaction
information and target relations between miRNAs and genes, and topological information. Then we con-
structed the Global Directed Pathway Network (GDPN) with genes as nodes, and from 3 BRCA datasets
and other 23 cancer datasets identified a set of miRNA-mediated subpathways that are survival-related
risk markers. The results showed large activity values correlated with poor prognosis, such as hsa-miR-107
and hsa-miR-142-3p of BRCA datasets. We assessed the stability and robustness of the miRNA-mediated
subpathway survival markers with 2 GEO datasets and 23 external independent datasets. The results showed
that the proposed method can significantly reduce noise from sequencing errors and samples heterogeneity
by integrating pathway topological information, and can break down the boundary of pathways and provide
a new measure for detecting survival-related markers. The top miRNA-mediated subpathways are more
reliable in stratifying high risk group and low risk group and selecting therapeutic strategies.

INDEX TERMS miRNA-mediated subpathway, survival marker, prognosis, topological information,
machine learning.

I. INTRODUCTION
Breast invasive carcinoma (BRCA) is not only the most
commonly diagnosedmalignancy in women around the globe
but also the world’s first cause of female deaths from can-
cer [1]. BRCA is a heterogeneous disease since from one
patient to another it differs in clinical presentation, molec-
ular characteristics, and prognosis [2]. The heterogeneity of
BRCA increases the complexity of pathological diagnosis,
deciding subtypes and stratification for clinic treatment. For
BRCA patients, personalizedmedicine is becoming a promis-
ing way to overcome large variations between individual’s
treatment responses [3], [4]. In this study, we need to detect
robust risk survival markers related to BRCA and evaluate the

The associate editor coordinating the review of this manuscript and

approving it for publication was Quan Zou .

performance of our method based on independent datasets.
Furthermore, the purpose of our study based on survival data
was to find consistent risk miRNA-mediated subpathways
(miRNAs), together with facilitation of cancer samples strat-
ification, which could be associated with the prognosis of
cancers.

MicroRNAs (miRNAs) are short, endogenous, non-coding
RNAs that regulate post-transcription by inhibiting the
expression of target genes, thereby affecting the initiation,
progression, and prognosis of cancers [5]–[7]. Many stud-
ies about high-throughput miRNA-expression profiling have
been performed with the aim to identify cancer-related miR-
NAs for clinical utility in diagnostic and prognostic appli-
cations [8]–[10]. MiRNAs are stable and protected from
RNase-mediated degradation, thereby enabling its detec-
tion in biological fluids and archival tissues for prognosis
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biomarker studies [11]. Thus, several methods were proposed
to detect miRNA survival-related biomarkers of the cancers,
such as mirwalk analysis platform [12], SVR- luad [13] and
miMe [14]. Despite these efforts, at present it is quite dif-
ficult to find a clear compendium of miRNA markers for
BRCA survival. The stratification performance of miRNA
biomarkers often descends drastically in other independent
datasets for the same disease phenotype. These problems
may be caused by cellular heterogeneity within tissues, the
racial differentiation of the patients, the measurement errors
in microarray platforms and the sample shortages [15].

Previous studies demonstrated that pathways could be used
as a crucial feature in identification of cancer-related sur-
vival markers [16]. Therefore, pathway topological analysis
can also be used to mine candidate markers for progno-
sis prediction. Therefore, we incorporated multiple infor-
mation, such as the differentially expressed level of genes
(univariate Cox regression p < 0.05), the topological impor-
tance of genes in the Global Directed Pathway Network
(GDPN), clinical information of samples and target rela-
tionships between miRNAs and genes, to identify miRNA-
mediated subpathways that could be levered as markers of
survival and prognosis for BRCA. The purpose of this study is
to topologically infer active miRNA-mediated subpathways
toward precise identification of risk survival-related markers.
To undertake this work, we proposed a machine learning
method, which included data preparation, survival markers
selection and risk markers evaluation. First, the collection
provided a TCGA (The Cancer Genome Atlas) and 2 GEO
(the Gene Expression Omnibus) datasets that included 1102
human BRCA samples, and obtained the target relation-
ships between miRNAs and genes from TarBaseV6.0 [17],
miRecords [18], miRTarBase [19], and miR2Disease ([20]
databases. We also downloaded other 23 cancer datasets,
which included 7086 samples. Second, the GDPN was con-
structed with genes as nodes. Third, we inferred the expres-
sion profiles of miRNA-mediated subpathway activity and
extracted the active miRNA-mediated subpathways as risk
survival markers by Lasso-Cox model. Finally, we evalu-
ated the performance of our method based on 2 independent
datasets and other 23 cancer datasets. After internal and
external cross-validation, the top 20 high frequency miRNA-
mediated subpathways selected as risk survival-related mark-
ers were used to construct risk predictors to stratify patients
with respect to their relative risk.

II. MATERIALS AND METHODS
Figure 1 depicts the method of survival markers identifi-
cation. The method contains three parts: data preparation,
survival markers selection and method evaluation. The data
preparation step consists of gene expression matrix and
miRNA expression matrix, in which each row represents a
gene (ormiRNA) and each column represents a sample. Then,
the method integrates the gene expression matrix, topology
information and target relations between miRNAs and genes
into miRNA-mediated subpathway activity profile which is

FIGURE 1. The workflow of survival marker identification. The
miRNA-mediated subpathways are obtained from the gene profiles by
directed random walk. The z(gi ) is a row vector of gene gi expression
value across all samples. The a(miRj ) (i.e. miRNA-mediated sub-pathway
activity) is also a row vector which is the row j of the miRNA (namely
miRj ) expression value across all samples. The middle panel is the
overview illustration of miDRW-based miRNA-mediated subpathway
activity inference. The GDPN is constructed on 343 KEGG pathways, which
include 7159 gene nodes and 39930 directed edges. The dotted line circle
is a virtual node which ensures gene weights to flow through the GDPN. P
is the initial weights of the genes and P∞ is the output weight vector. For
the miRj , we reverse the edge direction when merging the pathways into
the GDPN. The miRNA-mediated subpathway activity a(miRj ) only
integrates expression value vector of the univariate Cox regressio p<0.05
genes of miRj into P∞.

topologically inferred by the directed randomwalk.We select
risk survival-ralated markers by ranking frequency based on
the outcome of 500 Lasso-Cox models. Finally, we evaluate
the performance of our method based on 2 different indepen-
dent datasets and other 23 cancer datasets.

A. GENE AND miRNA SAMPLE-MATCHED
EXPRESSION DATA
We analyzed and collected 3 independent BRCA datasets
(Table S1: Data). One dataset (referred as ‘‘BRCA-
TCGA’’) was downloaded from UCSC Xena Cncer Browser
(https://xena.ucsc.edu/). We obtained the processed Illumina
HiSeq level 3 miRNA and gene expression profiles. Then
we removed miRNAs and genes whose expression values
equaled to 0, and mapped the gene symbols to Entrez
gene ID. Finally, a total of 749 samples with 11574 genes
and 153 miRNAs were profiled and used for further
analysis. We obtained one dataset [21]–[23] (GSE19783)
from the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih. gov/geo/) for independent valida-
tion. The platformwasAgilent-014850whole human genome
microarray (GPL6480) and Agilent-019118 human miRNA
microarray (GPL8227). We mapped the probes to Entrez
gene ID and obtained 80 samples with sample-matched 273
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miRNAs and 19596 genes. We also obtained the other inde-
pendent dataset from the GEO database with accession num-
ber GSE22220 [24]. The platform was Illumina humanRef-8
v1.0 expression beadchip (GPL6098) and Illumina Human
v1 microRNA expression beadchip (GPL8178). A total of
207 samples with 303 miRNAs and 10220 genes profiled
were included for further analysis. We also downloaded
other 23 cancer datasets from UCSC Xena Cncer Browser.
All GEO profiles and 23 TCGA datasetes were processed in
the similar manner with ‘‘BRCA-TCGA’’ profile.

B. miRNA-TARGETS ASSOCIATED WITH BRCA
In this study, the target relationships between miRNAs
and genes were derived from TarBase V6.0, miRecords,
miRTarBase, and miR2Disease databases. After filtering,
a total of 755 226 non-repeated human specific inter-
actions among 1137 miRNAs and 20 263 genes were
obtained as follows: 598 pairs from miR2Disease, 1749
pairs from miRecords, 26 388 pairs from TarBase, and 750
381 pairs from miRTarBase. We integrated predicted and
experimentally verified miRNA-target relationships in our
study.

C. CONSTRUCTING THE PATHWAY GRAPH WITH THE
GLOBAL DIRECTION NETWORK (GDPN)
The global pathway graph was constructed based on the inter-
action data from 343 KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathways by using the R package ‘‘Subpath-
wayMiner’’(https://github.com/chunquanlipathway) [25].
Firstly, each of 343 KEGG pathways was converted into a
directed graph based on the interaction information of the
KEGG. Then the resulting 343 graphs were merged into a
global directed pathway graph (GDPN).Wemerged the genes
that overlapped among the multiple pathways and retained
the topological structure of each pathway. The GDPN cov-
ers 7159 nodes and 39930 edges. Moreover, a virtual node
was added to the GDPN. Each node pointed to the virtual
node and virtual node pointed to all other nodes in the
GDPN [15], [26]. Each node of the graph represents a gene
or a metabolite, and each directed edge represents interaction
or regulation relationships between genes in the GDPN. The
direction of the edge is derived from the type of interaction
between two nodes, which is available from KEGG. For
example, if gene A inhibits or activates gene B, the direction
of edge points to B. The directed random walk [15], [26]
is similar to the PageRank algorithm [27], which is used
to search important Web Pages. For PageRank algorithm, if
there are more other pages pointing to a Web Page, the Web
Page is more important. However, a gene is important if it
regulates more other genes [28]. This gene is often called
hub genes. The GDPN is followed by power law distributions
with an R2 = 0.72, 0.77 and 0.71 for in-degree, out-degree
and total degree, respectively. Only a small fraction of genes
have higher degrees in the GDPN. It is the most important
basic of random walk algorithm [29].

D. miRNA-MEDIATED SUBPATHWAY ACTIVITY INFERENCE
IN THE GDPN
We evaluated the topological importance of genes by the
directed random walk in the GDPN. The formula is defined
as follows:

Pt+1 = (1− r)MTPt + rP0 (1)

M is the row-normalized adjacency matrix of the GDPN,
which was to divide the sum of all elements in the row by
each element of the row; r ∈ [0, 1] (r = 0.7 in this study)
is restart probability; Pt is a vector in which the kth element
holds the probability of being at gene k at time step t; P0 is
assigned to each gene with its -log(p-value), which is derived
from univariate Cox regression analysis, and normalized to a
unit vector; Pt will converge to steady state P∞ after several
iterations until |Pt+1 − Pt | ≤ 10−10. P∞ are topological
weights, which give a measure of global topological impor-
tance of genes in the GDPN. So, we suppose that if genes (1)
have large degree; (2) have significant p-value and (3) are
closely associated with many survival genes that also have
significant p-value, these genes will obtain larger weights.
The larger weights of genes enhance the inference of a more
robust miRNA-mediated subpathway activity. The miRNA-
mediated subpathway activity inference formula is defined as
follows:

a(miRji) =

nj∑
k=1

P∞ · sgn(COXzscore(gk )) · expr(gik )√
nj∑
k=1

(P∞(gk ))2

(2)

Constraint :sgn(COXzscore(gk ) · COXzscore(miRj)) = −1
(3)

According to the formula (2), the significantly differen-
tial target genes (the univariate Cox regression p<0.05, the
same as significantly differential target genes below) of each
miRNA, could be integrated into a special value, which was
called miRNA-mediated subpathway activity. Therefore, the
miRNA-mediated subpathway with different sizes are com-
parable under this activity score function. The expr(gik ) is
the normalized expression value gene k on the ith samples;
COXzscore( ) is the z statistics of gk and miRj from a
univariate Cox regression analysis on their expression val-
ues and the surviving time; sgn( ) returns −1 for negative
numbers and+1 for positive numbers; nj represents the num-
ber of differentially expressed target genes of each miRNA-
mediated subpathway in the GDPN; j represents the number
of miRNA. The formula (3) is a constraint, which is added
to formula (2) to detect the negative regulation between
miRNAs and genes (sgn(COXzscore(gk )·COXzscore(miRj))
equal to−1). For example, for upregulated miRNAs, we only
integrated downregulated target genes into the gene set and
calculated miRNA-mediated subpathway activity, and vice
versa. In other words, if COXzscore(gk )·COXzscore(miRj) is
negative and COXzscore(gk ) is positive, the expression val-
ues of gk in high risk samples will be larger than those in low
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risk samples; if COXzscore(gk )·COXzscore(miRj) is negative
and COXzscore(gk ) is negative, the expression values of gk
in high risk samples will be smaller than those in low risk
samples. Thus, the value of a(miRji) will be large in high
risk samples and small in low risk samples for all negatively
correlated miRNAs and genes. Finally, we obtain an activity
profile of miRNA-mediated subpathway, of which each row
represents a miRNA and each column represents a sample,
and the values represent the activity of the miRNA in BRCA.

E. THE SELECTION OF RISK miRNA-MEDIATED
SUBPATHWAY AND THE EVALUATION OF METHOD
For selecting the risk miRNA-mediated subpathway, we
sorted the miRNA-mediated subpathways activity by their
univariate Cox regression p-value in increasing order and
selected miRNA-mediated subpathways with p-value < 0.05
as candidate survival markers. Then we used Lasso-Cox
model to select risk survival-related markers, and used
C-statistic to estimate the number of survival markers. Firstly,
we randomly selected one-fifth of samples for test and the
rest for training. For unbiased evaluation, we repeated five-
fold cross validation 100 times and calculated the average
C-statistics. A total of 500 concordance statistics were gener-
ated from five test sets in turn. The R package ‘‘glmnet’’ was
used to implement Lasso-Cox model based on activity profile
of candidate survival markers. The input of Lasso-Cox model
is the data (aji, tji, σji), where aji is the jth miRNA-mediated
subpathway activity of ith sample; tji is the the survival time
when σji= 1, and is the censoring timewhen σji= 0. Thus, we
could study the relationship between the miRNA-mediated
subpathway activity values and the survival times. A few
more important miRNA-mediated subpathways are selected
with nonzero coefficients (lambda.min). Then we counted
their frequency over 500 Lasso-Cox models. The top ranked
miRNA-mediated subpathways in the frequency list are used
as candidate risk survival markers. Finally, we use the R
package ‘‘survAUC’’ to calculate the C-statistic and estimate
the number of survival markers.

III. RESULTS
A. THE METHOD INFERRED SURVIVAL-RELATED
miRNA-MEDIATED SUBPATHWAY ACTIVITY
First, the method is applied to analyze the BRCA-TCGA
dataset. We calculated the topological importance of each
gene in the GPDN with the formula (1), and inferred
miRNA-mediated subpathway (miRNAs) activity profiles
with the formula (2) and formula (3). In miRNA-mediated
subpathway activity profiles, each row represented amiRNA-
mediated subpathway (miRNAs) and each column repre-
sented a sample. For BRCA-TCGA dataset, a total of 153
miRNA-mediated subpathway and 749 samples were con-
tained in the inferred activity profiles. To reveal the sur-
vival predictive ability of the miRNA-mediated subpathway
activity, we sorted the activity profile of miRNA-mediated
subpathways by their univariate Cox regression p-value

FIGURE 2. The activity value of top 20 miRNA-mediated subpathways
were used in the hierarchical cluster analysis. (A)-(C) The activity values
of top 20 miRNA-mediated subpathways are used in the BRCA-TCGA,
GSE19783 and GSE22220, respectively. The row and column represent
miRNA-mediated subpathway and samples (The red and blue bar
represent good and poor survival), respectively. (D) The height of the bar
represents the survival times (days). The clusters are generated with
hierarchical cluster analysis.

in increasing order. Then, the candidate miRNA-mediated
subpathways (p < 0.05) inputted the Lasoo-Cox model to
perform 100 times five-fold cross validation, and calculated
the average C-statistics. The range of average C-statistics
was from 0.6102 to 0.8125. It was a stable point of the
C-statistics when the N equaled to the 20. Therefore, we
called the most frequent miRNA-mediated subpathways (the
top 20) survival-related risk markers. These miRNAs have
been shown to be related to BRCA survival (Table S1:
miRNAs). Hierarchical clustering of the risk markers activ-
ity profiles was performed using the R package ‘‘gplots’’
with complete linkage and Euclidean distance (Figure 2).
In the heatmap, each row represented a miRNA-mediated
subpathway, and each column represented a sample. The
survival patterns of BRCA-TCGA dataset were shown in the
cluster analysis. The blue cluster samples had poor survival
(958.34±769.51, Figure 2A). It implied that samples had
larger values of the miRNA-mediated subpathway activities
in the high risk cluster, and the miRNA-mediated subpath-
way activities could effectively distinguish different survival
pattern of samples. Furthermore, we performed hierarchical
cluster analysis based on GSE19783 and GSE22220 using
these risk markers except hsa-miR-330 (no hsa-miR-330
in GSE19783 and GSE22220). We obtained the consistent
results across these independent datasets (Figure 2B-2C). The
results showed that our method could infer robust
miRNA-mediated subpathway activities, which can dis-
tinguish samples with more significance. Furthermore,
these most frequent miRNA-mediated subpathways not
only divided samples into two clusters, but also divided
them into more detailed subtypes with different survival
times (Figure S1).
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B. THE miRNA-MEDIATED SUBPATHWAY INTEGRATED
TOPOLOGICAL IMPORTANCE OF THE TARGET GENES
The risk markers that are selected based on activity pro-
file can give us insight into the biological basis about why
breast cancer patients have good and poor outcome. For
simplicity, if the target genes of miRNA are univariate Cox
regression p < 0.05, we called them differentially expressed
target genes in this study. We inferred the activity profile by
directed random walk method, which integrated the topolog-
ical importance of differentially expressed target genes in the
GDPN. For evaluating the value of the topology information,
we annotated differentially expressed target genes of risk
markers into KEGG pathways, respectively. We ranked those
pathways with the p < 0.01 in ascending order, and selected
the pathways of FDR < 0.05 (Benjamini and Hochberg
method). A total of 189 pathways were annotated, and each
pathway of the 189 KEGG pathways was selected with the
risk markers. Then we counted the frequency occurrences
of each pathway and identified the most frequent pathways
with over 10 occurrences, of which 82.76% (24/29) were
supported by the existing literature (Table S1: Pathways).
‘‘Metabolic pathways’’ (hsa01100) and ‘‘HIF-1 signaling
pathway’’ (hsa04066) were ranked first and second on the
most frequent pathways list respectively. The ‘‘Metabolic
pathways’’ had been the research hotspots in the therapy of
breast cancer [30-33]. Metabolic pathways promoted cancer
cell survival and growth [34]. The ‘‘Metabolic pathways’’
had been shown to play important roles in early can-
cer detection such as amino acid metabolism, arachidonic
acid (AA) metabolism, fatty acid metabolism, linoleic acid
metabolism, and retinol metabolism, showing significant dif-
ferences between the breast cancer group and the control
group in a Korean prospective cohort [30]. Many researches
had shown that the effects of hypoxia-inducible factor 1
(HIF-1), a master regulator of the hypoxic response, had
been extensively studied during breast cancer progression
and metastasis [35]. Many studies showed that HIF-1 signal-
ing pathway played a role in breast cancer progression and
metastasis with the PI3K-Akt signaling pathway [36]–[38]
(hsa04151, Figure 3).

Furthermore, we calculated the topological weights of
differentially expressed target genes in the top 20 miRNA-
mediated subpathways, and sorted them in descending order.
38 of the top 100 topologically important target genes were
annotated to the most frequent pathways (over 10 occur-
rences), such as PGK1 and BTG2. PGK1 was a potential
survival biomarker and invasion promoter by regulating the
HIF-1α-Mediated epithelial-mesenchymal transition process
in breast cancer, and high PGK1 expression predicted poor
overall survival (OS) in breast cancer and some other can-
cers [39], [40]. BTG2 inhibited mTORc1 activity by reducing
Raptor-mTOR interaction along with upregulation of tsc1
expression, which led to significant reduction of p70S6K
activation as opposed to AKT1S473, but not AKT2, phos-
phorylation via downregulating PHLPP2 (AKT1-specific
phosphatase) in breast cancers [41]. Additionally, high-level

FIGURE 3. A snapshot of the PI3K-Akt signaling pathway (hsa04151). The
target genes of hsa-miR-107 is annotated to PI3K-Akt signaling pathway.
A gene is colored darker red if one of its target genes is more significantly
disordered ( univariate Cox regression p<0.05).

BTG2 protein expression correlated with prolonged survival
in patients with breast carcinoma. [42]. The result indicated
that the topological integration was valuable strategy, which
could detected the risk miRNA-mediated subpathways and
the key genes of these subpathways (Figure 3, Table S1:
Genes). Furthermore, these miRNA-mediated subpathways
located smaller pathways region, and broke down the bound-
ary of pathways, which helped us to understand the interac-
tion between molecules and detect survival-related markers
from the whole pathway network.

FIGURE 4. The full view of miRNA-mediated subpathways. (A) The full
view of miRNA-mediated subpathways, which include 1087 edges, 20
miRNAs and 292 genes. (B) One node represents a dysregulated miRNA
or target gene, and the color represents the level of differential
expression. Some survival-related star genes targeted by hsa-miR-107
(with five-pointed star in Figure 4A), such as PGK1 and BTG2.

C. CASE STUDY
There were a total of 1087 edges between 20 miRNAs and
their differentially expressed 292 target genes (Figure 4A).
Each miRNA-mediated subpathway activity was integrated
by their differentially expressed target genes, and considered
the topological importance of genes. Then miRNA-mediated
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subpathways were more robust survival markers. For eval-
uating predictive performance of the survival markers, we
further investigated whether the miRNA-mediated subpath-
way activities of the most frequently selected risk markers
could stratified the patients into low-risk group and high-
risk group. We ranked the breast cancer patients by activity
values of each miRNA-mediated subpathway in descend-
ing order, and assigned the top 40% patients as the high
risk group and the the bottom 40% patients patients as the
low risk group. The activity values of hsa-miR-107, hsa-
miR-142-3p, hsa-miR-192, hsa-miR-338-3p, hsa-miR-106b,
hsa-miR-542-3p, hsa-miR-125a-5p and hsa-miR-127-3p sig-
nificantly separated breast cancer patients in independent
GSE19783 and GSE2220 datasets (there is no hsa-miR-330-
5p in GSE19783 and GSE22220). The hsa-miR-107 and
hsa-miR-142-3p ranked the first and the second in the fre-
quency list. Figure 4B showed the network based on hsa-
miR-107, which targeted many star genes of breast cancer,
such as PGK1, BTG2 and CDK8. Furthermore, we used
the R package ‘‘survminer’’ to visualize the Kaplan-Meier
survival curves and the log rank test of subtypes (Figure 5).
Figure 5B and Figure 5E showed the Kaplan-Meier curves
for two risk groups in GSE19783 (log-rank, p = 2e-5 and
p = 2e-3), and Figure 5C and Figure 5F showed the Kaplan-
Meier curves for two risk groups in GSE22220 (log-rank,
p = 5e-3 and p = 3e-2), respectively. It is noted that the
follow-up time of GSE22220 was less than 10 years. Thus we
removed those samples, of which the follow-up time equaled
to 10 years.

FIGURE 5. Kaplan-Meier curves stratified by risk miRNA-mediated
subpathways (markers) for patients. (A)-(C) Kaplan-Meier curves for
patients in BRCA-TCGA, GSE19783 and GSE22220 stratified by the
hsa-miR-107, respectively. (D)-(F) Kaplan-Meier curves for patients in
BRCA-TCGA, GSE19783 and GSE22220 stratified by the hsa-miR-142-3p,
respectively.

Many researches had shown hsa-miR-107 and
hsa-miR-142-3p were the survival-related markers. The hsa-
miR-107 was associated with tumor recurrence and reduced
OS in TNBC patients as it was exclusively up-regulated
in relapsing TNBC compared with non-relapsing TNBC,
healthy subjects or ER + patients [43], [44]. The expression
levels of hsa-miR-107 were significantly elevated in the
metastatic group compared with the disease-free group [45].
Moreover, 20 differentially expressed genes of hsa-miR-
107 were annotated to 39 pathways, and four differentially
expressed genes (JAK1, BCL2, YWHAB and EFNA3) of

hsa-miR-107 were annotated to the PI3K-Akt signaling
pathway. JAK1 expression was significantly lower in breast
invasive carcinoma compared with adjacent normal tissues,
and JAK1 was a prognostic marker and its correlation with
immune infiltrated in breast cancer [46]. BCL2 and YWHAB
were significantly associated with overall survival in breast
cancer [47], [48]. EFNA3 long noncoding RNAs induced by
hypoxia promote metastatic dissemination [49] (Figure 3).
On the other hand, The hsa-miR-142-3p played an impor-
tant role in the therapy of breast cancer. The miR-142-3p
overexpression resulted in a strong decline in breast cancer
stem cell characteristics with a decrease in CD44, CD133,
ALDH1, Bod1, BRCA2, and mammosphere formation as
well as reduced survival after irradiation [50]. Re-expressing
the hypoxia-repressed miR-142-3p, which targeted HIF1A,
LOX and ITGA5, and caused further suppression of the
HIF-1α/LOX/ITGA5/FN1 axis [51]. Notably, higher LOX,
ITGA5, or FN1, or lower miR-142-3p levels are associ-
ated with shorter survival in chemotherapy-treated TNBC
patients [51].

The above results indicated that the miRNA-mediated
subpathways identified by our method could be served as
potential markers for breast cancer prognosis,

D. EXTERNAL VALIDATION OF SURVIVAL MARKERS USING
ON ANOTHER 23 CANCERS
The analyses done so far provided a ranked collection of
miRNA-mediated subpathways found as robust markers of
survival in BRCA. The consistency of the results obtained
with the independent validation gave strong support to the
risk markers found, but we had to consider the activity values
used to evaluate our method in other cancers. We downloaded
other 31 cancer datasets from UCSC Xena Cncer Browser
(https://xena.ucsc.edu/). After data preparation, 23 cancer
datasets withmore than 100 samples were reserved for further
analysis, which contained sample-matched miRNA expres-
sion, gene expression, clinical information. For unbiasedly
evaluating the performance of the method, we calculated the
activity profiles of 23 datasets, then we also selected top 20
miRNA-mediated subpathways (the most frequent miRNA-
mediated subpathways) as risk survival markers. We ranked
the breast cancer patients by activity values of risk markers
in descending order, and assigned the top 40% patients as
the high risk group and the the bottom 40% patients patients
as the low risk group. In 23 cancers datasets, we identified
the most frequent common 89 risk markers, of which 17/89
occurred over 10 times and were supported by the exist-
ing literature (Table S1: Other independent datasets). These
risk markers could significantly separate cancer patients in
their datasets with Kaplan-Meier curves. However, the PRAD
showed an unsatisfactory stratification effect because the
dataset included multi-subtypes, and PRAD was a highly
heterogeneous cancer.

The hsa-miR-107 and hsa-miR-125a-5p ranked first and
second in the frequency list. Clinically, the signature of a hsa-
miR-107 high, DAPK low, and KLF4 low expression profile
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correlated with the extent of lymph node and distant metasta-
sis in patients with colorectal cancer and served as a prognos-
tic marker for metastasis recurrence and poor survival [52].
High hsa-miR-107 expression was associated with poor clini-
copathological parameters and prognosis in pancreatic ductal
adenocarcinoma patients [53]. On the other hand, overexpres-
sion of hsa-miR-125a-5p significantly enhanced the ability
of cell proliferation, migration and invasion in HNSCC, hsa-
miR-125a-5p [54]. The hsa-miR-125a-5p induced apoptosis
via a p53-dependent pathway in human lung cancer cells [55].
In other words, hsa-miR-125a-5p, a diagnosis and prognosis
marker for multiple cancers, was the star miRNA to regulate
important cancer-related pathways and targeted key genes.

Furthermore, we manually retrieved a lot of literatures,
whereas there were no similar methods. We implemented
five famous pathway-based identification of survival mark-
ers methods, which contained the Mean and Median meth-
ods [56], the PCA method [57] and the previous DRWPSurv
method [16]. We repeated five fold validation experiments
100 times on each dataset and cross datasets, and generated
500 C-statistics and 100 C-statistics, respectively (Figure S2).

The external validation of survival analysis showed that the
method could detect the survival risk markers of cancers and
the key target genes of miRNA-mediated subpathway. The
results indicated that the method was designed to be inde-
pendent of diseases, and could detect robust survival-related
markers (genes and miRNAs) in other cancers. Meanwhile,
our method was capable of maintaining the stable identifica-
tion for different measurement platforms and patient cohorts.

IV. DISCUSSION
BRCA is a heterogeneous cancer composed of diverse sub-
types, which presents multiple clinical symptoms. This het-
erogeneity causes the molecular stabilization of BRCA to
remain deficient, with a lack of clear risk markers related to
the prognosis of the BRCA [58]. General risk factors of the
breast cancer in females are age, infertility, age of first full
time pregnancy, age of menopause, an inherited mutation in
the BRCA1/BRCA2 breast cancer gene [59]. In the recent
years, considerable progress has been made to understand the
mechanisms responsible for aberrant miRNA expression in
BRCA and several miRNAs or miRNA families have been
found as key regulators of BRCA hallmarks [60].

The identification of risk miRNA markers with prognos-
tic value in BRCA has been a challenging task [61]. With
the development of high-throughout sequencing technology,
more and more genomes have been successfully sequenced,
many miRNA markers associated with survival have been
found, such as hsa-miR-107 [43], [44], hsa-miR-142-3p [51],
hsa-miR-192 [62], hsa-miR-338-3p [63], hsa-miR-106b [64],
hsa-miR-542-3p [65], hsa-miR-125a-5p [66], [67]) and hsa-
miR-127-3p [68], [69]. Thus, many researchers have increas-
ingly focused on the detection of robust survival-related
miRNA markers. However, at present there is not an explicit
list of survival-related miRNA markers for BRCA and it is
quite difficult to find consistency in the literature.

The recent advance of multi-omics integration technolo-
gies applied to the study of clinical samples does open theway
to provide a new measure of risk survival-related markers.
A clear limitation comes from the fact that, previous studies,
focused on genes or miRNAs how to improve the perfor-
mance of prognostic predictors, ignored effect of the joint
impact from genes and miRNAs. It is well known that miR-
NAs can disrupt biological pathways and cause diseases by
regulating their target genes. Thus, there must be complicated
relations amongmiRNAs, genes and pathways. Another view
about risk survival markers is that, disease phenotypes are
found to be highly associated with the key local subpathways,
rather than entire pathways [25], [70], [71]. We believe that it
is a promising way to understand the biological mechanism
of cancer survival with deep mining of miRNA-mediated
subpathways. If subpathways are to be analyzed effectively,
we shall consider the topology structure of pathway network.

The purpose of this study is to detect robust risk markers
for precise survival outcome prediction. The method con-
tains three parts: data preparation, survival marker selection
and method evaluation. The core of this study is selection
of survival markers, which integrate gene expression pro-
files, prior gene interaction information and target relations
between miRNAs and genes, and survival markers are topo-
logically inferred by the directed random walk. Results have
been shown that the our method obtained a better predictive
performance on breast cancer independent and other cancer
datasets.

We integrated weak signals of pathwaymember genes with
mRNA-miRNAs target relations, miRNA-mediated subpath-
way activities accumulate larger discriminative power and
are more robust in predicting survival outcome than individ-
ual gene or miRNA markers. The reliable performance of
our method could be attributed to the strategy of incorpo-
rating multiple information at the step of miRNA-mediated
subpathway activity inference. Our method reassigned the
topological importance of each gene in a GPDN by directed
random walk. The more topologically important the genes
were, the larger topology weights they could obtain, and
the larger activities they contributed to the miRNA-mediated
subpathways. The directed random walk method adjusted
gene weights according to the topological importance, the
dysregulated signals of key genes were amplified in the
GDPN, and vice versa. Finally, the survival-related miRNAs
were identified with larger topology weights of target genes.
As the hub genes often had subtle expression changes [72],
the robustness of the inferred miRNA-mediated subpathway
activities might be enhanced, leading to better prognosis
prediction.

V. CONCLUSION AND FUTURE WORK
In conclusion, we consider that the results presented in this
study provide strong evidence for the prognostic value of a
list of miRNA-mediated subpathways in BRCA and for their
potential to predict other cancers prognosis. In our method,
the set of miRNA-mediated subpathways is ranked with their
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selection frequency of 500 Lasso-Cox models, being the top
ones in the list that provide best prognostic performance.
In fact, our results show that the top 20miRNA-mediated sub-
pathways applied to independent datasets provided very good
separation of BRCA datasets and other 23 cancer datasets in
two distinct groups of high risk and low risk. The method
can significantly reduce noise from sequencing errors and
samples heterogeneity by integrating pathway topological
information, and can break down the boundary of pathways
and provide a newmeasure to detect survival-relatedmarkers.
However, our method depends on the data collection and
credibility of target relationships. Thus, with the rapid devel-
opment of human interaction databases and the sequence
technology, we believe that the method is a promising way to
precisely predict the state of prognosis, and provide a better
guide for patient treatment.
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