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ABSTRACT The Dynamic Traffic Assignment (DTA) is one of the important measures to alleviate urban
network traffic congestion. The congestions are usually caused by stochastic traffic demands, which are
generally unassignable from time dimension in the real-world but are assumed to be assignable in existing
DTA methods (i.e. real-time travel demands). In this paper, a distributed DTA method for preventing
urban network traffic congestion caused by stochastic real-time travel demands by improving Multi-Agent
Reinforcement Learning (MARL). A team structure, which consists of decision-makers and advisers,
is designed to learn parallelly in realistic DTA tasks. To reduce the size of the solution space adaptively,
the dynamic critical values advised by adviser agents are adopted as constraints for the strategy space of
decision-makers (i.e. main agents). A collaborative heterogeneous-adviser mechanism is designed to avoid
deviation of guidance. To enhance the adaptability of DTA to the changeable external environment, themixed
strategy concept is introduced to improve the decision-making process of main agents. The respective
mapping mechanisms are designed to define adaptive learning rates to improve the sensitivity of MARL.
The Sioux Falls (SF) network is established as a test platform via a Dynamic Network Loading (DNL). The
effectiveness of the suggested DTA method is assessed through numerical simulations SF network. Under
the influence of the scenario with stochastic real-time travel demands, the results show that the proposed
method outperforms in terms of the throughput of the network and the individual average travel time among
the overall network. Additionally, the ability of the proposed method in response to the external environment
rapidly has also been demonstrated. Adopting the suggested method can improve the state of the art to assign
stochastic real-time travel demands dynamically and to avoid potential traffic congestion fundamentally.

INDEX TERMS Dynamic traffic assignment, intelligent transportation system, multi-agent system, rein-
forcement learning, multi-agent reinforcement learning, numerical simulation.

I. INTRODUCTION
Traffic congestion of urban networks and its derivative effects
are the problems faced by many cities [1]. The cause of
traffic congestion is that existing traffic resources cannot
be assigned to meet the rapidly increasing travel demand.
Among existing solutions, Traffic Assignment (TA) provides
administrations with a macro-perspective to eliminate or mit-
igate traffic congestion.

Modeling and solution techniques for TA have been exten-
sively studied sinceWardrop’s Principles (W-Ps) [2]. Existing
traffic assignment problems studied by researchers can be
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classified into two categories: (a) Static Traffic Assignment
(STA) [3]; (b) Dynamic Traffic Assignment (DTA) [4].

STA is so macroscopic that it is difficult to cope with the
real polytropic situation in Traffic Network (TN). Even if
STA had been improved by some scholars considering travel
time reliability [5], it still has limitations. Therefore, DTA has
gradually gained the favor of many scholars.

The current DTAmethods can be divided into several types
depending on different perspectives.

According to the basic method types employed, DTA
can be divided into two categories: (a) Analysis-based DTA
(AB-DTA) [6], [7] (e.g. Mathematical Programming (MP)
[10], [11], Variational Inequality (VI) [12], [13], Nonlin-
ear Complementarity Problems (NCP) [14], Differential

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 154237

https://orcid.org/0000-0002-3374-0721
https://orcid.org/0000-0002-8819-6778
https://orcid.org/0000-0002-2598-1373
https://orcid.org/0000-0001-5636-1364
https://orcid.org/0000-0002-4005-5212
https://orcid.org/0000-0003-1625-6548


Z. Pan et al.: Distributed Assignment Method for DTA

Complementarity (DC) [16] and Differential Variational
Inequality (DVI) [17], [18]); and (b) Simulation-based DTA
(SB-DTA) [8], [9] (e.g. link performance functions [15],
the point queue models [19], and Cell Transmission Model
(CTM) [20] and the Lighthill-Whitham-Richards (LWR)
model [21]).).

According to different goals, general DTA with different
travel choice models can be roughly divided into three cate-
gories: (a) User Optimal DTA (UO-DTA) [24]; (b) Stochastic
User Optimal DTA (SUO-DTA) [25]; and (c) SystemOptimal
DTA (SO-DTA) [26]. Sometimes, the first two categories can
be grouped into a category which is commonly referred to as
User Equilibrium DTA (UE-DTA).

From the perspective of assignment schema, DTA can
be classified into three categories: (a) Path-based DTA
(PB-DTA) [27]; (b) Link-based DTA (LB-DTA); and (c)
Intersection-based DTA (IB-DTA) [1], [28].

However, the above existing DTA methods both assign
traffic demand generated in the network to achieve the
expected objective (e.g. DUE, DSO, etc.) among the spatial-
temporal scale. It is an ideal state that is hardly reached in
the real world. In the realistic world, traffic demands are
usually stochastic and instant. It means that this kind of
demand needs to be dealt with immediately. In other words,
these traffic demands are unassignable in the time dimension.
Therefore, the DTA system should have the ability to assign
traffic demands as they occur. Furthermore, the above DTA
methods solve problems of TN from a top-level and centrical
perspective, in which a lot of time resources are required for
information transmission and solution calculation.

All of the above are challenging for the real-time perfor-
mance of the DTA system. Hence, the real-time performance
must be considered by engineers and scholars for applying
DTA in a realistic TN. Therefore, it is necessary to improve
the real-time performance of existing DTA methods.

Recently,Multi-Agent Systems (MAS) and Reinforcement
Learning (RL) have been integrated and applied to the field
of traffic management, such as traffic control [29], [30] and
route planning [31], [32]. With the advantages of both MAS
and RL, Multi-Agent Reinforcement Learning (MARL) was
introduced for TA [33]. The problem can be solved byMARL
in a distributed perspective due to that travelers decide which
route to adopt and learn from their trips. MARL can provide
a distributed structure to deal with the DTA problem. Hence,
the portability and universality are guaranteed for applying
MARL-based DTA methods to the complex and changeable
traffic network. However, TA which was investigated and
discussed in [33] is STA. Furthermore, to the authors’ knowl-
edge, it is a lack of research on the application of MARL in
DTA. Therefore, it is necessary to investigate and modified
MARL for DTA with a complex and dynamic environment.

Since the dimension and complexity faced by DTA exceed
those of STA, it is necessary to suitably define the space of
state and action in MARL for DTA. Furthermore, the equi-
librium solution in DTA is time-varying, namely that the
convergence point in DTA is time-varying. It requires MARL

with capacity that keeps sensitivity to a dynamic environment
and prepares to explore unfamiliar knowledge at any time.
This capacity can’t be established by employing an attenuated
learning rate or attenuated greedy search strategy which is
generally used in MARL. Therefore, there are significant
components of MARL for DTA requiring further study: (a)
the space of state and action, which affects the arithmetic
speed of MARL; (b) the decision-making strategy, which
balances exploration and exploitation; (c) the learning rate,
which affects the sensitivity on the aspect of time-varying
convergence point.

In this article, we suggest an SB-DTA framework based
on concepts and mechanisms inspired by MARL, namely
Heterogeneous-Adviser based Multi-Agent Reinforcement
Learning (HAB-MARL). This framework is established on
a multi-agent architecture with multiple teams. In this archi-
tecture, the agents can be divided into two categories: (a)
main agents: learning strategy how to select the route for TN
and (b) adviser agents (including two sub-types): updating
recommended value (i.e. critical time and critical size) of the
action space for main agents. For main agents, each agent
independently updates its experience without considering the
effects caused by other agents. For adviser agents, each agent
provides recommendations on the space of action to the
corresponding main agent and updates its experience from
the external environment. Additionally, agents increase their
adaptive capacity for DTA by employing different MARL
algorithms. We particularly focus on considering flexible and
directional guidance to expedite the convergence of MARL,
and on enhancing the MARL’s ability to quickly adapt to
fluctuations in demand and supply for DTA.

The main contributions of this study to the advancement of
the state of the art are summarized as follows:

(1) Aiming to improve MARL’s capacity for DTA, mul-
tiple team architecture is established. In this architecture,
two agent types are separated according to the learning task.
The main agents are responsible for realizing DTA, which
receives variable decision support provided by adviser agents.

(2) The variegated critical value from adviser agents is
integrated to modify the space restriction which is used
to reduce the computational complexity of MARL. The
improved MARL framework is capable of adjusting the deci-
sion space adaptively, which can capture the direction of the
optimal assignment for DTA. The convergence process of
MARL can be accelerated.

(3) The mixed strategy concept is introduced to improve
the decision-making process of MARL for main agents to
update experience parallelly. It makes MARL explore poten-
tial solutions efficiently.

(4) Three independent mapping mechanisms are defined to
model the learning rate of MARL in corresponding agents.
These mechanisms promote MARL’s self-adaptive ability
facing with a new state, in which occurs quantitative transi-
tions of demand and supply in TN. In other words, the sensi-
tivity of MARL on the aspect of a dynamic external environ-
ment is enhanced.
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The rest of this article is organized as follows. The related
works on the aspect of DTA and MARL are introduced in
Section II. The technical background and definition of the
HAB-MARLmethod are given in Sections III and IV, respec-
tively. Numerical simulation experiments and analyzation of
results are exhibited in Section V. Finally, conclusions and
future expectations of this work are given in Section VI.

II. RELATED WORKS
A. DYNAMIC TRAFFIC ASSIGNMENT (DTA)
The fundamental rules of DTA are established on W-Ps [2],
which consists of two optimization principles: (a) Wardrop’s
first principle, namely User Equilibrium (UE); and (b)
Wardrop’s second principle, namely System Optimal (SO).
Additionally, there are also some important components in
DTA, which include travel cost function, route choice, etc.

Recently, the attention of scholars has been centered
around the above components of DTA. For problem con-
straints and generalization, various methods were suggested
for DTA solution, such as MP [10], [11], VI [12], [13],
NCP [14], [15], etc.

On the aspect of algorithms, early studies on DTA were
developed on the basic technology of STA, such as the
application of the Frank-Wolfe (FW) [34]–[37]. To avoid
the defect of FW in terms of convergence rate, the Column
Generation (CG) [38] and Simplicial Decomposition (SD)
[39] had been widely employed as alternative approaches.
With the generalization of DTA, the Sub-gradient (SG) was
adopted [40]. The above studies can be regarded as AB-DTA.

Although the uniqueness and existence of solutions are
guaranteed and determined in advance, the limitation that
traffic dynamics are difficult to be captured still restricts the
application of the analytic approach. With the capacity of
modeling dynamic characteristics of traffic flow, SB-DTA
was presented to model DTA in a realistic environment.

In SB-DTA, scholars focus on what kind of traffic flow
models can be select to reflect the real-word. This model is
the basis for Dynamic Network Loading (DNL), which is
a fundamental module structuring the architecture of DTA.
Kuwahara et al [41] extended the point queue model to deal
with physical queues and then proposed a corresponding
solution algorithm for UO-DTA. The form widely used in
SB-DTA is CTM. Lo et al solved UO-DTA by employing
alternating direction method [42] or transforming NCP to an
equivalentMP [43] on the CTM. Szeto and Lo [22] developed
a CTM framework to solve route and departure time choice
simultaneously under flexible demands scenarios for UO-
DTA. Szeto and Lo [24] modeled SUO-DTA as a Fixed Point
(FP) problem and employed CTM to capture the effect of the
random evolution of traffic states.

In addition to being classified as AB-DTA and SB-DTA,
DTA can also be divided according to the inflow form in
which decision variables are assigned, namely PB-DTA, LB-
DTA, and IB-DTA. In PB-DTA, the divergent or merged flow
can be modeled due to its abundant information on path flow.

Therefore, PB-DTA was studied in various studies, such as
Chen and Feng [12], Lim andHeydecker [25], andMeng et al.
[44]. Acquiring abundant information of PB-DTA relies on
the enumeration of feasible paths, in which enumerative com-
plexity increases exponentially with the growth of OD pairs
and TN scale. Two approaches were usually to avoid or mit-
igate this disadvantage. One is to reduce the enumerative
complexity of paths and accelerate computational speed via
embedding the path generation algorithm in PB-DTA. It
expands a sub-research in the field of DTA [45]. The other
completely abnegates the requirement of path information to
avoid enumeration fundamentally, which also known as LB-
DTA. The studies in [14] and [15] previously mentioned can
be regarded as researches on LB-DTA. To integrate the advan-
tages of PB-DTA and LB-DTA, Long et al. proposed [28]
and further generalized [1] IB-DTA. It transforms IB-DTA to
FP that seeks the stabilized flow proportion at diverges and
merges in TN.

However, as discussed in Section I, all traffic demands are
counted and assigned among space-time scale in assumptions
of the above DTA methods. This kind of assignment pro-
cess is top-level and centralized actually. The corresponding
algorithm finding a stable equilibrium point repeatedly. It is
difficult and unrealistic to searching an evolutive equilibrium
point caused by stochastic and real-time travel demands.
Therefore, it is necessary to develop an effective approach
that is self-adaptive to time-varying equilibrium immediately.

B. MULTI-AGENT REINFORCEMENT LEARNING (MARL)
In recent years, Artificial Intelligence (AI) technology has
been greatly developed [46]–[48]. As a sub-field of AI, MAS
has excellent portability. Therefore, MAS has been widely
adopted to model systems with multi-participators, which
are widespread in numerous fields including communication
protocol [49], cooperative control [50], [51], fault-tolerant
control [52], electrical power system [53], sensor deploy-
ment [54], transportation [55]–[57], etc. MAS researchers
focus on structural mechanisms of complex systems. These
mechanisms include internal learning mechanisms of each
agent and externally interactive mechanisms among agents
to other agents and the environment. For instance, MAS was
employed to establish a real-world traffic simulation [58],
[59]. With the development of Machine Learning (ML), RL
with the advantage of model-free and self-learning has been
proposed and exploited. MARL combines RL with MAS
and promotes the development of theory and technology in
transportation.

In transportation, MARL is extensively applied for many
tasks, such as traffic control and route choice [33]. However,
only the route choice in these tasks is associated with DTA
weakly.

Bazzan and Grunitzki [60] considered DTA with individ-
ual drivers as independent and autonomous agents, which
employ QL to stepwise select suitable routes. According to
the objective function of DTA, Grunitzki et al. [61] proposed
two improved algorithms based on QL to maximize the utility
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of agent and system respectively. Bazzan, and Klugl [59]
believed that the improvement and deterioration of the whole
system are affected by the combinations of actions among
agents. Zolfpour-Arokhlo et al. [32] combined MARL with
Q-value based Dynamic Programming (QVDP) to provide
a priority route plan for vehicles. MARL in the above liter-
ature focuses on the definition of the reward function. By
defining rational and precise reward functions, authors can
achieve their objectives, such as minimizing individual travel
time, maximizing system utility, etc.

Grunitzki et al. [33] suggested two MARL methods for
TA and compared them with three classic TA methods. The
concept of restricted search space was integrated into MARL
aiming to expedite convergence. It is proven that the conver-
gent process can be accelerated by reducing the action space
felicitously. Nevertheless, the size of restricted action space
in [33] is constant, whichwas obtained by the experiment. For
DTA, in the actual situation, different drivers decide to travel
from their origin to destination with distinguished spatial
awareness. Moreover, the set of potential optimal routes is
variational along with time due to that the situation in TN
is time-dependent. Restricting the set of recommended paths
adaptively can model the above situation approximatively.

As mentioned earlier, the equilibrium in DTA is evolu-
tionary. Solving DTA is essentially an online closed-loop
optimizing process. It requires that MARL has a high con-
vergence rate and the ability to adjust the learning process
adaptively. With respect to the state of the art, the motivated
mechanism [62] and Equilibrium Transfer (ET) [63] are pro-
posed to accelerate convergence. The motivated mechanism
is introduced to supplement the reward function to accelerate
MARL convergence. This method was defined as Motivated
Reinforcement Learning (MRL). Nevertheless, MRL may
lead to a deviation from the target due to that the reward func-
tion connects with the objective of DTA closely. Therefore,
defining the reward function reasonably is more suitable for
DTA. It has been shown in the above literature [32], [60],
[61]. As for ET, its effectiveness is based on similar envi-
ronments or historical experiences suffered by agents. This
basic scenario is unfamiliar in DTA leading to poor applica-
bility of ET. Additionally, the traditional assignment-loading
reciprocating pattern of DTA impedes the further increase of
computing speed. According to the framework of MARL,
the feasible approach to accelerate MARL convergence is
the assignment-loading parallel pattern, in which the assign-
ment is divided into multi-unit as time goes on and executed
synchronously along with loading. Moreover, the decision-
making mechanism of MARL can be adjusted appropriately
to improve the efficiency of exploration to accelerate MARL
convergence.

In addition to the above discussion, the sensitivity of
MARL is important to DTA. The time-dependent equilibrium
in DTA requires MARL with the capacity of recognizing
dynamic state and updating knowledge as soon as possible.
Hence, frequently-used the attenuation learning rate, which
lacks re-learning ability after convergence, is inapposite for

MARL in DTA. It is necessary to explore the mapping mech-
anism which can self-adaptively regulate the learning rate
according to the state of MAS and TN.

In conclusion, it is difficult to apply and popularize MARL
in real-world DTA under the existing technological environ-
ment. To address the above difficulties singly, the present
work proposes a Heterogeneous-Adviser based Multi-Agent
Reinforcement Learning (HAB-MARL) architecture to deal
with the DTA.

III. BASIC BACKGROUND TECHNOLOGY OF
HETEROGENEOUS-ADVISER BASED MULTI-AGENT
REINFORCEMENT LEARNING (HAB-MARL)
In this section, we introduce basic background technolo-
gies of Heterogeneous-Adviser based Multi-Agent Rein-
forcement Learning (HAB-MARL) architecture for DTA.
In Section III.A, DTA will first be introduced as the applica-
tion background of HAB-MARL. Then, a CTM-based DNL
will subsequently be elucidated to establish numerical simu-
lation in Section III.B. Finally, the common form and related
concepts of MARL will be given in Section III.C. Addition-
ally, all parameters relating to DTA, DNL, and MARL are
listed in TABLE 1-3 respectively.

A. DYNAMIC TRAFFIC ASSIGNMENT (DTA) PROBLEM
In this section, we will first introduce some basic components
of TA and briefly describe a Variational Inequality (VI),
which is the familiar generalized solution form for DTA.
Definition 1: A traffic network G is a tuple 〈V ,E〉. The

elements of the tuple are described in TABLE 1.
In G (V ,E), flow is the control subject of DTA aiming to

minimize travel costs. It can be defined in the form of VI.
Definition 2: For specific flow f tb , the corresponding travel

cost function is cb
(
t, f tb

)
. For DTA, the following generalized

discrete VI exists.∑
t∈T

∑
b∈B

cb
(
t, f ∗b

) (
f tb − f

∗
b
)
≥ 0, ∀f tb ∈ �b (1)

In formula (1), subscript b represents one element of {l, p}.
If b refers to l, flows are adjusted in links of TN, in where
DTA can be regard as LB-DTA. On the contrary, PB-DTA
regulates flows on paths when b signifies p.

For travel cost function cb, there are two frequently-used
modalities: travel time and marginal travel time, which sev-
erally express implicit objectives of UE-DTA and SO-DTA.
Additionally, it has more components in the travel cost func-
tion, such as pricing tactics, pollutant emission, capacity
constraints, congestion delay, etc. This moment, cb is usually
referred to as the generalized cost function.

Moreover, the existence and uniqueness of the solution in
VI for DTA have been proven in some cases.
Theorem 3: Formula (1) has a unique solution if and only if

the travel cost function satisfies some specific mathematical
conditions: continuity and monotonicity.

InTheorem 3, continuity andmonotonicity be emphasized
to guarantee that the equivalent mathematical programming
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TABLE 1. Parameters relating to DTA.

TABLE 2. Parameters relating to DNL.

function of VI holds strictly convex. The existence of the opti-
mal solution in the finite solution space is further guaranteed.
A similar process of proof has been fully discussed in [65].

B. DYNAMIC NETWORK LOADING (DNL) FOR DTA
Among numerous methods of DNL, a method based on CTM
with the capacity of capturing traffic dynamics superiorly has

been widely studied, which has various forms, such as [20],
[66], [67]. For more details please refer to [20], [64] and
[68]. In this section, a CTM-based approach is introduced to
structure DNL for DTA.

In CTM-based DNL, the renewal process of traffic flow on
a link of TN subjects to the following generalized regulations:

(Ordinary edge l ∈ Enon)

x tl = x t−1l +

∑
l−i ∈0

−(l)

yt−1
l−i ,l
−

∑
l+i ∈0

+(l)

yt−1
l,l+i

(2)

(Origin edge l ∈ Eorg)

x tl = x t−1l + utl −
∑

l+i ∈0
+(l)

yt−1
l,l+i

(3)

(Destination edge l ∈ Edes)

x tl = x t−1l +

∑
l−i ∈0

−(l)

yt−1
l−i ,l
− vtl (4)

(Demand and supply of flow transmission)

DE tl = min
{
ϑdel

(
ρtl
)
, x tl , χ

t
l

}
(5)

SU t
l+i
= min

{
ϑ su
l+i

(
ρt
l+i

)
, δ
[
N t
l+i
− x t

l+i

]
, χ t

l+i

}
(6)

(Connectors yt
l,l+i

, l, l+i ∈ E)

yt
l,l+i
≤ min

{
DE tl , SU

t
l+i

}
(7)

s.t. ∑
l−i ∈0

−(l)

yt
l−i ,l
≤ SU t

l (8)

∑
l+i ∈0

+(l)

yt
l,l+i
≤ DE tl (9)

The parameters in formulas (2)-(9) are described in
TABLE 2. The formulas (2)-(4) demonstrate the discrete
flow variation in link transmission. The potential demand
and supply of links are represented by formulas (5) and (6)
respectively. In formulas (5) and (6), three components on
the right side represent density flow, current flow/allowance,
and link capacity in turn. There is a unity of multiple possible
link scenarios, such as the entrance of the network, and the
exit of the network. The inequation (7) shows two states
faced by connectors: ordinary state and branch state. In the
ordinary state, inequation can be transformed into equality.
For branch state, formula (7) expresses the possible scheme
in connectors. The further strict constraints are sequentially
given in formulas (8) and (9) for connectors at diverging and
merging scenes.

With the advantages of simple structure and linearization,
the above CTM-basedDNL can be easily established for DTA
in numerical simulation.
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TABLE 3. Parameters relating to MARL.

C. MULTI-AGENT REINFORCEMENT LEARNING (MARL)
A classical model-free MARL method widely applied is Q-
Learning (QL). In QL, the value functions are learned and
stored in the form of Q factor.
Definition 4: For Q-learning, exiting a tuple 〈2, S,A,R〉,

the function updating process of Q-values subjects to the
following equation:

Qk+1i (si, ai) = (1− α)Qki (si, ai)

+α

[
rki (si, ai)+γ max

a′i∈Ai(s
′
i)
Qki
(
s′i, a
′
i
)]

(10)

The parameters in Definition 4 have been described in
TABLE 3. Equation (10) abstract the process in which agents
acquire knowledge via selecting actions, interacting with the
external environment.
Lemma 5 (Convergence): Exiting prerequisite that all

states and actions have been visited infinitely and the learn-
ing rate is within definition, the equation (10) converges to
Q∗i (si, ai).

For more specific detail about proof of Lemma 5 see [69].

However, the complexity of applying the MARL method
represented by QL in TA increases with the scale of TN.
To deal with this limitation, the concept of critical time
was introduced in [33] to divide the strategy space into two
subsets: valid strategy space and invalid strategy space. The
relationship of subsets is as follows:

5valid ∩5invalid = ∅ (11)

5
(
s−, s+, tcritical

)
= 5valid ∪5invalid (12)

The parameters in formulas (11)-(12) have been given in
TABLE 3. The (11) indicates that elements in the two subsets
are totally different. The (11) illustrates that the combination
of two subsets can represent the whole strategy space includ-
ing all possible actions for TA. This improved method of QL
has been named as Edge-based QL (EB-QL).

Additionally, another improved method named Route-
based QL (RB-QL) was also presented in [33]. In RB-
QL, agents receive precomputed recommendatory strategy
space before the learning process begins, namely Ai

(
s−
)
←

5precomputed . In contrast with the feasible strategy space,
the recommendatory strategy space appears the enumerable
feature due to that

∣∣5precomputed
∣∣ is small.

Both EB-QL and RB-QL essentially reduce MARL’s com-
plexity by cutting down the size of the strategy space. The
above tcritical and

∣∣5precomputed
∣∣ were configured as constant

via mensurable experiment. The selecting of a critical time in
EB-QL for agents is important. Smaller values lead to the loss
of potential optimal solution, in which traffic flow only can
be assigned into minority paths. On this account, exorbitant
travel cost occurs on overloaded links. On the contrary, there
are too many low-efficient strategies merged into a valid
strategy set leading to the performance loss of learning when
higher values are adopted. For RB-QL, the similar discussion
about the size of

∣∣5precomputed
∣∣ had been presented in [33].

It is unsuitable for applying either EB-QL or RB-QL in DTA
due to that tcritical and

∣∣5precomputed
∣∣ are time-dependent with

DTA evolution in TN. For the application of MARL in DTA,
dynamic characters of DTA, such as time-vary demands,
equilibrium transformation, the variation of travel cost, etc.,
must be considered.

IV. FRAMEWORK OF HETEROGENEOUS-ADVISER BASED
MULTI-AGENT REINFORCEMENT LEARNING (HAB-MARL)
In this section, we establish Heterogeneous-Adviser based
Multi-Agent Reinforcement Learning (HAB-MARL) archi-
tecture for DTA. The complete formulation of HAB-MARL
will be described in detail in Section IV.A. The corresponding
algorithm will be subsequently summarized in Section IV.B.
All parameters relating to HAB-MARL are listed in TABLE
4.

A. HETEROGENEOUS-ADVISER BASED MULTI-AGENT
REINFORCEMENT LEARNING (HAB-MARL)
In this section, MARL (described in Section III.C) theory is
improved to design a distributed assignment method for DTA.
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TABLE 4. Parameters relating to HAB-MARL. TABLE 4. (Continued.) Parameters relating to HAB-MARL.

We suggest a decentralized framework, where two categories
of agents are associated with Origin-Destination (OD) pairs
and strategy space support severally. In this architecture, there
is a main agent group in which members decide how to assign
corresponding flow into TN independently. The members of
the other agent group are responsible for assisting the cor-
responding main agents. Communication occurs only among
the auxiliary agents (advisers) and the main agents (deciders)
for the transfer of support information. FIGURE 1 illustrates
the suggested heterogeneous-adviser based multi-agent rein-
forcement learning (HAB-MARL) distributed assignment
framework for DTA.

In FIGURE 1, it has four modules (i.e. A-D). Module A is
the kernel of HAB-MARL including the external interactions
and internal learning mechanisms among agents playing dif-
ferent roles in HAB-MARL. Due to that architecture of HAB-
MARL is multi-group and decentralized, only one agent team
for one OD pair in DTA has been provided as a basic standard
team structure in module A. For DTA, this basic standard
team structure of HAB-MARL can be replicated according
to the size of the network. The details of module A will be
described in the rest of this section.Module B, which has been
introduced in Section III.B, can be employed to model traffic
flow in the real world. In this paper, the exchange between
modules A and B can be simply regarded as interaction with
the external environment for HAB-MARL. It has two layers
in module C, which represent the realistic and mathematical
structure of road networks respectively. Module C is the
indispensable foundation to establish module B. Module D
contains the information about demand of network. In DTA,
these demands require the services of module A, which are
usually varied and can be defined according to scenarios
(such as defined in Section V.A.3). In addition, the flow
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of information of HAB-MARL in DTA tasks has also been
abstracted among modules A-D.

In the following sub-sections, the various components of
the HAB-MARL architecture shown in FIGURE 1 (A) are
defined. To simplify pertinent expressions, the label of iter-
ation series is omitted. Moreover, the differentiated agent
groups in MAS have their specific Q-functions severally. It is
necessary to define the components of the Q function for each
agent in different groups.

1) ADVISER AGENT
For adviser agents, their interaction process, in which actions
affect the external environment indirectly, is slightly different
from that of main agents. Furthermore, the reward is per-
ceived by the main agents from the external environment.
However, to keep cognitive consistency about the outside
world, the state of adviser agents must be consistent with that
of the main agents.

a: TASK
The task of adviser agents is that critical-value is learned to
restrict relevant action set provided for main agents. In this
paper, the critical-value contains two forms: expectant critical
time and expectant size of strategy set.

b: STATE SPACE
As mentioned, for both adviser agents and main agents,
the state is perceived from the external environment. In DTA,
the state is employed to describe the scene in TN. Addition-
ally, the evolution of traffic in DTA is modeled in this paper
as a network of density (see Section III.B). The state of each
agent is the vector of states at all links (edges) in TN. Besides,
it is worth noting that rationalize the size of state space to
reduce computational complexity [30]. Fortunately, the state
of TN only needs to be detected once to be accessible by all
agents. Inspired by the concept of distributed expression in
Deep Learning (DL) [70], we formally define the state of TN
as follows.
Definition 6: For a traffic network G (N ,E), the state for

each agent can be expressed as a vector (distributed expres-
sion): s =

[
s1, · · · , sl, · · · , sne

]
. The element of s represents

the state of edge in TN, which can be defined by integrating
formula (13) and formula (14). The related parameters are
described in TABLE 4.

ψl =
xl
xmax
l

(13)

sl =


free, ψl < ϕfree

resistance, ϕfree ≤ ψl < ϕjam

jam, ψl ≥ ϕjam

(14)

In formula (13),ψl is evaluation index composed of vehicle
proportions on link l. It is further defined by formula (14). In
this paper, 0.5 and 0.8 are adopted as the values of ϕfree and
ϕjam respectively.

c: ACTION SPACE AND SELECTION
To reduce the complexity, we construct the action of each
adviser agent using a similar form adopted in modeling state
space.
Definition 7: The action of adviser agent i is ai =[
a±i , a

value
i

]
. a±i used to determine operation direction is an

element of {−1, 1}. The operation amplitude can be defined
by avaluei , and avaluei ∈

[
0, κmax

i

]
.

In Definition 7, κmax
i is one of

{
1tmax

critical,1 |5|
max
critical

}
according that the task of agent i belongs to different cate-
gories (see Section IV.A.1.(a)).

To balance exploration (gaining of knowledge) and
exploitation (usage of knowledge), adviser agents select their
action according to ε greedy widely adopted in QL.

d: REWARD FUNCTION
The reward function is used to represent the effects of agent
action, which is also used to establish a closed feedback loop.
It needs to be defined according to the objective of agents. For
adviser agents, the reward function is employed to assess the
effect of recommendation.
Definition 8: The reward function of adviser agent i,

ri (si, ai) is a function of the difference in cumulative improve-
ment of individual travel cost.

ri (si, ai) =
1+ exp

(
−η·log

(∣∣∣1c̄improvei

∣∣∣+1))

1− exp

(
−η·log

(∣∣∣1c̄improvei

∣∣∣+1)) (15)

Formula (15) is defined to ensure the range of the reward
function among [−1, 1] to avoid the increase of convergence
time caused by sharp fluctuation of Q value. The formula (15)
can be further defined by formulas (16)-(18) as follows:

1c̄improvei = c̄k−1b − c̄kb (16)

c̄kb =

∑
b∈Bki

ckbf
k
b∑

b∈Bki

f kb
(17)

η
improve
i =

{
1, 1c̄improvei ≥ 0

−1, 1c̄improvei < 0
(18)

Formula (16) represents the change of average travel cost
on link/path b. The average travel cost of b is further defined
in formula (17). ηimprovei defined in formula (18) is a coef-
ficient to ensure the plus or minus characteristic of for-
mula (15). The parameters in formulas (15)-(18) have been
described in TABLE 4.

e: OTHER RELEVANT PARAMETERS
The discount rate in QL reflects the preference of agents on
long-and-short term reward. For adviser agents, they hope
that the advice received by matching the main agent is perfect
every time. Therefore, discount rates of adviser agents are set
as 0.9 uniformly.

The learning rate affects the cumulative effect of knowl-
edge. It determines the degree of retention and replacement
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FIGURE 1. Diagrammatic drawing of HAB-MARL framework for DTA.

of historical experience. Additionally, considering the appli-
cation in DTA and role in HAB-MARL, the learning rate of
adviser agents needs to be adaptive to dynamic goals. There-
fore, self-adaptive forms of learning rate should be defined
for two adviser agent types according to differentiated task
contents.

For critical time adviser agents, the best critical time should
be the travel time corresponding to the optimal solution of
DTA. However, in the process of moving towards the DTA
optimal solution, the specific value of the optimal solution
is unknown and uncertain. Hence, the critical value should
be determined according to the current assignment effect,
namely the corresponding actual travel time.
Definition 9: The learning rate of critical time adviser

agent i, αi can be expressed as a function of the difference
between critical time and the actual average travel time:

αi =
1+ exp−1υ

critical
i

1− exp−1υ
critical
i

(19)

Formula (19) can be further expanded by introducing for-
mulas (20) and (21).

1υcriticali =

∣∣∣tcriticali,k − t̄ki
∣∣∣ (20)

tcritical,ki = tcritical,k−1i +1tcritical,ki (21)

For formula (19), the nonnegativity of its input value is
guaranteed by formula (20). Furthermore, the value of for-
mula (20) is far less than infinity. The above are the key
elements to ensure that the learning rate can controlled within
a reasonable range [0, 1).
Formula (20) represents the difference between the recom-

mended value tcriticali,k and the desired value t̄ki . The recom-
mended value tcriticali,k is further defined in formula (21).
For strategy set size adviser agents, the homologous opti-

mum expectant size of strategy set should be the number of
paths adopted in DTA at the equilibrium point. Nevertheless,
the traversal of paths is dynamic with tracking the time-
varying equilibrium point. Under this circumstance, it is a
feasible method to estimate the optimum expectant size by
assessing the current path traversal situation. From the above,
the learning rate of strategy set size adviser agents can be
defined as follows.
Definition 10: The learning rate of strategy set size adviser

agent i, αi can be expressed as a function of the difference
between expectant size and the estimated optimal size:

αi =
1+ exp− log

(
1ξ criticali +1

)
1− exp− log

(
1ξ criticali +1

) (22)
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Formula (22) can be further expanded by introducing for-
mulas (23) and (24).

1ξ criticali =

∣∣∣∣∣∣∣|5|critical,ki −

|5|ki −∑
p∈Pki

ζp


∣∣∣∣∣∣∣ (23)

ζp =

{
1, p ∈ 4
0, p /∈ 4

(24)

Formula (24) returns logic value of necessity judgment
about paths traversal. The logic value can be set to 1 when the
current traversal path p is inefficient (i.e. p ∈ 4). The set4 is
a specific space that sub-set4i meets specified requirements:

4i =

{
p̃|cp̃ −min

(
cp
)
≥ max (cl) ,

l ∈ p̃, l /∈ p
∼
, p̃ ∈ Pki , p∼ ∈ P∼

k
i
,Pki = P∼

k
i
∪ p̃

}
(25)

For adviser agent i, the corresponding set of inefficient
paths is given in 4i. Moreover, it is similar as formula (19)
that formula (22) is constructed to hold the non-negative input
value for formula (23). The range of αi derived from formula
(22) can be restrained in [0, 1).
The difference between the recommended value |5|critical,ki

and the ideal value
(
|5|ki −

∑
p∈Pki

ζp

)
is given in formula (23).

The ideal value
(
|5|ki −

∑
p∈Pki

ζp

)
is the number of effective

path, which is executed in the current assignment. It is defined
as difference value of the number of paths used actually |5|ki
and the number of invalid paths

∑
p∈Pki

ζp.

In these ways, the sensitivity of adviser agents to dynamic
differentiated targets is also preserved while the convergence
is guaranteed. The parameters in this sub-section (i.e. Defi-
nition 9, 10, and their relevant complementary formulas) can
be seen in TABLE 4.

2) MAIN AGENT
a: TASK
For application in DTA, main agents are responsible for
assign traffic flow on TN synchronously to avoid the emer-
gence of traffic congestion in the local region. The process of
assignment obeys W-Ps (see Section II.A).

b: STATE SPACE
The state space of the main agents is the same as that of
adviser agents. The reason has been discussed in Section
III.D.1.(b).

c: ACTION SPACE AND SELECTION
The action space of main agent i, A†i (si) is a sub-set of
unabridged strategy spaceAi (si). It is acquired taking sugges-
tions provided by corresponding adviser agents into account
synthetically.

Definition 11: For main agent i, its action space A†i (si)
is the intersection of two recommended strategy spaces:
A†i (si) = A†timei (si) ∩ A

†size
i (si).

In Definition 11, the recommended strategy spaces
A†timei (si) and A

†size
i (si) are extracted from Ai (si) on the basis

of tcritical and |5|critical derived from advise agent respec-
tively.

To chase the objective of DTA, it is necessary to select a
proper way to decide how to carry out actions for main agents.
Definition 12: The action of main agent i is executed in

a mixed strategy manner, namely σi, which is a probability
distribution on A†i (si) computed based on partial history

experience
{
Qi
(
si, a

†j
i

)}
, a

†j
i ∈ A

†
i (si).

In Definition 12, the mixed strategy manner σi can also

be treated as a convex combination of all feasible a
†j
i , a

†j
i ∈

A†i (si). The relevant parameters have been listed in TABLE
4.

d: REWARD FUNCTION
In QL, the update of the value function is usually based
on evaluating the effect of independent action. However,
the main agent’s action is in the form of a mixed strategy.
The update process of Q-value for each sub-action of mixed
strategy needs to be updated independently. It is necessary to
define a special reward function modality for main agents.
Definition 13: For main agent i, the reward for its sub-

action a
†j
i , ri

(
si, a

†j
i

)
can be defined as follows.

ri
(
si, a

†j
i

)
=

1− exp

(
−η†j ·log

(∣∣∣1c†j ∣∣∣+1))

1+ exp

(
−η†j ·log

(∣∣∣1c†j ∣∣∣+1)) (26)

1c†j = 1c
base
†j +$

†j
i 1c

siack
†j (27)

1cbase†j = c̄k−1
b†j
− c̄k

b†j
(28)

1csiack† = c̄k−1
b†̆
− c̄k

b†̆
(29)

$
†j
i =

exp
Qi

(
si,a

†j
i

)

∑
a
†j
i ∈Ai(si)

exp
Qi

(
si,a

†j
i

) (30)

η†j =

{
1, 1c†j ≥ 0

−1, 1c†j < 0
(31)

Similar to formula (15), the range of formula (26) is
restricted in [−1, 1]. Formula (27) shows that the travel cost
input variable of a sub-action has two components: sub-
action effect estimation 1cbase†j

defined by formula (28) and

main agent passive impact supplement estimation$
†j
i 1c

siack
†j

defined by integrating equations (29) and (30). Formula (28)

models the utility among b†j selected by sub-action a
†j
i . For-

mula (29) models the utility among b†̆ unselected by σi. It is
the external utility provided by σi. The various mean values
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in (28) and (29) can be defined in a similar way to (17).

The weight of external utility assigned to sub-action a
†j
i is

defined in Formula (30). Similar to formula (18), formula
(31) describes a coefficient η†j to ensure the plus or minus
characteristic of formula (31).

Based on the above reward function, among main agents,
their Q functions can be calculated with a series of rewards
synchronously.

e: OTHER RELEVANT PARAMETERS
For the discount factor, a similar reason has been discussed
in Section IV.A.1.(e). It is suitable to set the discount factor
of the main agents as 0.9 uniformly.

Nevertheless, because of different mission objectives, the
definition of themain agents’ learning rate differs from that of
adviser agents. Moreover, the sensitivity ofMARL also needs
to be considered among the main agents. In other words, each
main agent should be equipped with a self-adaptive ability
for dynamic and polytropic external factors and with learning
ability for new sub-goal that derived from its task with new
surroundings. Therefore, the learning rate can be defined as
follows.
Definition 14: The learning rate of main agent i, αi is a

function of the variance of individual travel costs. It can be
expressed as follows.

αi =
1+ exp−µi

1− exp−µi
(32)

In formula (32), the parameter in the right term can be
further described via equation (33).

µi =
∑
b∈Bi

fb (cb − c̄i)2 (33)

The individual average travel cost c̄i in formula (33) can
be calculated in a manner similar to formula (17). Since
that the variance of individual travel costs is non-negative
and finiteness, the interval of the corresponding function (i.e.
formula (33)) is also non-negative, [0, 1). In formula (33),
fb (cb − c̄i)2 represents the total deviation at b. The global
deviation input is constructed by formula (33). Under this
condition, it is feasible to adopt this definition as the learning
rate of the main agent. Employing the above mapping mecha-
nism to improve the learning rate can enhance the sensitivity
of MARL among main agents. Additionally, the parameters
used in this sub-section (i.e. the section of the main agent)
have been listed in TABLE 4.

B. ALGORITHM OF HAB-MARL
According to the definitions in Section IV.A, it summarizes
HAB-MARL algorithm performed by each agent in Algo-
rithm 1.

V. NUMERICAL SIMULATION EXPERIMENT
This section presents the results of the numerical simula-
tion to evaluate the performance of the proposed distributed

assignment method based on HAB-MARL. The traffic net-
work topology, the contrast methods, and the corresponding
experimental scenarios are described in Section V.A. Then,
in Section V.B, the framework of the numerical simulation
is given in pseudo-code. Finally, details of the results are
discussed in Section V.C. The following simulation and eval-
uation are implemented employing an applicable evaluation
testbed based onMATLAB.Moreover, the parameters, which
were not mentioned above but will be adopted in this section,
are listed in TABLE 5.

Algorithm 1 Pseudo-Code of HAB-MARL
Input: the discount rate γHAB; the set of state S;

the space of action A; the set of agents Ii;
simulation time T ; greedy coefficient ε;

Initialize: the simulation time t ← 0; the step of simulation k ← 0
for i ∈ Im/Iat/Ias do

(main agents/critical time adviser agents/ critical size adviser agents)
if ski ∈ Si, a

k
i ∈ Ai, Si ∈ S, Ai ∈ Am/Aat/Aas do

Qki

(
xki , a

k
i

)
← random

end if
end for

Learning process:
While t ≤ T do
extracting the state: ski
for i ∈ Iat/Ias do (recommendation from adviser agents)
select: action aki according to ε greedy

end for
for i ∈ Im do (calculating restricted strategy space of main agents)
calculate: the propositional strategy space A†i

(
ski

)
(see Definition 10)

end for
for i ∈ Im do (main agents learning process)

select mixed strategy: σ ki according to
{
Qki

(
ski , a

†j
i

)}
and a

†j
i ∈ A

†
i

(
ski

)
. (see Definition 11)

for a
†j
i ∈ A

†
i

(
ski

)
do

calculate rki

(
si, a

†j
i

)
end for
update learning rate: αki according to formula (32)

for a
†j
i ∈ A

†
i

(
ski

)
do

update Q-value:

Qk+1i

(
sk+1i , a

†j
i

)
= (1−α)Qki

(
ski , a

†j
i

)
+αki

[
rki

(
ski , a

†j
i

)
+γ max

a′i∈Ai(s
′
i)
Qki

(
s′i, a
′
i
)]

end for
end for
for i ∈ Iat/Ias do (adviser agents learning process)
calculate: rki

(
ski , a

k
i

)
, aki ∈ Ai, Ai ∈ Aat/Aas

(consistent with recommendation from adviser agents)
update learning rate: αki according to formulas (19) and (22)
update Q-value:

Qk+1i

(
sk+1i , ak+1i

)
= (1− α)Qki

(
ski , a

k
i

)
+αki

[
rki

(
ski , a

k
i

)
+ γ max

a′i∈Ai(s
′
i)
Qki

(
s′i, a
′
i
)]

end for
t = t + 1, k = k + 1

end while
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TABLE 5. The parameters of numerical simulation.

FIGURE 2. Sioux Falls network.

A. SIMULATION SETTING
1) TRAFFIC NETWORK
In this paper, we chose Sioux Falls (SF) network (see FIG-
URE 2) with 24 nodes and 76 edges widely used to test
traffic assignment or route choice methods in the literature,
such as [60], [33] and [68]. Compared to commonly adopted

conceptual grid networks, which only has few OD pairs and
one-way roads or paths, SF network describes a situation
which is closer to the real world. In addition, compared with
Anaheim network and Chicago network in [68], SF network
has a relatively simple structure which is convenient for
numerical calculation. The basic information of SF network
is listed in Tables 8 and 9. Following the description in [71],
the well-known Bureau of Public Roads (BPR) function (i.e.
equation (34)) is employed to model the travel cost on each
edge in SF network.

tl (fl) = t fl

[
1+ τ

(
fl
χl

)β]
(34)

The parameters in formula (34) have been described in
TABLE 5. The values of coefficient τ and β are 0.15 and
4 respectively. The above calibration values are usually used
in the BPR-type function that describes the travel cost of a
general road, for instance, the travel cost in [71], [60], and
[72].

2) CONTRAST METHODS
Considering that the traffic assignment process is impossible
to be performed repeatedly in real traffic situations, many
iterative methods requiring reassignment are impractical.
Therefore, to evaluate and compare the proposed assignment
approach based on HAB-MARL, we select two agent-based
methods named EB-MARL andRB-MARL,which have been
suggested in [33] and briefly mentioned in Section III.C.
A more detailed description of EB-MARL and RB-MARL
can be referred to [33].

For EB-MARL and RB-MARL, the recommended param-
eters have been verified optimal for TA in [33]. Considering
that will be tested in SF network, the best combination of
parameters for EB-MARL is αEB = 0.9, γEB = 0.99
and tEBcritical = 9229. Under the same experimental net-
work, the recommended optimal parameters of RB-MARL
are αRB = 0.9, γRB = 0.99, and

∣∣∣5RB
precomputed

∣∣∣ = 10.
We also construct two extra contrast methods via breaking

the components of HAB-MARL. One, which is named HAB-
MARL-NAT for short, has no critical time adviser. The other
without critical size advisers can be called HAB-MARL-
NAS. The settings of HAB-MARL-NAT and HAB-MARL-
NAS refer to the corresponding components of HAB-MARL
(see Section IV.A).

3) SCENARIO
To verify the performance of the proposed method and
contrast methods, we designed a scenario with the time-
dependent flow in SF network. In this scenario, the traf-
fic demand of each OD-pair varies in the time dimension.
To describe the traffic demand for each OD pair in this
scenario succinctly and efficiently, the average of Poisson
distribution is adopted to stand for corresponding fluctuant
traffic demand. The scenario is visualized in FIGURE 3, the
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FRAMEWORK 1 Pseudo-Code of the Numerical Simula-
tion Framework
Input: the traffic network G (N ,E); the set of state S;

the space of action A; the set of agents I ;
total simulation time T; the set of hyper-parameters =;

Initialize: the simulation time t ← 0; the step of simulation k ← 0
initialize the Q-value for all agent according HAB-MARL
/HAB-MARL-NAT/HAB-MARL-NAS
/RB-MARL/EB-MARL
initialize the condition of traffic network according
Tables 8 and 9.

Simulation process:
While t ≤ T do
for i ∈ IHAB/IHAB−NAT /IHAB−NAS/IRB/IEB do
(DTA: dynamic traffic assignment)
search optimal traffic control actions aki according HAB-MARL
/HAB-MARL-NAT/HAB-MARL-NAS/RB-MARL/EB-MARL

end for
for l ∈ E do (DNL: dynamic network loading)
update the condition S of traffic network

according DNL and the above aki
end for
for i ∈ IHAB/IHAB−NAT /IHAB−NAS/IRB/IEB do (Process of learning)
calculate: reward function (Evaluating the effects of agent actions)
if i ∈ IHAB/IHAB−NAT /IHAB−NAS do
update learning rate for each agent

end if
update the Q-value in MARL according HAB-MARL
/HAB-MARL-NAT/HAB-MARL-NAS/RB-MARL/EB-MARL

end for
t = t + 1, k = k + 1

end while

accurate data (the statistical average value) of which are listed
in Table 7.

In FIGURE 3, sub-graph (a) describes the stochasticity of
demand (the statistical average value) among different OD
pairs. The volatility of demand (the actual value) in time for
each OD pairs has been shown in sub-graph (b).

FIGURE 3. Configuration of demand among OD pairs.

B. FRAMEWORK OF NUMERICAL SIMULATION
For the sake of understanding, the framework of numerical
simulation constructed in this paper will be described briefly
in the form of pseudo-code (i.e. FRAMEWORK 1).

The parameters in FRAMEWORK 1 have been described
in TABLE 4 and 5. This framework can be regarded as an
all-purpose platform based on the DNL model.

FIGURE 4. Overall throughput flow of the network.

C. ANALYSIS AND EVALUATION OF RESULTS
In this sub-section, the effectiveness and superiority of the
method suggested by us can be demonstrated from three
aspects: (a) throughput of the network, (b) the average travel
cost of each vehicle, and (c) the situation faced by agents and
the result of corresponding assignment.

1) THROUGHPUT
The throughput of the network reflects the service level of
the network. The higher the throughput, the smoother the
road network. Travelers can reach their destinations easily.
The effect of each method on the throughput of the net-
work is shown in FIGURE 4. In FIGURE 4, it is obvi-
ous that the suggested method performs better than other
comparative approaches (i.e. relational expression (35)-(38)
provided below). The increasing throughput indicates that
HAB-MARL can improve the smoothness of the network
continuously. The throughput improvement of HAB-MARL
over other methods is recorded in TABLE 6. To simplify the
description and analysis process, we use OTFX to represent
the throughput under using method X . In combination with
Figure 4 and Table 6, The performance of each method
follows the following relationship:

OTFHAB−MARL > OTFEB−MARL (35)

OTFEB−MARL > OTFHAB−MARL−NAS (36)

OTFHAB−MARL−NAS > OTFHAB_MARL−NAT (37)

OTFHAB_MARL−NAT > OTFRB−MARL (38)

Considering expressions (35)-(38), RB-MARL performs
worst. It indicates that the fixed critical size (RB-MARL) will
result in performance loss compared with the adaptive critical
size (HAB-MARL and HAB-MARL-NAT). For RB-MARL,
it can be thought of as the existence that flow assigned to
impertinent paths or sectional appropriate paths with low
utilization rate. These situations will lead to a decrease in the
throughput of the network.

However, the opposite effect was observed in the similar
comparison on the aspect of critical time (i.e. expression
(36)). The situation can be attributed to the emergence of
using inappropriate paths when the adaptive critical time
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exceeds the fixed critical time. In other words, low efficiency
is derived from that the adaptive critical time deviates from
the optimal travel time.

In addition to the above analyses, advice on critical time
contributes more to performance improvement than that on
critical size. The reason for the significant difference in
performance is the extent difference on the exploitation of
potential feasible path set with facing high load demand in
some sections of the network. The fact that the potential
path is not utilized effectively indicates that the constraint of
critical size on the strategy space ofMARL is tighter than that
of critical time.

It is also verified to some extent from the fact that HAB-
MARL is superior to HAB-MARL-NAS. The exploration
of bad paths is reduced by supplementary constraints from
critical size. The loss of performance is thus avoided.

About throughput, the performance of EB-MARL is sec-
ond only but close to that of HAB-MARL. The fixed critical
time of EB-MARL is the optimal travel time resulting in
that the infeasible paths are excluded. Nevertheless, the fixed
critical time is still not suitable for dynamic systems because
of the temporal variability of the optimal travel time. Besides,
the optimal travel time is only for the specified scenario,
which needs to be re-optimized once the scenario changes.
It is enough to explain the poor portability of EB-MARL.

In summary, HAB-MARL, which is the method proposed
by us, is effective and excellent.

TABLE 6. Evaluation results of HAB-MARL.

FIGURE 5. Individual average travel time among the overall network.

2) TRAVEL COST
In this paper, the cost of individual travel in the network can
be expressed as average travel time (ATT). The lower ATT,

the more efficient the trip, namely travelers can reach their
destinations sooner. In FIGURE 5, it displays the effect of
each approach on the travel cost of individual traveler in the
network. The ATT improvement of HAB-MARL over other
approaches has been listed in TABLE 6. Similar to throughput
analysis, we also adoptATTX to represent the individual travel
cost under using method X . Moreover, the following similar
relational expressions can be acquired:

ATTHAB−MARL < ATTEB−MARL (39)

ATTEB−MARL < ATTHAB−MARL−NAS (40)

ATTHAB−MARL−NAS < ATTHAB−MARL−NAT (41)

ATTHAB−MARL−NAT < ATTRB−MARL (42)

The expressions show that the performance of methods
tested in this paper on the aspect of individual travel time
is consistent with that on the aspect of throughput. The rea-
sons for the difference in the degree of reducing individual
average travel time can be divided into two categories: (a)
the excessive utilization of non-optimal paths (such as RB-
MARL, HAB-MARL-NAS), and (b) the idle spatiotemporal
resources of feasible paths (such as EB-MARL, RB-MARL,
HAB-MARL-NAT). The similar detailed analysis process has
been stated in the throughput analysis (see Section V.C.1).
Analyzing the influence of each method on the improvement
degree of ATT can be executed by referring to the analy-
sis process in the previous sub-section. Hence, we will not
provide a detailed discussion here. To sum up, HAB-MARL
performs well in terms of the individual average travel time
in the whole network.

In addition to the above analysis, the influence of the
suggested method on individual average travel time among
each OD pair is further shown in FIGURE 6.

FIGURE 6. Individual average travel time among each OD pair
(HAB-MARL).

In FIGURE 6, we chose 4ODpairs (red circles) with ineffi-
cient improvement on the aspect of ATT seemingly and name
them from IE1 to IE4 (red font). However, the actual improve-
ment effects are as follows: (a) IE1 (N6-N13): 12.72% (from
5.7954 h/veh to 5.2153 h/veh), (b) IE2 (N13-N1): 16.52%
(from 6.5426 h/veh to 5.4609 h/veh), (c) IE3 (N17-N12):
14.37% (from 6.0682 h/veh to 5.1964 h/veh), and (d) IE4
(N21-N6): 21.48% (from 6.468 h/veh to 5.0787 h/veh).
Obviously, the worst improvement was over 10%. More-
over, IE1 has the worst improvement among all OD pairs
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statistically. It indicates that HAB-MARL improves the indi-
vidual average travel time for each OD pair effectually.

3) SITUATION WITH THE CORRESPONDING ASSIGNMENT
RESULT
To illustrate the properties of DTA based on HAB-MARL,
we select five arbitrary OD pairs in SF network. For these OD
pairs, the effective travel time evolutions of each path as well
as the corresponding situations of the assignment are shown
in FIGURE 7-11.

FIGURE 7. Average travel time and flow assignment of each path among
N1-N22.

The evolution process of effective travel time for each
route is plotted in FIGURE 7(a). Areas with the lowest
effective travel times have been highlighted with a blue dot-
ted line. In FIGURE 7(b), the path flow trend is outlined
in the blue curve. In FIGURE 7, with the change of the
lowest location area of the effective travel time (‘a’ with
green in FIGURE 7(a), the fluctuation range of the effective
travel time controlled within 0.4583 h/veh to 1.0833 h/veh),
the flow also shifted correspondingly between paths (‘a’’
with green in FIGURE 7(b), the flow assigned from path 10
(i.e. N1→N3→N4→N5→N9→N10→N15→N22) to path
18 (i.e. N3→N12→N13→N24→N23→N22)). The transfer
process indicated by the green virtual arrow is the specific
manifestation of equilibrium in DTA. It indicates that DTA
with HAB-MARL can deal well with flow assignment under
fluctuant effective travel time.

FIGURE 8. Average travel time and flow assignment of each path among
N4-N22.

The ‘a’ (the fluctuation range of the effective travel time is
controlled within 0.3194 h/veh to 2.2917 h/veh) and ‘a’’ (the
flow assigned from path 12 (i.e. N4→N5→N9→N10→N15
→N22) to path 6 (i.e. N4→N3→N12→N13→N24→N23
→N22)) in FIGURE 8(a)-(b) verify that HAB-MARL imple-
ments flow migration between paths efficaciously once

again. Additionally, the fluctuation, which blue curve on
path 12 of N4-N22 (i.e. N4→N5→N9→N10→N15→N22)
drops briefly in early-stage (FIGURE 8(b), from 17.67 veh/h
to 3.9812 veh/h to 62.4286 veh/h), reflects the responsiveness
of HAB-MARL for the complex and changeable external
environment.

FIGURE 9. Average travel time and flow assignment of each path among
N6-N14.

For N6-N14, the effective travel times of each path begin
with low value at the early stage (between 0.4167 h/veh
and 0.7917 h/veh). However, they both increase rapidly in
the following process (between 5.4167 h/veh and 6.0833
h/veh). This process is reflected via the areas marked
by blue dotted lines in FIGURE 9(a). In this situation,
the effective travel time at the later stage is inconspicu-
ously low among paths (the deviation between maximum
and minimum is 11.03%). In FIGURE 9(b), with the sup-
port of HAB-MARL, DTA shifts the distribution pattern
of flow from early uniform distribution among all paths
to later centralized distribution among a few paths (path
10 (i.e. N6→N8→N7→N18→N20→N19→N15→N14)
with effective travel time 5.4861 h/veh and path 14 (i.e.
N6→N8→N9→N10→N15→N14) with effective travel
time 5.4444 h/veh). Combining with FIGURE 9(a) and 9(b),
it can be found that HAB-MARL realizes the process of
assigning flow to the feasible paths (i.e. paths with the lowest
effective travel time) in simulation (i.e. the process ‘b’ and
‘b’’ with green in FIGURE 9(a) and 9(b)). This phenomenon
conforms to the notion of DTA. It shows that HAB-MARL
can implement DTA effectively.

FIGURE 10. Average travel time and flow assignment of each path among
N11-N20.

In FIGURE 10(a) and 10(b), processes marked by ‘a’
(the fluctuation range of the effective travel time controlled
within 0.2778 h/veh to 2.6111 h/veh) and ‘a’’ (from path
11 (i.e. N11→N10→N16→N18→N20) to path 9 (i.e.
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TABLE 7. Average value of stochastic travel demand for each origin-destination (OD) in the Sioux-falls (SF) network.

N11→N10→N15→N22→N20)) are similar to those in
FIGURE 7 and FIGURE 8. Moreover, processes singed
by ‘b’ (the fluctuation range of the effective travel time
controlled within 0.3889 h/veh to 2.6111 h/veh) and ‘b’
(converge the flow assigned paths 7 (i.e. N11→N10→N9
→N8→N7→N18→N20), 8 (i.e. N11→N10→N15→N19
→N20), 9 (i.e. N11→N10→N15→N22→N20), 10 (i.e.
N11→N10→N16→N17→N19→N20) to path 9 (i.e.
N11→N10→N15→N22→N20)) in FIGURE 10(a) and (b)
are similar to those in FIGURE 9. The above processes in
FIGURE 10 fully demonstrate the effectiveness of HAB-
MARL in DTA.

FIGURE 11. Average travel time and flow assignment of each path among
N20-N12.

The situation in FIGURE 11 (the fluctuation range of
the effective travel time controlled within 0.2917 h/veh
to 2.4861 h/veh; the flow assigned from path 1 (i.e.
N20→N18→N7→N8→N6→N2→N1→N3→N12) and
20 (i.e. N20→N22→N21→N24→N13→N12) to path 13
(i.e. N20→N19→N15→N10→N11→N12)) can be catego-
rized together with those in FIGURE 7 and 8. Additionally,
the emergence of this phenomenon in FIGURE 11 indicates
that HAB-MARL can recognize a small change in path effec-
tive travel time and adjust the assignment action immediately.

It is further evidence that HAB-MARL can accomplish DTA
tasks dynamically and efficiently.

In this sub-section, all of the above five different situations
confirmed that HAB-MARL strictly complied with W-Ps
when completing DTA tasks.

VI. CONCLUSION
The dynamic traffic demand, which is unassignable on the
time scale, is the general state of the modern urban network.
This objective and actual state usually not be considered in
the assumptions of existing ideal DTA methods. For DTA
with this state, a decentralized method based on MARL has
been presented in this article. A flat hierarchical architecture
of agent-teams is employed, where each agent-team is asso-
ciated with an OD pair and interacts with the environment.
To restrict strategy space of MARL in response to dynamic
equilibrium objective adaptively and rapidly, the basic struc-
ture of agent-team has been designed as a combination of
one main agent (corresponding TA) and two adviser agents
(corresponding critical time and critical size respectively).
To achieve DTA, the decision mechanism of main agents
is defined as a mixed strategy, which is a concept in Game
Theory (GT). In this way, the experience of main agents can
be updated in batches. To maintain the ability to re-learn at
any time for tacking fickle equilibrium point, learning rates
have been designed specially according to different tasks of
different agents. The global search ability of MARL on DTA
tasks has been enhanced. With this improvement, the DTA
system can rapidly and effectively respond to dynamic traf-
fic demands which are unassignable in temporal-dimension.
Thus, DTA can achieve its desired objectives, namely mini-
mizing the individual average travel time in an urban network.
Meanwhile, the traffic congestion or potential congestion
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TABLE 8. Attributes of Sioux-Falls network.

risk caused by stochastic traffic demand can be mitigated or
eliminated from the origin.

To assess the proposed method (i.e. HAB-MARL), a com-
parative analysis of performance is designed. In SF network
with fluctuant and unbalanced OD demands, HAB-MARL is
benchmarked against two existing methods (i.e. EB-MARL
andRB-MARL) and two ablativemethods (i.e. HAB-MARL-
NAT and HAB-MARL-NAS) to evaluate the performance of
HAB-MARL in terms of the network overall throughput and
the network individual average travel time. By visualizing
the path travel distribution and effective individual travel
time on the perspective of OD pairs, the ability of HAB-
MARL to fleetly track variable equilibrium points in different
OD pairs has been further analyzed. The results show that
HAB-MARL outperforms the other contrast approaches in
terms of the network throughput and the network individual
average travel time. Although the performance of the EB-
MARL method with a preset optimal value is close to that
of HAB-MARL. Although the performance of EB-MARL
with a preset optimal value is close to that of HAB-MARL.

TABLE 9. Attributes of Sioux-Falls network.

EB-MARL lacks HAB-MARL’s ability to self-learn without
optimal preconditions, which brings superior portability for
HAB-MARL. Moreover, HAB-MARL is demonstrated that
can be timely and excellent in adjusting flow distribution
among paths in response to rise and fall of effective individual
travel time.

The method proposed in this paper optimizes the algorithm
framework for the scene under the dynamic traffic demand
which is unassailable on time dimension. It enhances the
adaptive learning ability of MARL for DTA tasks from the
perspective of algorithmic theory. Hence, HAB-MARL is
basic and can be a compatible framework. For example,
existing path generation methods can be embedded in the
process of searching HAB-MARL’s strategy space to make
DTA system more efficient. Exploiting possible extension
patterns is a part of our future work.

Additionally, the framework of HAB-MARL can also be
reorganized for other similar tasks, which need to be achieved
via employing MARL with an action space restricted by
cooperative constraints. It means that the architecture of
HAB-MARL has universality and plasticity.

APPENDIX
In the appendix, the configuration of travel demands for each
Origin-Destination (OD) and the basic attributes of the Sioux-
falls (SF) network are provided in Tables 7–9, respectively.
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