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ABSTRACT Automated segmentation of brain tumour from multimodal MR images is pivotal for the
analysis and monitoring of disease progression. As gliomas are malignant and heterogeneous, efficient and
accurate segmentation techniques are used for the successful delineation of tumours into intra-tumoural
classes. Deep learning algorithms outperform on tasks of semantic segmentation as opposed to the more
conventional, context-based computer vision approaches. Extensively used for biomedical image segmenta-
tion, Convolutional Neural Networks have significantly improved the state-of-the-art accuracy on the task of
brain tumour segmentation. In this paper, we propose an ensemble of two segmentation networks: a 3D CNN
and a U-Net, in a significant yet straightforward combinative technique that results in better and accurate
predictions. Both models were trained separately on the BraTS-19 challenge dataset and evaluated to yield
segmentation maps which considerably differed from each other in terms of segmented tumour sub-regions
and were ensembled variably to achieve the final prediction. The suggested ensemble achieved dice scores of
0.750, 0.906 and 0.846 for enhancing tumour, whole tumour, and tumour core, respectively, on the validation
set, performing favourably in comparison to the state-of-the-art architectures currently available.

INDEX TERMS Deep learning, BraTS, medical imaging, segmentation, U-Net, CNN, ensembling.

I. INTRODUCTION
Accurate segmentation of tumours through medical images is
of particular importance as it provides information essential
for analysis and diagnosis of cancer as well as for mapping
out treatment options and monitoring the progression of the
disease. Brain tumours are one of the fatal cancers world-
wide and are categorised, depending upon their origin, into
primary and secondary tumour types [1]. The most common
histological form of primary brain cancer is the glioma, which
originates from the brain glial cells [2] and attributes towards
80% of all malignant brain tumours [3]. Gliomas can be of
the slow-progressing low-grade (LGG) subtype with a better
patient prognosis or are the more aggressive and infiltrative
high-grade glioma (HGG) or glioblastoma, which require
immediate treatment [4]. These tumours are associated with
substantial morbidity, where the median survival for a patient
with glioblastoma is only about 14 months with a 5-year
survival rate near zero despite maximal surgical and medical
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therapy [5]. A timely diagnosis, therefore, becomes impera-
tive for effective treatment of the patients.

Magnetic Resonance Imaging (MRI) is a preferred tech-
nique widely employed by radiologists for the evaluation
and assessment of brain tumours [1]. It provides several
complimentary 3D MRI modalities acquired based on the
degree of excitation and repetition times, i.e. T1-weighted,
post-contrast T1-weighted (T1ce), T2-weighted and Fluid-
Attenuated Inversion Recovery (FLAIR). The highlighted
subregions of the tumour across different intensities of these
sequences [6], such as the whole tumour (the entire tumour
inclusive of infiltrative oedema), is more prominent in FLAIR
and T2 modalities. In contrast, T1 and T1ce images show the
tumour core exclusive of peritumoural oedema [7]. It allows
for the combinative use of these scans and the complementary
information they deliver towards the detection of different
tumour subregions.

The Multimodal Brain Tumour Segmentation Chal-
lenge (BraTS) is a platform to evaluate the development of
machine learning models for the task of tumour segmenta-
tion, by facilitating the participants with an extensive dataset
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of 3D MRI images of the gliomas (both LGG and HGG)
and associated ground truths annotated by expert physicians.
The provided multimodal scans are used for both training
and validating the neural networks designed for the particular
segmentation task [6], [8]–[11].

Manually delineating brain tumour subregions from MRI
scans is a subjective task, and therefore it is time-consuming
and prone to variability [12]. Automated segmentation of
gliomas from multimodal MRI images can consequently
assist the physicians to speed-up diagnosis and surgical
planning as well as provide an accurate, reproducible solu-
tion for further tumour analysis and monitoring [13], [14].
The classical methods of automated brain tumour segmenta-
tion rely on feature engineering, which involves the extrac-
tion of handcrafted features from input images with follow
up training of classifier [11], [15]. Unsupervised learning
algorithms bypass the complexity in designing and selecting
features by automatically learning a hierarchy of feature rep-
resentations [16]–[19], with deep learning models excelling
at the task [11]. Convolutional Neural Networks (CNNs) is
regarded as the state of the art methods for brain tumour
image segmentation as they learn the most useful and relevant
features automatically [6].

However, accurate segmentation of tumour remains a chal-
lenge; due to heterogeneity in terms of shape, size, and
appearance of the gliomas as well as ambiguous and fuzzy
boundary existing between cancer and brain tissue [20]. The
intensity variability of the MRI data further adds to this diffi-
culty [13]. Therefore, it is still open to improvement, allowing
further exploration for better segmentation techniques and
accuracy.

In this work, we utilise multiple 3D CNN models for
brain tumour segmentation from multimodal MRI scans and
ensemble their probability maps for more stable predictions.
The networks are trained separately, with hyperparameters
optimised for each model, on the training dataset acquired
from the 2019 Brain Tumour Segmentation (BraTS) chal-
lenge. A rigorous evaluation on the BraTS validation set
resulted with the proposed ensemble achieving dice scores of
0.750, 0.906 and 0.846 for enhancing tumour, whole tumour,
and tumour core, respectively.

II. LITERATURE REVIEW
Numerous research studies highlight the importance of
machine learning (ML) to facilitate and improve the
efficiency of human practices. From combining ML with
ubiquitous computing [21] to employing it for foreign
object detection [22], many techniques have emerged to
automate otherwise challenging tasks. Pervasive as gliomas
have become, it is imperative that they are monitored care-
fully and operated on, depending on the prognosis. Many
ML algorithms can accurately segment the cancer regions
and assist the neuroradiologists in disease monitoring and
planning.

The data used for these techniques must illuminate the
variable characteristics of the gliomas, from the tumour

infiltrative growth patterns to their heterogeneity [23],
to attain considerable accuracy during segmentation. A study
demonstrates the use of multimodal MRI data in a tissue
type mapping protocol that serves to identify the grade
as well as acquire spatial information of the tumour [24].
Multi-sequence MRI data is also provided by the BraTS
challenge, containing both HGG and LGG scans of multi-
institute patients, to facilitate users for devising successful
glioma delineation techniques [9]–[11].

A. MACHINE LEARNING TECHNIQUES
Supervised learning techniques with discriminative classi-
fiers have been used for accurate delineation of gliomas,
of which the most successful are random forests (RF) and
support vector machines (SVM). Soltaninejad et al. [25]
initially devised an approach to classify brain tumours grades
using superpixels generated through bi-modal MRI data of
patients, particularly by using FLAIR and T2-weighted MR
data. The mean intensity of the superpixels was utilised
to obtain the region of interest (ROI) from which the 1st
and 2nd order feature representations were extracted and
passed onto the SVM classifier to delineate and differentiate
between tumour grades. They continued down this avenue of
research, and worked further with superpixels, acquired using
mono-modal MRI data of patients [26]. After their segmen-
tation from the FLAIR-MRI, statistical and textural features
were extracted from these voxel-wise class labels, which
were then fed into the extremely randomised trees (ERT) as
well as the SVM classifier to ascertain whether the voxels
represented healthy or tumoural brain regions. The method
performedwell on BraTS 2012 dataset, with the classification
results compared to show that ERT works marginally better
than SVM on detection and segmentation of the tumour
grades.

Expounding on their earlier work, Soltaninejad et al. [27]
employed multi-sequence MRI images, along with diffusion
tensor imaging (DTI) data, to obtain 3D superxovels which
provide clear tumour boundaries across the image modali-
ties. The extracted texton and intensity-based statistical fea-
tures were given to the RF classifier to classify the voxels.
Inclusion of DTI components (isotropic (p) and anisotropic
(q)) with the conventional MRI data resulted in considerable
improvement of classification results. The method performed
well and provided expert segmentations of the tumours when
tested on the BraTS 2013 dataset. However, they are not the
first to have utilised DTI for refined tumour segmentation.
Jones et al. [28] suggested the use of diffusion characteristics
to semi-automatically segment lesions from volumetric MRI
data in a method termed as diffusion segmentation (D-SEG).
After appropriating the voxels in the (p, q) space into clusters
through k-means clustering, the boundaries segregating the
healthy brain tissue and tumour regions are made apparent
and clear in the resulting tissue segments. This information is
utilised to extract the volume of interests (VOIs) from which
the D-SEG spectrum is calculated, representing the variable
proportion of diffusion within the VOIs. The spectra are then
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classified through SVM to achieve considerable classification
accuracy.

B. DEEP LEARNING ARCHITECTURES
Deep learning algorithms outperform on tasks of seman-
tic segmentation as opposed to the more conventional,
context-based computer vision approaches [29]. Extensively
used for biomedical image segmentation, the Deep Convolu-
tional Neural Networks have carved out a niche for achieving
the state of the art accuracy on the task of brain tumour
segmentation [30]–[35].

A 2D U-Net architecture was put forth for the auto-
mated segmentation of brain tumour [36]. For increased net-
work efficiency, various data augmentation techniques were
applied along with the soft dice loss function to mitigate the
class imbalance issue in the data. Fidon et al. [37] refined a
neural network previously used for the task of brain parcella-
tion and adapted it for multimodal MRI data input. ScaleNet
made use of a merging operation in place of concatenation
to connect the frontend and backend of the network, thereby
allowing it to be scalable and generalised. Le et al. [38]
designed an architecture which combined the standard vari-
ational level set (VLS) with a fully convolutional network
(FCN). The new model referred to as the deep recurrent
level set (DRLS), performed well in segmenting the tumour
in comparison to the other models of the time, improving
the otherwise rudimentary VLS into a deep learnable frame-
work. Qin et al. [39] introduced the autofocus layer, which
enhanced the multi-scale processing of network and learned
through an attention mechanism to select the optimal scale
for object identification in medical images. The dilated con-
volution layer improved the interpretability and representa-
tion capacity of the network leading to improved tumour
segmentation.

A fully convolutional network (FCN) was suggested by
Shen et al. [40], trained to learn boundary and region tasks,
and successfully extracted contextual information from MRI
scans with considerably low computation cost. Working with
a similar architecture, Pereira et al. [41] set forth an FCN
which captured more sophisticated features through feature
recombination and also introduced a recalibration block in
the structure. Zhou et al. [42] proposed a multi-task CNN,
which integrated and trained on the different tasks of brain
tumour segmentation in terms of their correlation and sim-
plified the inference process through a one-pass computa-
tional scheme. Ji et al. [43] proposed a weakly-supervised
U-Net that employed a scribble-based approach. They ini-
tially trained the network on whole tumour scribbles before
exposing it to global labels for accurate substructure segmen-
tation. Another network is trained on the results of the pre-
viously trained U-Net to segment the enhancing tumour and
tumour core. Xu et al. [44] introduced this 3D deep cascaded
attention network (DCAN), which is more straightforward in
complexity compared to other cascaded models. It dealt with
the multi-class segmentation task through separate branches
and a shared feature extractor between them. It extracted the

correlational information between the sub-regions through a
cascaded attention method for guidance.

Myronenko [45] ranked first among the top submissions
of the BraTS 2018 challenge with their encoder-decoder
based CNN architecture. It augmented a variational autoen-
coder (VAE) for regularisation, allowing the reconstruction
of original input images. During training, they used a crop
size of 160× 192 × 128 and a batch size of 1, with no addi-
tional training dataset employed. The method proposed by
Isensee et al. [46] placed second in the same challenge with
minor alterationsmade to the original U-Net architecture. The
3D U-Net, or the no-new-Net (nnU-Net) as named by the
authors, replaced ReLU activation functionswith leakyReLU
and instance normalisation with batch normalisation. The
training performed with an image patch size of 128× 128 ×
128 and batch size of 2. The same architecture, trained from
scratch with changed hyperparameters, is expanded and used
as part of our ensemble as well. Working with a U-Net like
structure, McKinley et al. [47] incorporated dilated convolu-
tions into the DenseNet architecture and trained with a newly
formulated label certainty loss function. The tensor fed into
the network was of the dimensions 2 × 4 × 5 × 192 × 192,
with the batch size of 2. Another noteworthy model is ensem-
ble proposed by Zhou et al. [48] which consisted of various
improved CNN architectures (previously used by them as
mentioned above) trained to learn contextual information that
served to produce robust predictions.

In this study, we propose an ensemble of two networks;
a 3D CNN and a U-Net, in a different yet straightforward
combinative technique that results in better and accurate pre-
dictions in comparison to uniform weighting. The task is to
develop an automated brain tumour segmentation method, for
successful delineation of tumours into intra-tumoural classes
with improved efficiency and accuracy in comparison to
existing methods. Our proposed model shows comparable,
and in some cases, improved results to the state-of-the-art
models.

III. MATERIALS AND METHODS
A. DATASET
We use the 2019 Brain Tumour Segmentation Chal-
lenge (BraTS) dataset [6], with the training set employed
to train the models and the validation set for the evalu-
ation of the proposed ensemble. The training set consists
of 259 high-grade glioma and 76 low-grade glioma patients
with expertly annotated ground truths. In contrast, the valida-
tion set includes 125 cases of unknown grade (the labels are
not made available to the public) [8]–[11].

The multi-institutional dataset, acquired from 19 different
contributors, contains multimodal MRI scans of each patient,
namely T1, T1 contrast-enhanced (T1ce), T2-weighted (T2),
and Fluid Attenuated Inversion Recovery (FLAIR), from
which the tumoural subregions are segmented. The data
is processed to overcome discrepancies such that they are
skull-stripped, aligned to match an anatomical template,
and resampled at a resolution of 1mm3. Each sequence has
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FIGURE 1. Multi-modal images of a single patient (HGG) in the BraTS-19 Training Set, along with the manual annotation overlaid on
the Flair image.

FIGURE 2. A schematic visualization of the 3D CNN architecture, where g represents the convolutional channels that are split into groups to
reduce feature map connectivity. The multi-fiber (MF) blocks makes use of a multiplexer allowing for the flow of information between groups.
Each dilated multi-fiber (DMF) block is a dilated convolutional unit, with adaptive weighting, which serves to capture spatial information of the
tumour.

a volume (dimension) of 240 × 240 × 155. Example images
from the training set, as well as the corresponding ground
truth, are shown in Figure 1. Themanual ground truths (inclu-
sive in the training set) highlight the three tumour regions: the
peritumoural oedema, the enhancing tumour, and the necrotic
and non-enhancing core.

It is worth mentioning that we did not use any exter-
nal dataset in our experiments. Additionally, access to the
BraTS-19 test set is limited to the challenge participants only.
Therefore, we report test results on the BraTS-19 validation
set. We first report the segmentation results of the proposed
network on the validation set and later compare it to the
existing state of the art architectures.

B. METHODOLOGY
Ensembling is often adapted for the task of brain tumour
segmentation and has the advantage of improving both results
and performance [47]–[49].We propose a lightweight ensem-
ble consisting of as few as two networks, each selectively
trained on the training set. The outputs of these networks are
segmentation map that differs in terms of segmented tumour
sub-regions. The segmentation maps are then combined to

get the final prediction. In the following sections, we provide
further details on these two networks.

1) NETWORK 1 (3D CNN)
The first model used in the ensemble is a 3D CNN, initially
developed by Chen et al. [50]. It uses a multifiber unit (an
array of 3D CNN, Figure 2) with weighted dilated convolu-
tions to glean feature representation at multi-scale for vol-
umetric segmentation. The network showed good results on
the BraTS 2018 Challenge. Extending on their work, we fine-
tune the model for improved segmentation.

a: PRE-PROCESSING
The data is augmented using a multitude of techniques (crop-
ping, rotation, mirroring) before feeding it into the network
for training.

b: TRAINING
We trained the model for 150 epochs with a patch size of
128 × 128 and modified loss function, combining the gen-
eralised dice loss and the focal loss. The fine-tuned hyperpa-
rameters are shown in Table 1.
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FIGURE 3. A schematic representation of the U-Net architecture. Inputs of patch size 128 × 128 × 128 are fed into the model. 3D convolutional
blocks (as represented by grey boxes) are used with leaky ReLU function activations and instance normalization. Trilenaer upsampling is
employed to achieve the output of the same spatial dimensions as that of the input.

TABLE 1. Hyperparameters used for CNN training.

c: INFERENCE
We applied zero-padding to the MRI data so that the original
240 × 240 × 155 voxels are converted to 240 × 240 × 160,
a depth which is divisible by the network. Once the data is
ready for the inference, we pass it through the trained network
to generate probability maps. The ensemble subsequently
uses these maps for final prediction.

2) NETWORK 2 (3D U-NET)
The second model of our ensemble is a 3D U-Net vari-
ant which is different from the classical U-Net architecture;
ReLU activation function is replaced by leaky ReLUs and
the use of instance normalisation in place of batch normal-
isation [37]. The network has shown comparable results on
the medical segmentation benchmark, Medical Segmentation

Decathlon, and BraTS 2018 Challenge. The model is trained
from scratch on our dataset while having the same architec-
ture (Figure 3) as reported in [37].

a: PRE-PROCESSING
We crop the data to reduce the size of the MRI slice. After-
wards, we resample the images along with median voxel
spaces of the otherwise heterogeneous data followed by a
z-score normalisation.

b: TRAINING
For training the network, we use the input patch size of 128×
128× 128 voxels and batch size of 2. Different data augmen-
tation techniques (rotation, mirroring and gamma correction)
are applied on the data during runtime to circumvent overfit-
ting and to enhance the segmentation accuracy of the model.
The loss function combines the binary cross-entropy and the
dice—table 2 details the hyperparameters during training.

c: INFERENCE
Inference is a patch-based where all the patches overlap by
half their size and the voxels near the centre have a higher
weight attributed to them. Mirroring along the patch axes
serves as additional data augmentation during the test time.
The outputs are probability maps for the ensemble.

3) ENSEMBLING
The ensemble is not built by simple averaging of the pre-
dictions (probability maps) generated by the two models.
We merge the outputs of the two models after rigorously
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FIGURE 4. A general representation of the ensembling technique used to generate the ensemble predictions. The 3D
CNN (mentioned as N1) more accurately segments the enhancing tumour (ET), while the 3D U-Net (mentioned as N2)
performs better for the tumour core (TC), therefore, the respective models’ segmentation for that particular subregion
are used in the final prediction (Pf) of the ensemble. For the whole tumour (WT), both models contribute equally
towards to the output.

TABLE 2. Hyperparameters used for U-Net training.

testing a strategy termed as variable ensembling (illustrated
in Figure 4).

We separately test these trained networks on the valida-
tion set to obtain corresponding segmentation images. These
predictions from the individual models are evaluated on
the online BraTS server1 independently to determine their
efficiency in segmenting the tumour regions successfully.
We then compare the dice scores of the twomodels to identify
which network is more accurate, and outperforms the other,
for any specific tumour region. Qualitative and quantitative
(dice scores) results demonstrate that CNN performs better
for segmenting the enhancing tumour. At the same time,
the U-Net is more accurate for segmenting tumour core.

1 https://ipp.cbica.upenn.edu

However, in case of the whole tumour, combining the pre-
dictions from both networks (equally) outperforms the seg-
mentation results independently. Therefore, to generate the
final ensemble predictions for three regions; (1) tumour core,
we used only U-Net’s output (2) enhancing tumour, we used
only CNN’s output (3) the whole tumour, we equally weighed
the output of both networks. The predictions were evaluated
on the online server to obtain the dice scores for the ensemble.
We discuss these results in more detail in the next section.

IV. RESULTS
Here we present results from an ensemble of 2 networks,
variants of a U-Net and a CNN, both selectively trained on
the BraTS 2019 training set (n = 335) and tested on the
provided BraTS 2019 validation set (n = 125). We then
intelligently combine the segmentation maps from these
models to give a final prediction for tumour tissue type
instead of simple averaging. The dice scores achieved by the
ensemble (proposed) are 0.750 for enhancing tumour,
0.906 for the whole tumour, and 0.846 for tumour core.In
Figure 5, we show the segmentation results of a single patient
overlaid on the MRI Flair.

The segmentation maps are generated from both mod-
els separately, and then the final merged output is shown.
The dice score for the patient was 0.930, 0.949 and
0.927 for enhancing tumour, whole tumour, and tumour core,
respectively.

We further analysed different ensemble techniques (as
shown in Table 3) to determine if there is any difference
between the methods and which of the two results in the
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FIGURE 5. Example MRI Flair scan of a single patient exhibited from transverse, coronal and sagittal slices,
overlaid with the segmentation prediction from the proposed model. The tumour regions are colour coded,
with the whole tumour representing all the segmentation classes in green, the tumour core including both the
blue and red region, while the enhancing tumour is shown as the red region.

most accurate of segmentations. As depicted in Table 3,
the proposed ensembling scheme gives better accuracy in
comparison to simple averaging.

TABLE 3. Performance (dice scores) through different ensembling efforts
on BraTS-19 validation set.

A. COMPARISON WITH CHALLENGE PARTICIPANTS
We evaluated the proposed ensemble on the BraTS 2019 val-
idation set and later compared it to top ranking architec-
tures on the challenge website. Table 4 shows comparative
dice scores obtained through the online BraTS server. The
ensemble (proposed) achieved dice scores of 0.750, 0.906 and
0.846 for enhancing tumour, whole tumour, and tumour core,
respectively.

The cascadedU-Net employed by Jiang et al. [51] achieved
the best scores of the challenge, to which our results compare
favourably, with significant performance gap occurring in
terms of the enhancing tumour. Our ensemble gives improved
results for the tumour core than the DCNN used by Zhao
et al. [52] and just falls short for the enhancing tumour with
a minor performance gap. Similarly, it segments the tumour
core with more accuracy as compared to CNN developed by
McKinley et al. [53].

TABLE 4. Performance (dice scores) in comparison with challenge
participants on BraTS-19 validation set.

B. RESULT COMPARISON WITH DIFFERENT
FRAMEWORKS
Table 5 shows the comparison with various state of the art
methods (also validated on the BraTS 2019 dataset). Any
of the other frameworks did not use additional data dur-
ing training. Except for the enhancing tumour, the proposed
ensemble results in better segmentations than the other avail-
able networks for both the whole tumour and tumour core,
as evidenced by the dice scores.

The promising performance by our simple ensemble of a
U-Net and CNN is indicative of its efficiency and potential
usability to achieve comparable and often better segmentation
accuracy than its contemporaries.

V. DISCUSSION
We propose an ensemble of a 3D U-Net and CNN for
the task of brain tumour segmentation on multimodal
MRI data. We combine the outputs of the two networks
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TABLE 5. Performance (dice scores) in comparison with other
architectures on BraTS-19 validation set.

through variable ensembling to attain competitive classi-
fication accuracy on the BraTS 2019 validation set. Our
proposed method performs favourably to state of the art
methods by achieving mean dice scores of 0.750, 0.906 and
0.846 on enhancing tumour, whole tumour, and tumour core,
respectively.

We experimented with a multitude of networks and their
different combinations before deciding on the 3D U-Net and
CNN.We alsoworked on different variants of CNNby chang-
ing the layers employed in the original architecture, but it did
not result in improving the performance.

While our method performs favourably on the whole
tumour and tumour core classes, the segmentation accuracy
of the enhancing tumour needs improvement. Jiang et al. [51]
implemented an interesting thresholding scheme in which if
the enhancing tumour is less than the set threshold, the region
is substituted with necrosis instead, which might cause a
significant improvement in the accuracy of the enhancing
tumour class.

Certain limitations still exist in the current work. Firstly,
the proposed segmentation ensemble is only evaluated on
the official validation set of the challenge. The sound-
ness of the method can be validated further by testing on
separate clinical MRI data, independent of the challenge.
Secondly, we did not extensively pre-process the dataset and
post-process the results. Many reported models prepare their
imaging data through intensity normalisation [58], [59] and
bias correction [60] schemes to minimise the variability in
the data and make it analogous and comparable. Similarly,
post-processing methods such as the use of conditional ran-
dom fields [61] are shown to enhance segmentation accu-
racy. Nonetheless, the proposed ensemble exhibits efficient
and robust tumour segmentation accuracies across multiple
regions.

In future, we intend to add image processing (both pre- and
post-processing) to the ensemble, along with further tuning of
the hyperparameters.

VI. CONCLUSION
In this work, we have described an ensemble of two net-
works, both of which are individually used frequently on
the task of biomedical image segmentation. The ensemble
successfully generates highly accurate segmentation of brain
tumours from the multimodal MRI scans as provided by
the BraTS 2019 challenge, which compares favourably with
predictions given from various other state of the art models.
We use a method of variable ensembling to combine the
respective outputs from the model to achieve the best scores.
The proposed ensemble offers an automated and objective
method of generating brain tumour segmentation to aid in
disease planning and patient management clinically.
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