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ABSTRACT Recent studies have demonstrated that binary neural networks (BNN) could achieve a satisfying
inference accuracy on representative image datasets. BNN conducts XNOR and bit-counting operations
instead of high-precision vector-matrix multiplication (VMM), significantly reducing the memory storage.
In this work, an analog bit-counting scheme is proposed to decrease the burden of neuron circuits with
a synaptic architecture utilizing NAND flash memory. A novel binary neuron circuit with a double-gate
positive feedback (PF) device is demonstrated to replace the sense amplifier, adder, and comparator,
thereby reducing the burden of the complementary metal-oxide semiconductor (CMOS) circuits and power
consumption. By using the double-gate PF device, the threshold voltage of the neuron circuits can be
adaptively matched to the threshold value in the algorithms eliminating the accuracy degradation introduced
by the process variation. Thanks to the super-steep SS characteristics of the PF device, the proposed neuron
circuit with the PF device has an off-state current of 1 pA, representing 105 times improvement compared to
the neuron circuit with a conventional metal-oxide-semiconductor field effect transistor (MOSFET) device.
A system simulation of a hardware-based BNN shows that the low-variance conductance distribution (8.4
%) of the synaptic device and the adjustable threshold of the neuron circuit implement a highly efficient
BNN with a high inference accuracy.

INDEX TERMS Neuromorphic, in-memory computing, hardware neural networks, neuron circuits, synaptic
device, NAND flash memory.

I. INTRODUCTION
Recently, neuromorphic computing inspired by brain
architecture has gainedmuch interest because of its extremely
low-power and massively parallel operations [1], [2].
In the von Neumann architecture, vector-matrix multipli-
cation (VMM) causes enormous energy consumption due
to the memory wall problem of data movement between
memory and arithmetic units. On the other hand, neuromor-
phic computing resolves this problem, by computing vector-
matrix multiplication (VMM) with a nonvolatile memory
array in a single pulse step, overcoming the limit of the
von Neumann bottleneck. To implement neuromorphic com-
puting with nonvolatile memory, researchers have proposed
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implementing the analog conductance of synaptic devices
[3], [4]. However, it is challenging to implement an accurate
analog conductance state in a memory device due to the
non-ideal analog conductance characteristics of the memory
device [4], [5].

Recently, researchers have demonstrated that BNN can
obtain a comparable inference fidelity to high-precision neu-
ral networks on various datasets, such as MNIST, CIFAR-
10, and ImageNet [6]–[8]. The BNN dramatically reduces
the memory storage and computing resource by binarized
activation and weight [6]–[14]. Instead of a high-precision
analog state, it allows a binary state of the memory device,
which provides a practical way for the implementation of a
hardware neural network system [8], [14].

In a neuromorphic system, 2T2R (two select transis-
tors with two RRAMs) was mainly studied as a binary
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synapse [8], [14]. Recent high-performance DNN algorithms
typically demand a large parameter size. Therefore, NAND
flash memory can be a promising candidate for synaptic
devices to meet this requirement. NANDflash memory offers
ultra-high bit density for ample data storage and low fabri-
cation cost per bit, and it has been well known as a mature
technology [15]–[17]. In previous research, we reported neu-
romorphic systems utilizing NAND flash memory as a multi-
level synapse for on-chip learning [18] and as a binary
synaptic device for BNN digitally [19].

First, in this study, we propose an analog bit-counting
scheme with a synaptic architecture utilizing NAND flash
memory. The proposed analog bit-counting scheme replaces
the digital sense amplifier, adder, and digital comparator with
a binary neuron circuit, significantly reducing the CMOS
overhead in the neuron circuits compared to a digital bit-
counting scheme. A one-bit current sense amplifier (CSA)
can serve as a neuron circuit to produce a binary neuron
output in an ideal case. However, it may cause considerable
inference accuracy degradation because the threshold of the
binary neuron circuit can be different from the threshold
value in the algorithms due to the process variation [8], [20].
In a previous study, an ADC-like multi-level sense amplifier
(MLSA) was employed instead of a one-bit CSA to minimize
the accuracy degradation [8]. However, the ADC-like MLSA
requires a large CMOS overhead.

Second, for the first time, we propose a low-power binary
neuron circuit with a PF device that has an adaptive-threshold
to resolve the above problem. Note that the proposed binary
neuron circuit serves as a low-power comparator with an
adaptive-threshold function, which is different from the con-
ventional integrate-and-fire neuron circuits. We demonstrate
that the threshold voltage of the neuron circuits can be adap-
tively changed by the gate bias or program/erase pulse. There-
fore, the proposed neuron circuit can eliminate the accuracy
degradation introduced by the process variation without any
CMOS overhead. In addition, the PF device based on a gated-
thyristor has a super-steep subthreshold swing (SS) [21]–[23].
Finally, we show that the proposed neuron circuit with the PF
device significantly reduces the off-state current of a neuron
circuit compared to a neuron circuit with the conventional
MOSFET device, thanks to the super-steep SS characteristics
of the PF device.

II. BINARY SYNAPTIC ARCHITECTURE BASED ON NAND
FLASH MEMORY
Fig. 1 (a) and (b) show a synaptic string array architecture
consisting of a 2T2S synaptic string structure in a digital bit-
counting scheme and an operating voltage scheme, respec-
tively [19]. The 2T2S synaptic string consisting of two input
transistors and two NAND strings is capable of XNOR oper-
ation. Two input voltages (Vin1, Vin2) are applied to each gate
of the two input transistors which are reused for all synaptic
devices in one synaptic string, therefore the number of input
transistors is significantly decreased compared to the 2T2R
scheme in a previous work [8]. A synaptic device consists

FIGURE 1. (a) Schematic diagram of the synaptic string array architecture
based on a 2T2S synaptic string, which calculates bit-counting in a digital
fashion. (b) Operating voltage scheme.

of two NAND cells whose complementary state defines the
synaptic weight. As shown in Fig. 1 (b), a weight of+1 can be
defined as the state where the right cell has a high threshold
voltage (Vt,high), and the left cell has a low threshold voltage
(Vt,low). In contrast, a weight of −1 can be defined as the
reverse state of the two NAND cells. In addition, a com-
plementary state of two input voltages (Vin1, Vin2) defines
the input value. The state of (Von,Voff) and (Voff,Von) can
represent an input value of +1 and −1, respectively, shown
in Fig. 1 (b). By using the above scheme, the string current
(IS), which represents the XNOR output, is determined by
the combination of the complementary input voltages and
the state of the two adjacent NAND flash cells. The Fixed
reference current (IREF) of the sense amplifier is set to a value
which is between the on-current (Ion) and off-current (Ioff)
of the NAND flash cells. In this scheme, the current sense
amplifier compares the fixed reference current (IREF) with a
string current (IS) which is the sum of the currents of the two
NAND cells (IC1, IC2) to generate an XNOR output.
The word-line (WL) decoder applies the read bias (Vread)

and pass bias (VPASS) to a selected WL and unselected WLs,
respectively. The input vector switch matrix applies input
pulses to the input transistor. The adder sums the XNOR
operation outputs, and the summed result goes through a
binary comparator to produce a binary output. When Vread
is imposed on the WL sequentially along the synaptic string,
the output of each post-synaptic neuron is sequentially gen-
erated. Thus, the output of the k th neuron in the post-synaptic
neuron layer is generated when Vread is applied to the k th WL.
Because multipliers are not required, power consumption is
enormously reduced.

We propose an analog bit-counting scheme with a 2T2S
synaptic string by using a binary neuron circuit. When mul-
tiple currents are summed, the Ion dominates the total current
(IT), because the on/off resistance ratio of the NAND cells
is sufficiently large [19]. For example, when the number of
the synaptic string in the array is 256, the weighted sum
of 0 can correspond to an IT of 128 Ions. When IT is smaller
than 128 Ions, the binary neuron circuit generates an output

VOLUME 8, 2020 153335



S.-T. Lee et al.: Low-Power Binary Neuron Circuit With Adjustable Threshold for BNN Using NAND Flash Memory

FIGURE 2. Schematic diagram of the synaptic string array architecture
based on a 2T2S synaptic string, which calculates bit-counting in an
analog fashion.

−1, which means there are more XNOR outputs of −1 than
XNOR outputs of +1 in a row. In this scheme, the binary
neuron circuit replaces the digital sense amplifiers, adder, and
comparator shown in Fig. 2, which significantly decreases the
power consumption and the burden of the circuits compared
to the digital scheme in Fig. 1. Furthermore, the neuron
circuit can be reused for all neurons in the neuron layer,
therefore increasing the integration density compared to the
previous work [8]. On the other hand, the process variation
of the neuron circuit can reduce the inference accuracy in the
proposed analog bit-counting scheme. In principle, a binary
CSA can be used as a neuron to generate a binary output.
However, process variation results in the intrinsic offset of the
CSA, therefore the threshold of the neuron can be different
from the target value in the algorithms. It makes sensing
pass rate worse when the total current (IT) from the synaptic
array increases as the size of an array becomes large [20],
which causes a significant accuracy degradation. In a previ-
ous study, an ADC-like multi-level sense amplifier (MLSA)
was employed instead of a one-bit CSA to minimize the
accuracy degradation [8]. However, the ADC-like MLSA
requires an immense CMOS overhead. We propose a low-
power binary neuron circuit with a double-gate PF device that
adaptively changes the threshold voltage of the neuron circuit,
which significantly reduces the accuracy degradation without
the CMOS overhead.

III. BINARY NEURON CIRCUIT WITH THE PF DEVICE
Fig. 3 (a) and (b) show the 3-D schematic and top
views of the fabricated PF device with a structure of a
double-gate floating-body. The PF device has a cathode
region (n+-region), gated region (p-channel), ungated region
(n-channel), and anode region (p+-region) from the right
shown in Fig. 3 (b). The n-channel and p-channel of which
the doping concentration is ∼1 × 1018 cm−3 serve as hole
and electron injection barriers, respectively. The O/N/O stack
of which the thickness is 2/4.2/9 nm is formed between the

FIGURE 3. (a) 3-D schematic view and (b) Top view of the PF device.

p-channel and gate to store charge in the nitride (N) layer.
Fig. 4 shows a TEM image of the fabricated PF device. The
n+ poly-Si double gates (G1, G2) are defined on the left and
right sides of the Si3N4 spacer.

FIGURE 4. TEM image of the fabricated PF device.

FIGURE 5. Energy band diagram of the PF device.

Fig. 5 represents the simulated energy band-diagram of
the device to explain the positive feedback (PF) operation.
The simulation is executed at a VG1 of 2 V and −1 V, which
correspond to the turn-on and turn-off states, respectively, at a
fixed VG2 of 0 V. In the turn-off state, the electron injection
barrier (Vp) and hole injection barrier (Vn) impede the move-
ment of the holes and electrons shown in Fig. 5.When theVG1
increases from−1 V to 2 V, the Vp decreases, which results in
the injection of electrons from the n+ region into the n region.
It decreases Vn, which results in the injection of holes from
the p+ region into the p region further decreasing the Vp, and
electrons flow into the n region again. When this PF process
occurs, the device turns on rapidly with a steep SS.
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FIGURE 6. IA-V G1 curves measured in the fabricated PF device as a
parameter of (a) V G2 and (b) V A. Here, the lengths of both the electron
(Ln) and hole injection barriers (Lp) are 0.7 µm.

FIGURE 7. Change of V th with V G2 at V A of 1 V.

Fig. 6 (a) shows the anode current (IA) versus G1 volt-
age (VG1) curves measured in the fabricated PF device as a
parameter of VG2. As VG2 increases, the threshold voltage
(Vth) decreases because the electron injection barrier (Vp)
effectively decreases. Fig. 6 (b) shows the IA-VG1 curves as a
parameter of the anode bias (VA). The built-in potential (Vbi)
in the p-n junction impedes the current flow when the VA is
small. When VA is larger than the Vbi, the Ion significantly
increases. As VA increases further, the carriers are generated
in the reverse biased p-n junction and they accumulate in the n
region and p region. As a result, the Vp and Vn decrease as the
VA increases, resulting in a decrease of Vth. Fig. 7 shows the
change of the Vth with VG2 at a fixed VA of 1 V. The threshold
voltage can be modulated by changing the bias applied to
the second gate (G2) shown in Fig. 7. Therefore, the threshold
voltage of neuron circuits can be adaptively controlled, which
significantly reduces the accuracy degradation introduced by
the process variation.

Fig. 8 (a), (b) and (c) show the IA-VG1 curves of the
fabricated PF device as a parameter of the number of pulses
when the device is programmed with VPGMs of 7, 7.5 and
8 V, respectively. As the number of VPGMs applied to
G2 increases, more electrons are trapped in the charge trap
layer of the PF device, which increases the concentration of
holes in the p region. Then, the Vth of the PF device increases
gradually. Fig. 8 (d) explains the changes of Vth with the
number of pulses as a parameter of the pulse amplitude of
VPGM. As the pulse amplitude increases, Vth increases at the
same number of pulses because more electrons are trapped in
the charge trap layer. Therefore, the Vth of the neuron circuit
can be changed by controlling the amplitude of VPGM and the
number of VPGMs for the double-gate PF device.

FIGURE 8. IA-V G1 curves measured in the fabricated PF device as a
parameter of the number of pulses when the V PGM is (a) 7 V, (b) 7.5 V and
(c) 8 V. (d) The change in V th with the number of pulses as a parameter of
the amplitude of V PGM.

FIGURE 9. A schematic circuit diagram of the proposed binary neuron
circuit using the double-gate PF device.

Fig. 9 shows a schematic diagram of the proposed binary
neuron circuit using the double-gate PF device. The neuron
circuit consists of the double-gate PF device, two invertors
and one n MOSFET. The supply voltage (VDD) is 1.2 V.
As current from synaptic array increases, the membrane volt-
age (Vm) increases. When the Vm exceeds the Vth of the
neuron circuit, then the on-current flows in the neuron circuit
and the output voltage (Vout) of the neuron circuit becomes
VDD, which can be regarded as a binary output of+1. Then,
Vout is initialized to 0 V by applying the reset pulse (Vr) to
reset-MOSFET (Mreset).
Fig. 10 (a) and (b) show the transient waveforms of the

neuron circuit as a parameter of the membrane voltage (Vm)
and Vth of the neuron circuit, respectively. In Fig. 10 (a),
the Vth of the double-gate PF device is fixed at 0.7 V by
controlling VG2 or the program/erase operation. Vm increases
from Vm4 to Vm1. When Vm1 exceeds the fixed Vth of 0.7 V,
the Vout1 becomes VDD. In Fig. 10 (b), the Vm is fixed at
0.55 V (Vm1). Then, Vth decreases from Vth1 to Vth3. Because
Vth3 is lower than Vm1, Vout becomes VDD (Vout at Vth3).
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FIGURE 10. Simulated transient results of the neuron circuit as
parameters of (a) the membrane voltage (V m) and (b) V th of the neuron
circuit.

FIGURE 11. Schematic diagrams of the proposed neuron circuits using
(a) double-gate PF device and (b) conventional MOSFET. Transient
waveforms of the membrane potential, and current of the neuron device
in the neuron circuits using (c) double-gate PF device and (d)
conventional MOSFET to compare the power consumption in the off-state
(V out = 0 V).

Fig. 11 (a) and (b) show schematic diagrams of neuron
circuits using the double-gate PF device and conventional
MOSFET, respectively, for a comparison of the power con-
sumption in the off-state (Vout = 0 V) of the neuron circuit.
Fig. 11 (c) and (d) represent the membrane voltage (Vm),
and the current of the neuron device in the neuron circuits
using the double-gate PF device and conventional MOSFET,
respectively. When Vm is lower than the Vth, the PF device
having a steep switching characteristic shows a very low Ioff
(∼1 pA) during the read operation of the synaptic arrays
shown in Fig. 11 (c). On the other hand, in the neuron circuit
using the conventional MOSFET, the subthreshold current
(∼ 100 nA) of the nMOSFETflows during the read operation
of the synaptic arrays shown in Fig. 11 (d). Therefore, during
the off-state of the neuron circuit, the neuron circuit with
the PF device significantly reduces the power consumption
compared to the neuron circuit with a conventionalMOSFET.

The effect of synaptic device variation on the infer-
ence accuracy of a hardware-based BNN is investigated.
Fig. 12 (a) and (b) show the inference accuracy with the
weight variation of the synaptic devices on the MNIST and

FIGURE 12. Simulated classification accuracy with respect to the
conductance variation of synaptic devices in the case of (a) MNIST and
(b) CIFAR 10.

CIFAR 10 images, respectively. A weight variation occurs
when the weights obtained in the off-chip training are trans-
ferred to the synaptic devices. The variation of the conduc-
tance of the NAND cells is assumed to follow the Gaussian
distribution [24]. The effect of device variation is more detri-
mental to convolution neural networks classifying CIFAR
10 than the multi-layer neural networks classifying MNIST.
Note that little decrease in accuracy is observed when the
sigma (σw) of the synaptic weight variation is within about
40%. As noted in previous work [19], when the VPGM is 16 V,
the sigma over mean (σ /µ) of the conductance of the NAND
cells in an array is about 8.4%. Therefore, BNN using NAND
flash cells as synaptic devices is very robust to the effect of
device variation.

FIGURE 13. Simulated classification accuracy with respect to the
threshold voltage variation of the neuron circuit for the (a) MNIST and
(b) CIFAR 10 datasets.

The effect of the Vth variation in the neuron circuits on the
inference accuracy is also investigated. Fig. 13 (a) and (b)
show the effect of the variation of Vth on the inference
accuracy of the MNIST and CIFAR 10 datasets, respectively.
The threshold voltage variation (σth) of the neuron circuits is
assumed to follow a Gaussian distribution. The classification
accuracy for theMNIST andCIFAR10 datasets decreases sig-
nificantly as the sigma (σth) of the threshold voltage in neuron
circuits increases by ∼60% and ∼50%, respectively. In par-
ticular, the classification accuracy for the CIFAR10 dataset
decreases more severely as σth increases above ∼50%. The
threshold voltage transferred to the binary neuron circuit can
be different from the threshold value in the algorithm due to
process variation or variation in the transfer process. By using
the double-gate PF device, the Vth can be matched to the
threshold value in the algorithms by controlling the gate bias
or the program/erase pulse shown in Figs. 6 and 8. Therefore,
the proposed binary neuron circuit consisting of 6 transistors
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can eliminate the accuracy degradation without CMOS
overhead compared to the ADC-like MLSA [8]. Compar-
ing the inference accuracy within 40% sigma (σw, σth) in
Figs. 12 and 13 shows that the Vth variation in the neuron
circuits has a greater effect on the inference accuracy than
the weight variation in synaptic arrays in BNN. Therefore,
in this work, it can be said that the proposed neuron circuit
with the PF device capable of controlling the Vth accurately
improves the inference accuracy while reducing the power
consumption.

IV. CONCLUSION
An analog bit-counting scheme has been proposed to
decrease the burden of neuron circuits in a binary neu-
ral network with a synaptic architecture utilizing NAND
flash memory compared to the digital bit-counting scheme.
A novel binary neuron circuit with a double-gate positive
feedback (PF) device was proposed to replace the sense
amplifier, adder, and comparator, thereby decreasing the
power consumption and the burden of the CMOS circuits. The
proposed neuron circuit consisting of 6 transistors, including
the double-gate PF device, eliminates accuracy degradation
without additional CMOS overhead compared to a multi-
level sense amplifier. The Vth variation of the neuron circuits
was more detrimental to the inference accuracy compared
to the weight variation of the synaptic devices up to 40 %
sigma (σw, σth). By controlling the gate bias or program/erase
pulse for the double-gate PF device, we demonstrate that the
threshold voltage of the neuron circuits can be adaptively
matched to the threshold value in the algorithms. Thanks to
the super-steep SS characteristics of the PF device, the pro-
posed neuron circuit with the PF device significantly reduces
the off-state current (∼1 pA) of the neuron circuit com-
pared to the neuron circuit with the conventional MOSFET
device (Ioff ∼100 nA). Note that, to accommodate a vast vol-
ume of parameters and a large network size required in recent
neural networks, high-density NAND flash and the proposed
neuron circuit are promising candidates for a neuromorphic
system. Therefore, practical realization of hardware neural
networks consisting of NAND flash memory and neuron
circuits needs to be demonstrated and requires further study.
The proposed binary neuron circuit with a synaptic device
utilizing NAND flash memory in this work can show the
feasibility of energy-efficient and high-density neuromorphic
hardware with a high inference accuracy.
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