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ABSTRACT Variational Auto-Encoders (VAEs) are deep latent space generative models which have been
immensely successful in many applications such as image generation, image captioning, protein design,
mutation prediction, and language models among others. The fundamental idea in VAEs is to learn the
distribution of data in such a way that new meaningful data can be generated from the encoded distribution.
This concept has led to tremendous research and variations in the design of VAEs in the last few years
creating a field of its own, referred to as unsupervised representation learning. This paper provides a much-
needed comprehensive evaluation of the variations of the VAEs based on their end goals and resulting
architectures. It further provides intuition as well as mathematical formulation and quantitative results of
each popular variation, presents a concise comparison of these variations, and concludes with challenges
and future opportunities for research in VAEs.

INDEX TERMS Deep learning, variational autoencoders (VAEs), data representation, generative models,
unsupervised learning, representation learning, latent space.

I. INTRODUCTION
Data generation, due to the scarcity of training data, is a fun-
damental problem inmany areas of artificial intelligence such
as computer vision pattern recognition and natural language
processing [1]. In recent years, deep generative models have
gained a lot of attention due to numerous applications in deep
learning. Among them, VAEs [2] and Generative Adversarial
Networks (GANs) [3] are regarded as the two most popular
approaches to generative modeling.

The VAE can be regarded as a mixture of an encoder and a
decoder Bayesian network. The encoder maps an input data
(e.g., an image) x to a latent vector z, and then the decoder
maps the latent vector z back to image or data space [4].
VAEs1 enhance a normal Autoencoder (AE) by adding a
Bayesian component that learns the parameters representing
the probability distribution of the data. This is achieved by
imposing a prior on the probability of the input, modeled
typically as a unit Gaussian random variable. This implicitly
results in a regularization that can be used to explain the
probability of the input. Thus, the VAE is a generative model
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that can sample from the latent distribution produced by the
encoder and generate new input data via the decoder.

VAEs do not suffer problems encountered in GANs,
mainly: non-convergence causing mode collapse, and are
hard to evaluate [3], [5], [6]. What’s more, VAEs have decent
theoretical guarantee: first, by introducing the variational
lower bound, the complicated calculation of the marginal
likelihood probability is avoided. Second, by the reparam-
eterization trick, the complicated Markov chain sampling
process of latent variable is avoided. A key benefit of VAEs
is the ability to control the distribution of the latent rep-
resentation vector z, which can combine VAEs with repre-
sentation learning to further improve the downstream tasks.
VAEs are able to learn the smooth latent representations of
the input data [7] and thus can generate new meaningful
samples in an unsupervised manner. These properties have
allowed VAEs to enjoy success especially in computer vision,
e.g., static images generation [8], zero shot learning [9]–[11],
image super-resolution [12], [13], and semantic image
inpainting [14], [15].

Despite the above-mentioned advantages of VAEs, they
do have some constraints: 1) the generated images tend to
be blurry, 2) latent representation does not have an inter-
pretable meaning, 3) the popularly used Gaussian distribution
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as priori has limitations because the learnt representations
are unimodal, and do not allow for different or mixed data
distributions, and 4) the Gaussian definition is based on
the L2-norm that suffers from the curse of dimensionality.
In order to solve the above problems, researchers have pro-
posed many variations of the VAEs based on different task
requirements such as feature learning and deep clustering
with the goal of greatly improving the quality of the generated
data.

Current VAE research focuses primarily in three directions:
1) improving the disentanglement for VAEs, 2) applying
customVAEs to real-world applications, and 3) improving the
quality of generated images. Many VAE-variants have been
proposed in the following categories: 1) architecture-variant,
such as VAE-GAN and CVAE, 2) regularizing posterior-
variant, posterior regularization to improve disentanglement
capability, 3) prior-variant, prior-variance based on data
distributions to improve the Bayesian VAE model. In the
following sections, we provide details on the VAE-variants
implemented with the above categorizations.

In this paper, we focus on the recent advances in VAEs as
these provide an elegant statistical approach to meaningful
data generation resulting in an entire field of its own referred
to as unsupervised representation learning. We study the
existing VAE-variants and provide a comprehensive analysis
and comparisons between different approaches. The rest of
the paper is organized as follows:

–We present an overview of the conventional VAE.
–Variations of the VAE are describedmathematically along

with their differences, pros and cons.
–We conduct experiments on MNIST dataset and perform

comparative analysis.
–We conclude this review with some future directions for

advancement in this area.
The structure of our paper is organized as follow: Section II

describes some background work about VAEs. Section III
explains variants of VAEs in detail. Section IV provides
comparative analysis of experimental results and analysis
on the MNIST dataset. Section V describes summary of
Variations of the VAE along with their differences, pros and
cons. Conclusion and future work is given in Section VI and
references are delineated at the end.

II. PRELIMINARIES
The following sub-sections introduce the theory behind
Autoencoders, deep generative models, and conventional
VAE. Additionally, we discuss the variational bound and the
reparameterization trick.

1) AUTOENCODERS
An Autoencoder (AE) is an unsupervised learning system
where during training the expected output is an approxima-
tion of the input. AE is primarily applied to data dimen-
sionality reduction, image classification, object detection,
and image denoising [8], [16]–[18]. An AE consists of the
following parts [19]:

2) ENCODER
A neural network that produces a compressed latent space
representation of input data.

3) LATENT SPACE
Captures input to a knowledge representation, that is,
to reduce the dimensionality of input such that maximum
information is preserved in it.

4) DECODER
A reconstruction of the input data from the compressed latent
space.

As shown in Figure 1, the encoder h encodes the original
inputX into a latent space Z .The decoder f decodes the latent
space Z to recreate an approximation of the original data X ′

such that X ′ = f (Z ) = f (h (X)). After repeated training,
the AE attempts to reproduce a copy of the input as the output.
The application of an AE has two main aspects, the first is
data denoising, and the second is dimensionality reduction
for removing redundant or unimportant features. In other
words, the output is made approximately equal to the input
with some constraints on the AE algorithm. These constraints
force the encoder to consider which parts of the input need to
be preserved and which parts can be discarded. Therefore,
the Autoencoder can often learn the meaningful features of
the data and discard the irrelevant features. It is well known
that an AE accomplishes dimensionality reduction similar to
a nonlinear PCA. In classification application of an AE, the
decoder section is removed after AE is trained, and replaced
by a classifier network. An AE is not capable of generating
new data as the latent space it produces is not regularized to
aid in new data synthesis.

FIGURE 1. Architecture of Autoencoder.

A. DEEP GENERATIVE MODELS
The most common model in machine learning is the dis-
criminant model. The discriminant model [20] refers to the
inference of certain features of the data based on the original
dataset, and then use these features to construct the corre-
sponding application model e.g., a classifier. On the other

153652 VOLUME 8, 2020



R. Wei et al.: Variations in VAEs - A Comparative Evaluation

hand, a generative model aims to learn the features of the
input and recover the original data or generate similar data
from a latent space distribution.

Deep Generative models use distribution estimation and
sampling to achieve generation of new data [21]. To explain
this further, suppose in a continuous or discrete high-
dimensional space, there is a data x obeying some unknown
distribution Pdata(x), and it is necessary to estimate the
unknown distribution Pmodel(x) by observing part of the data
samples of the set X . The deep generative model generates
an estimated distribution by approximating and learning the
unknown distribution Pdata(x) from some training data and
allows new data to be generated from the estimated distribu-
tion Pmodel(x).

Traditional popular deep generative models belong to
Boltzmann family i.e. Deep Belief Networks (DBNs) [22]
and Deep Boltzmann Machines (DBMs) [23]. However, one
major limitation of them is high computational cost during
inference process [24]. Latest deep generative networks are
VAEs and GANs. In this paper, we focus on VAEs and its
variants.

B. VARIATIONAL AUTOENCODER (VAE)
A Variational Autoencoder (VAE) is a special autoencoder
based on the variational Bayes inference originally proposed
by Kingma and Welling [2], Doersch [4]. The goal of a
VAEs is to be able to learn the distribution of the training
data so that by sampling from it, we can generate new data.
Since the training data may not necessarily have a well-
defined mathematical distribution, we force the distribution
of the output of the encoder (known as the latent space) to
follow a known distribution e.g., normal distribution. Figure 2
shows the architecture of a VAE that has an encoder and a
variational inference network, followed by the decoder that
samples from the latent space to generate the output. The
main difference between AE and VAE is the AE learns the
compressed representation of the input, and its decompres-
sion to match the given input. In contrast, the VAE is a
Bayesian model which learns the compressed representation
of the AE, and constructs the parameters representing the
probability distribution of the data. It can sample from this
distribution and generate new input data samples. There-
fore, VAE is a generative model, where as an AE which
just does reconstruction does not have an obvious generative
interpretation.

If the original dataset is X = {xi}Ni=1, then each data
sample xi is a randomly generated, independent, continuous
or discrete distribution variable, and the regenerated dataset
at the output is X ′ =

{
x ′i
}N
i=1. Suppose the encoding process

produces a latent variable z, then, the observable variable
X ′ is a random vector in a high-dimensional space, and the
unobservable variable Z is a random vector in a relatively
low-dimensional space.

In the implementation of the VAE, the encoder is a neural
network whose input is a datapoint x, its output is a latent

FIGURE 2. Architecture of Variational Autoencoder (VAE).

representation z. We represent its weights and biases as a
model φ. The decoder is another neural net whose input is
the latent representation z and outputs the parameters of the
probability distribution for the data. The decoder’s weights
and biases are represented as the model θ . Suppose we want
to approximate a distribution p (Z |X) with some q (Z |X)
distribution via the Kullback-Leibler (KL) divergence, then
by definition of KL,

DKL [q (Z |X) ‖p (Z |X) ]

=

∑
Z

q (Z |X) log
[
q (Z |X)
p (Z |X)

]
(1)

= E
[
log

[
q (Z |X)
p (Z |X)

]]
= E

[
log [q (Z |X)− p (Z |X)]

]
(2)

If we minimize the KL divergence as follows: using Bayes′

rule:

p (Z |X)

=
p (X |Z ) p (z)

p (x)
(3)

DKL [q (Z |X) ‖p (Z |X) ]

= E
[
log q (Z |X)− log

p (X |Z ) p (Z )
p (X)

]
(4)

= E
[
log q (Z |X)− (log p (X |Z )− log p (Z )+ log p (X))

]
(5)

Since expectation is with respect to Z ,

= log p (X)+E
[
log q (Z |X)−log p (X |Z )−log p (Z )

]
(6)

log p (X)−DKL [q (Z |X) ‖p (Z |X) ]

= E[log p (X |Z )−DKL [q (Z |X) ‖p (Z ) ] (7)

DKL [q (Z |X) ‖p (Z |X) ]

= log p (X)−
[
E[log p (X |Z )]−DKL [q (Z |X) ‖p (Z ) ]

]
(8)

Since DKL is always positive, we can conclude that:

log p (X) ≥ E[log p (X |Z )]− DKL [q (Z |X) ‖p (Z ) ] (9)

Equation 9 is an important result and is known as the
Evidence Lower Bound (ELBO). In a deep neural network
implementation of a VAE, equation 9 is used as the loss
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function during training of the network. The E[ log p (X |Z )]
term denotes the reconstruction i.e., the generation of output
from the latent representation z. The DKL [q (Z |X) ‖p (Z ) ]
measures the similarity of the distribution of the latent space
with the target distribution p(z). Thus, the two components of
equation 9 try to make the output similar to the input while
keeping the distribution of the latent space as close to the
target distribution p(z) as possible.

The ELBO is tight if q (z) = p (z|x), indicating that q (z) is
optimized to approximate the true posterior. For scalability to
larger datasets, we do not optimize q (z) for every data point
X . Instead an inference network q (z|x) is introduced that is
parameterized by a neural network that outputs a probability
distribution for each data point X . Therefore, the final objec-
tive is to maximize:

L(θ, φ)=Eq∅(z|x)
[
log pθ (x|z)

]
−DKL(qφ(z|x)||pθ (z)) (10)

1) REPARAMETERIZATION TRICK
According to the objective described in equation (10), after
we introduced qφ (z|x) to approximate pθ (z|x), if we want
to sample Z from qφ (z|x), an easy choice is to assume that
qφ (z|x) obeys the Gaussian distribution and that the sam-
pling of Z can be done in the following reparameterization
way [25]:

zi = µi + σ i ∗ εi

where ε is an auxiliary noise variable such that ε ∼ N (0, 1)
i.e., let q (z|x) be a Gaussian with parameters µ(x) and 6(x).

Then the KL divergence between q (z|x) and p(z) can be
computed in closed form as follows:

DKL [N (µ (x) ,6 (x)) ‖N (0, 1) ]

=
1
2

(
tr6 (x)+µ (x)Tµ (x)−k−log [det (6 (x))]

)
(11)

DKL [N (µ (x) ,6 (x)) ‖N (0, 1) ]

=
1
2

(∑
k

6 (x)+
∑
k

µ2 (x)−
∑
k

1−log
∏
k

6 (x)

)
(12)

=
1
2

(∑
k

6 (x)+
∑
k

µ2 (x)−
∑
k

1−
∑
k

log6 (x)

)
(13)

=
1
2

∑
k

(
6 (x)+µ2 (x)−1−log6 (x)

)
(14)

Replacing 6 (x) with e6(x)

DKL [N (µ (x) ,6 (x)) ‖N (0, 1) ]

=
1
2

∑
k

(
(exp6 (x))+ µ2 (x)− 1− log6 (x)

)
(15)

The reparameterization can make the relationship between
latent variable Z , σ and µ change from sampling to a numer-
ical calculation such that it can be optimized directly by
using stochastic gradient descent [26]. The main purpose
of the reparameterization trick is to make back propagation
possible. Conditional distribution pθ (z|x) obeys Gaussian
distribution and the mean and standard deviation can be

calculated by the neural network; thus, each component of
the lower bound of the variation can be directly calculated,
and the model structure can be determined.

2) DISENTANGLEMENT AND REPRESENTATION LEARNING
Although our world is inundated with data, a large part of the
data is still unlabeled and unorganized. One of the challenges
of artificial intelligence is to learn useful representations
using unsupervised learning methods. The performance of
models can be improved by selecting different representa-
tions to adjust the difficulty of machine learning [27]. Feature
engineering [28] is one of the methods that can refine the
representations from raw data. Feature engineering refers
to transforming raw data into advanced training data repre-
sentations. However, in machine learning, manually selected
features rely on human and professional knowledge, which is
part of the most time-consuming and energy-intensive work,
and its weakness is the inability to extract and organize
discriminant information from the data. Therefore, in order
to improve the scope and ease of use progress in artifi-
cial intelligence, we need to promote the work of feature
engineering more quickly and effectively by relying less on
feature engineering. Representation learning can learn useful
disentangled representations automatically.

Representation learning is done by the meta-priors pro-
posed by Bengio et al. [7]. The goal of representation learning
is to be useful for downstream tasks. At present, research on
successful representation learning includes speech recogni-
tion [29], signal processing [30], object recognition [31], and
natural language processing [32]. The most important meta-
prior is called ‘‘disentanglement’’ which is an unsupervised
learning technique that breaks down, or disentangles, each
feature into narrowly defined variables and encodes them as
separate dimensions [7]. Assuming that the data is generated
from independent factors of variation, and if the VAE is
trained to reconstruct the sample well, then the latent space
between the encoder and decoder keeps the important infor-
mation of the original data.

Intuitively, a factorial code disentangles the individual
elements that were originally mixed in the sample, just as
humans recognize complex things by disentangling indepen-
dent elements. If the dimensions of the latent vector are
independent of each other, it is factorial disentangled, i.e., a
good representation.

III. VARIATIONS OF VAEs
A. InfoVAE
Regularization of the encoding distribution is often used to
encourage disentanglement representations of the latent vari-
ables z. The fundamental approach taken in recent research on
disentanglement is to augment theVAE losswith regularizers,
such as reweighting the ELBO. InfoVAE [33], also known as
MMD-VAE, is a variant of VAEs that can lead to improved
unsupervised representation learning based on regularization
of the largest mean difference between distributions. The goal
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of InfoVAE is to do the representation learning by encourag-
ing a large mutual information between Z and X by adding
a regularizer of maximum mean discrepancy. The maximum
mean discrepancy (MMD) [34] was first proposed for the
two-sample test problem to determine if the two distributions
p and q are the same. Its basic assumption is to define unspec-
ified function classes F to measure the disparity between p
and q. If enough samples generated by the two distributions
have equal mean on F , then the two distributions are similar.

The MMD is taken as a test statistic to determine whether
the two distributions are similar. Such MMD-based regular-
ization can lead to disentangled latent representation resulting
in the following modified form of objective function [35]:

LVAE (θ, φ)+ λ1Ep(x)
[
R1
(
qφ (z|x)

)]
+λ2R2

(
qφ (z)

)
(16)

where R1 and R2 are regularizes and λ1, λ2 > 0 the cor-
responding hyperparameter weights. The MMD-VAE starts
from an alternative way of writing LVAE:

LVAE(θ, φ)

= DKL
(
qφ(z)‖p(z)

)
+Ep(x)

[
DKL

(
qφ(x | z)‖pθ (x | z)

)]
(17)

Zhao et al. [33] suggest to boost a major mutual message
between z∼q (x|z) and x by putting in a regularizer Iqφ(x,z) to
the formula above and reweight the first term, resulting in the
final objective as:

LInfo VAE(θ, φ)

= LVAE (θ, φ)+ λ1Ep(x)
[
DKL

(
qφ(z | x)‖p(z)

)]
+λ2DKL

[
qφ(z)‖pθ (z)

]
(18)

Figure 3 shows the architecture of the convolutional neural
network (CNN) VAE model for the MNIST dataset which
has been utilized for MMD-VAE. This structure is based on
Deep Convolutional networks which includes fully connected
layers (FC) and convolutional (Conv) layers. The size of the
input image of the encoder neural network is 28 × 28 × 1,
and the input image passes through two Conv layers and the
last FC layer till the latent variable space is reached. The two
convolutional layers in the encoder network achieve feature
maps dimensionality reduction using stride of 2 and a kernel
size of 4 × 4. The two parallel feature vectors obtained by
flattening the feature map of the second convolutional layer
are µ and σ 2, respectively. For a general implementation,
the number of neurons in the fully connected layer is a model
decision and represents the dimension of the latent space.

The generative model p (x|z) takes the sampled latent vari-
ables z received byµ and σ 2 and using the reparameterization
trick feeds it through two FC layers and one Conv layer until a
reconstructed output is obtained. The FC layers in the decoder
reshape the latent variable z to 7× 7× 128, and finally use a
stride of 2 and a kernel size of 4 × 4 in the deconvolution to
obtain the reconstruction image.

Disentanglement quality of inference models is typically
evaluated based on the ground truth factors of variation

FIGURE 3. Architecture of InfoVAE for MNIST dataset.

FIGURE 4. Samples generated by InfoVAE.

(if available). Specifically, disentanglement metrics measure
how predictive the individual latent factors are for the ground-
truth factors [36]. By comparing different models on metrics
of performance, stability and training speed, and evaluating
and comparing possible types of divergences, InfoVAE with
MMD regularization had better performance metrics and
demonstrated stability over traditional VAE [33]. InfoVAE-
MMD provides a good way to handle latent code ignorance
issues [33]. However, some of the drawbacks include the
often-blurred image generation, as shown in Figure 4, sam-
ples generated by InfoVAE of MINST data.

B. β-VAE
Another unsupervised method that can automatically dis-
cover disentangled factors in latent variable space based on
VAE framework is β-VAE [36]. The basic principle of β-
VAE is to reweight the ELBO of the model with additional
parameter β as the DKL weight. The ELBO can be expressed
as:

L(θ, φ, β) = Eqφ(z|x)
[
logpθ (x|z)

]
− βDKL(qφ(z|x)||pθ (z))

(19)

This constraint limits the ability of latent information
channels and emphasize learning the statistically independent
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latent factors. Combining the maximum likelihood objective
function with the generated model, allows the model to obtain
the most useful latent features of the input data. If the data
was generated by some independent dimension of variation,
it will be disentangled.

Compared to the unmodified VAE framework, this easy
revise permits β-VAE to remarkably enhance the perfor-
mance of disentanglement in learning representation [35]:

Lβ−VAE(θ, φ)
= LVAE(θ, φ)+ λ1Ep(x)

[
DKL

(
qφ(z | x)||p(z)

)]
(20)

where λ1 = β − 1 > 1 is the corresponding weight.
This regularization causes qφ (z|x) to better match the

a priori p(z) which conversely restricts the implicit capacity
of the latent feature z∼ qφ (z|x) and causes it to be disen-
tangled. Note that the β-VAE with β = 1 is equivalent to
a standard VAE. β-VAE implements the representation of
disentanglement by selecting the appropriate hyperparame-
ter β. This simple penalty has proven to be able to obtain
models with a high degree of disentanglement. However, it is
not explicitly stated why using the factor a priori penalty
on KL(q(z|x)||p(z)) helps in encoding latent variables with a
disentangled representation of the data. Recently, the authors
in [37] found that ELBO has a decomposition that can be
used to explain the success of β-VAE in learning to solve
disentangled representations. Specifically, the total correla-
tion (TC) penalty in the loss function encourages the model to
find statistically independent factors in the data distribution.
In information theory, TC is a kind of generalizations of
mutual message and is the amount of information shared
between variables in the collection. It is also referred to as
multiple message or multivariate constraint. TC quantifies
the dependency or redundancy between a group of stochastic
variables. In β-VAE, the penalty of TC forces the model to
find statistically independent factors in the data distribution.
This leads to the learning of latent variables that exhibit a
disentangled transformation of all data samples, and thus the
existence of the term is the reason for the success of β-VAE.

The β-VAE has a relation to Info-VAE because the Info-
VAE family generalizes β-VAEs [33]. β-VAE can be trans-
formed from INFO-VAE by setting λ2 in equation (18) to 0.
The disadvantage of β-VAE over previous INFO-VAE is that
the β-VAE model cannot effectively penalize the weights
and information preferences of X and Z , resulting in under-
fitting or ignoring the latent variables. Specifically, for each
λ, INFO-VAE can choose a unique value. If we choose a
larger value of λ ≥ 1 to balance the importance of the
observation space and the latent space X and Z ,we must also
choose α ≤ 0, which forces the model to penalize mutual
information, thus avoiding under-fitting or ignoring the latent
variables.

After the latent variable generation factor is known and
disentangled, the indicator for evaluating the disentangled
performance requires a supervised classifier-based evaluation
metric. Overall, β-VAE tends to find more latent factors

FIGURE 5. Latent features learnt by β-VAE on MNIST Dataset.

consistently and learns more clearly the characterization of
disentanglement (as shown in Figure 5) [38]. In addition,
β-VAE does not require a hypothesis of the distribution of
the data, and the training procedure is very steady.

C. VQ-VAE
In machine learning, in addition to learning based on contin-
uous features [22], [39]–[41], there is also learning based on
discrete representations [23], [42]–[44]. Discrete representa-
tions are naturally suitable for complex reasoning, planning,
and predictive learning. Although the use of discrete latent
variables in deep learning has proven challenging, powerful
autoregressive models have been developed for modeling
distributions on discrete variables [45].

The main purpose of VQ-VAE is to learn discrete latent
variables. VQ-VAE is implemented using a vector quantiza-
tion (VQ) algorithm. We know that quantization can divided
into scalar quantization and vector quantization (VQ). Scalar
quantization samples signal values and quantizes them one by
one. Vector quantization divides several sampled signals into
a group, thus simplifying the amount of data. Specifically,
for each latent variable, we look for points within a certain
range around it to represent it, so that we can treat the latent
variables as a k-dimensional vector. Vector quantization is an
extremely important method of signal compression, which
is widely used in speech coding, speech recognition and
synthesis, image compression and other fields.

In VQ-VAE, each latent embedding vector ei is a vector in
a d-dimension latent space, and the size of the discrete latent
space of k such vectors are learnt, together with the rest of the
model parameters (as shown in Figure 6).

The posterior qφ (z|x) is implemented as one hot vectors
{ek}

k
k=1 :

qφ
(
zj=ek |x

)
=

{
1 if k=argminj−||ze(x)−ej||2
0 otherwise.

(21)
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FIGURE 6. Architecture of VQ-VAE.

FIGURE 7. Left: MNIST original images, right: Reconstructions from a
VQ-VAE.

where ze (x) is the output of the encoder, the embeddings ek
can be learned individually for each latent variable zj.
The principle of the VQ-VAE sampling procedure is

based on autoregressive distribution[45]. In the autoregres-
sive model, the target variable is predicted based on a combi-
nation of historical data of the target variables. After training,
the autoregressive distribution is fitted over z, p (z) to generate
X by an ancestral sampling.

VQ-VAE can achieve good reconstructions [45] (Figure 7)
as compared to conventional VAEs. In addition, the image
contains a lot of redundant information, because most pixels
are correlated and noisy, so a pixel-level learning model can
be wasteful. When applied to training language data, VQ-
VAE learns the basic phoneme-grade speech model in a fully
unsupervised manner for controlled speech generation and
phoneme classification[46].

Structures with discrete latent variables are greatly reduced
by discrete coding, and reconstructions appear to be slightly
blurry compared to the original input. However, in somewell-
trained VQ-VAEs (i.e. high-entropy), parts of the codebook
may be lost. Themodel will suffer from codebook crashes and
will no longer use the full capacity of the discrete bottlenecks,
leading to worse likelihoods and poor reconstruction. The
reason for this phenomenon is not clear, it can be noted that
the K-means and Gaussian Mixture model algorithms may
have similar problems [47].

D. CLUSTERING VAE
Cluster analysis is an unsupervised learning method which
aims to learn training samples without classification markers
and to reveal the intrinsic properties and laws of the data.
Mathematical methods are used to study and deal with the
classification of given objects and the degree of closeness
between the categories. Specifically, cluster analysis divides
the data set into several subsets, and the elements in each
subset have higher similarity to the elements in the subset
under certain metrics. The subsets that are divided in this way
are ‘‘clustered’’, each of which represents a potential cate-
gory. The distinction between classification and clustering is
that classification is to first determine the category and then
divide the data; clustering is to first divide the data and then
determine the category.

From a machine learning perspective, cluster analysis is an
unsupervised learning method where the classes are not given
in advance but are created according to the similarity and
distance of the data [48]–[50]. The structure of the clusters is
not presupposed, but the number of clusters can be proposed.
The purpose of the clustering algorithm is to find potential
natural grouping structures and relationships of interest in
the data. Clustering has been widely used in various fields of
engineering and science. In general, the clustering method is
mainly the measurement of data’s groups based on similarity
or dissimilarity [51], which can be divided into direct and
indirect methods. The direct method is based on the similarity
clustering of the original input, mainly by measuring a cer-
tain metric between the samples to achieve clustering. The
indirect method applies the metrics on the features generated
from the original data.

Recently, deep clustering has become one of the popular
approaches to achieving good learning representations. Deep
embedded clustering (DEC) [52] among others have been
proposed to make deep clustering a popular research field.
Deep embedded clustering (DEC) uses deep neural networks
to learn the representations, and then uses clustering algo-
rithms to perform cluster analysis on the generated features.
The data is usually mapped to the representation space and
then fed straight into the clustering model. In order to gener-
ate meaningful data samples, the generative models need to
have two purposes: one is to seize the statistical architecture
of the data, and the other is to generate data samples. DEC
acts fine in clustering, however, in some cases it poorly mod-
els the generative procedure of data, so it does not generate
good quality samples. Therefore, there is a need is to develop
a better deep clustering model which: 1) learns to capture a
good representation of the statistical structure of the data, and
2) is able to generate samples.

E. VARIATIONAL DEEP EMBEDDING (VaDE)
The Variational Deep Embedding (VaDE) [53] is one of the
techniques utilized for both data clustering and generation.
It is an extension of the variational autoencoder that applies
the Gaussian Mixture Model (GMM) [54] on the latent
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FIGURE 8. Architecture of VAE-based GMM Deep Clustering Model.

variables for clustering purpose(as show in Figure 8). The
GMM defines the probability density function as multiple
Gaussian density weighted sums. One of the most common
ways to estimate GMM parameters is Maximum Likelihood
Estimation or Expectation Maximization (EM) [55]. The
benefit of GMM is that it can generate samples by estimating
the data density.

The generative model for VaDE can be formulated as [56]:

p (x, z, c) = p (x|z) p (z|c) p (c) ,

where

c ∼ Cat
(
1
K

)
N z ∼ (µc, σ

2
c I )

N x ∼ (µx(z), σ
2
x (z)I ), orBer(µx(z)) (22)

where cε [1, K ] is the distribution of the weights of the
Gaussian terms in the GMM (parametrized by π ), and K is
the number of classes which are predetermined, µ and σ 2

are parameters of the elements in the clusters. Ber
(
x|µx

)
and N (x|µx , σ

2
x I ) are multivariate Bernoulli distribution

and Gaussian distribution parameterized by µ, and σ 2. The
encoder model can be stated as:

q (z, c|x) = q (z|x) q (c|x) (23)

VaDE maximizes the evidence lower bound (ELBO) using
Jensen’s inequality:

log p (x)

= log
∫
z

∑
c

p (x, z, c) dz

≥ Eq (z, c|x)
[
log

p (x, z, c)
q (z, c|x)

]
= LELBO (x)

= Eq(z,c|x)[log(p (x|z))]− DKL(q(z, c|x)||p(z, c)) (24)

where q (z, c|x) is the group member probability of observed
variable x to class c. The first term in LELBO is the recon-
struction loss Ln, and the second term is the clustering loss

Lc, which is the Kullback-Leibler divergence between the
distribution of the observed sample and the Mixture of Gaus-
sian (MoG) prior. After training, the class can be inferred
from the MoG latent space.
VaDE is an unsupervised clustering model. The number of

clusters of a VaDE can be set to the number of classes in each
dataset, or a different number of clusters K can be selected.
If K is less than the total number of classes in the dataset,
numbers with similar appearances will be grouped together.
On the other hand, if K is greater than the number of classes,
some numbers with the same appearance will be divided into
subclasses.
Samples of generated digits from MNIST dataset is shown

in Figure 9.

FIGURE 9. The digits generated by VaDE.

F. GAUSSIAN MIXTURE VAE (GMVAE)
Although VaDE is simple and performs GMM on the latent
space for clustering, it cannot be considered as a real GMM
for data generation due to having independent gaussian dis-
tributions as the prior. However, because the best choice
of prior distribution is the one with the ability to describe
the distribution of clustering latent structures, the authors in
[57] proposed the prior distribution p (z) to be a GMM that
depends on another two latent spaces w, and c. This approach
has advantages over the regular VAE as the GMMcan capture
the clustering representations of data that are not necessarily
unimodal.

GMVAE uses Gaussian mixture model as a priori for latent
encoding space and defines a generative procedure that for-
mulates a variational Bayes optimization objective (as shown
in Figure 10). It supposes that the sample is generated by
a Gaussian mixture and can infer the class of data points
from the latent variable spaces. After optimizing the ELBO,
the learned GMMmodel can infer the cluster allocation from
the latent spaces.
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FIGURE 10. Architecture of VAE-based GMM Deep Clustering Model.

This GMVAE algorithms can cluster the given data, and
generate images, but because of the overhead of the extra
latent variables, it typically has high computational com-
plexity than other deep clustering techniques. The generative
model for the GMVAE can be expressed as [56]:

p (x, z,w, c) = p (x|z) p (z|c,w) p (w) p (c) ,

where

c ∼ Cat
(
1
K

)
w ∼ N (0, I )

z ∼ N
(
µc (w) , σ 2

c (w)
)

x ∼ N ((µx(z), σ 2
x (z)I )orBer(µx (z)) (25)

where, K is the number of clusters, w is the regular latent
variable, c is the label latent variable, z is the GMM latent
variable, and x is the generated data.

For the recognition (cluster inference) step, the trained
networks (Encoder 1 (E1), Encoder 2 (E2), and Network 2
(N2)) are working to approximate the posterior distribution
q (z,w, c|x) which can be factories for each network param-
eters as:

q (z,w, c|x) =
∏
i

qE1 (wi|xi)qE2 (zi|xi) pN2 (ci|wi, zi) (26)

where i is the index for training data, E1 produces latent space
w, E2 generates latent space z, and N2 is the classification
network as shown in Figure 10. The training loss for the
GMVAE can be expressed as:

L(N1,D,E1,E2,N2)

= Eq(z|x) [log pD (x|z)]− DKL(qE1 (w|x) ||p (w))
−Eq(w|x)p(c|z,w) [DKL(qE2(z|x)||pN1 (z|w, c))]

−Eq(z|x)q(w|x) [DKL(pN2(c|z,w)||p (c))] (27)

where the loss terms are composed of: reconstruction term,
w-prior term, conditional prior term, and c-prior term respec-
tively. Comparing the loss function of the GMVAE to the
VaDE, it can be seen that the VaDE is slightly less complex
because there is no need to sample an additional w.
As seen in Figure 11, images generated from the GMVAE

have better quality than the ones generated from VaDE
algorithm.

FIGURE 11. Generative results By GMVAE on MNIST.

FIGURE 12. Overview of VAE-GAN network.

G. VAE-GAN
VAE-GAN [58] is a combination of the VAEs and GANs into
an unsupervised generative model. VAE-GAN transforms the
features of the image learned by the discriminator into the
reconstruction error of the VAE. The basic idea of this model
is to improve the fidelity of the output of VAEs. Since images
generated by a VAE are usually blurred, the GAN component
can ensure the trueness of the generated image. VAE-GAN
is built on the VAE structure with a GAN discriminator [59]
added after the decoder to ensure that the samples generated
by the VAE have high quality (as shown in Figure 12).

The objective function of VAE-GAN is to minimize the
loss functionL that is comprised of the VAE components and
the GAN components as:

L = Lprior + LDl
llike + LGAN (28)

where, Lprior represents the KL divergence of the prior in a
VAE with the latent distribution q (x|z):

Lprior = DKL(q(z|x)||p(z)) (29)

The second term LDl
llike represents the reconstruction loss.

It replaces the typical VAE reconstruction loss (expected log
likelihood) with a reconstruction error expressed in the GAN
discriminator. Dl(x) denote the hidden representation of the l
th layer of the discriminator. Therefore, a Gaussian observa-
tion algorithm for Discriminator (x) with identity covariance
and mean Discriminator (x’) is proposed.

p (Disl(x | z)) = N
(
Disl(x) | Disl

(
x ′
)
, I
)

(30)

where x’∼ Decoder(z) is the sample from the generative
model of x. Thus the reconstruction loss becomes:

LDlllike = −Eq(z|x)[logp((Disl(x|z))] (31)

The above equations assume that the lth layer of the dis-
criminator produces outputs that differ in a Gaussian manner.
Thus, the mean squared error (MSE) between the lth layer
outputs gives us the VAE’s loss function.

VOLUME 8, 2020 153659



R. Wei et al.: Variations in VAEs - A Comparative Evaluation

The third term in equation (28) is the loss in the GAN part
of VAE-GAN. The goal of a conventional GAN is to find a
binary classifier that distinguishes between the real data and
generated data while encouraging the generator to fit the real
data distribution, i.e. traditional GAN loss is defines as:

LGan = log (Dis (x))+ log (1− Dis (Gen (z))) (32)

However, since the GAN in VAE-GAN receives input from
the encoder q (z|x) , the GAN loss becomes:

LGan = log (Dis (x))+ log (1− Dis (Gen (z)))

+log (1− Dis (Dec (Enc (x)))) (33)

Since VAE-GAN combines the VAE and the GAN, it has
a good effect in image synthesis, effectively overcoming the
fuzziness generated by regular VAEs (as shown in Figure 13).

FIGURE 13. Create a MNIST dataset by VAE-GAN.

H. F-VAEGAN-D2
The human visual system is superior to the spectral camera
system most of the time due to its physical and physiological
characteristics. These great features are built on at least two
foundations. The first is the brain: about half of our brain is
directly involved in the processing of visual information [60].
Second, basic visual skills are learned in a long process that
runs through the first few years of life [61]. For example,
newborns can distinguish certain patterns based on statistical
features such as space or contour. Infants can notice simple
rough geometric relationships, and they do not always focus
on contours and shapes. At about two years old, children
begin to discover higher-order geometric relationships. Here,
the term ‘‘visual feature learning’’ refers to basic features
(e.g., color, shape) and non-basic features (e.g., different
directions).

In deep learning, due to its powerful ability to learn general
visual features at different levels, deep neural networks have
been used as the basic structure of many visual feature learn-
ing on Computer Vision, such as object detection [62]–[64]
semantic segmentation [65]–[67], etc. Among the deep

learning models, with complex architectures and large-scale
data sets, convolutional neural network models such as
AlexNet [68], VGG [69], GoogLeNet [70], ResNet [71],
and DenseNet [72] constantly break through the latest level
of many Visual Feature Learning tasks [73]–[77] in com-
puter vision. They are based on learning Visual features of
images through CNN and rely on pairs of image features
and class attributes. However, the collection and annotation
of large-scale data sets is time-consuming and expensive.
Therefore, in order to avoid time-consuming and expensive
data annotation, in recent years, many studies have emerged
through unsupervised learning methods that can learn CNN
visual features from large-scale unseen images without
using any annotation, such as zero-shot /one-shot/few-shot
learning.

Zero-shot learning is when features won’t be available
in training samples. An important theoretical basis of zero-
shot learning is to use high-dimensional semantic features
instead of low-dimensional features of samples, so that the
trained model is transferable. Most of recent zero-shot learn-
ing works [78]–[81] learn a compatibility function between
the image and semantic embedding spaces. Few-Shot / One-
Shot Learning refers to small sample learning. The purpose is
to overcome the problem of massive data required for train-
ing models in machine learning. It is expected that enough
knowledge can be obtained with a small amount of data.
The general approach is to train the model on classes with
sufficient training samples and generalize to classes with few
samples without learning new parameters [82]–[86]. How-
ever, it is suspected that these generated features from small
sample learning cannot represent complex features well.
f-VAEGAN-D2 [87] generates enough visual features uti-
lized in any-shot learning. The goal is to infer rich features
from limited data samples i.e., generate rich features from
0 shots (unseen pictures) to few shots (only a few pictures
per class) to many-shots (each class has many pictures).

Figure 14 shows the architecture of the f-VAEGAN-
D2 model. It proposes to enhance the feature generator by
combining VAEs and GANs with shared decoder and gener-
ator and adding another discriminator to distinguish real or
generated features from unseen samples.

FIGURE 14. Overview of f-VAEGAN-D2 network.
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To train the VAE section, Restnet101 is fed with a labeled
image and outputs an embedded 2048-dim xs. This feeds to
the Encoder generating the latent variable z. To this latent
variable a class label is appended for the sample and fed
to the Decoder/Generator. An embedded space x̄s sampled
from the Decoder/Generator is compared to xs to obtain a loss
for the VAE.

The WGAN training utilizes sampling from a latent space
N zp ∼ (0, 1) and a concatenated class label in same manner
as the VAE section. This is fed into the Decoder/Generator to
create fake embeddings (x̂s). This fake embedding along with
x̄s is utilized by the discriminator to distinguish between real
and fake data.

Unseen images are processed by resnet101 and produce
an unseen embedding xu which is utilized along a generated
unseen embedding x̂u in Discriminator 2. This discriminator
helps train the model to recognize unseen categories, which
can achieve zero-shot learning.

The final objective function of the f-VAEGAN-D2 network
can be stated as following:

min
G,E

max
D1,D2

LSVAEGAN + LnWGAN (34)

where G is the VAE decoder and the WGAN generator, D1,
D2 are the discriminators of both seen and unseen groups
respectively. LsVAEGAN is the loss function of the VAEGAN
for the seen samples and can be formulated as:

Ls
VAEGAN = Ls

VAE + γL
s
WGAN (35)

where γ is a hyperparameter to control theweight of VAE loss
LsVAE and theWGAN lossLsWGAN . These losses functions can
be expressed as:

LsVAE=DKL(q(z|x, c)||p (z|c)−Eq(z|x,c)
[
log p (x|z, c)

]
(36)

which is similar to the original VAE loss with addition to the
class embedding variable c, and the WGAN loss function can
be expressed as:

LsWGAN = E [D1 (x, c)]− E [D1 (Dec (z, c) , c)]

−λE[(
∥∥∇x̂D1

(
x̂, c

)∥∥
2 − 1)2] (37)

where x̂ = αx + (1 − α)Dec (z, c) with α ∼ U (0, 1), and
λ is the penalty coefficient. Finally, the unseen WGAN loss
function LnWGAN can be stated as:

LnWGAN = E [D2 (xn)]− E
[
D2
(
G
(
zp, cn

))]
−λE[(

∥∥∇x̂D2
(
x̂n
)∥∥

2 − 1)2] (38)

where again x̂n = αxn + (1− α)G
(
zp, cn

)
with α ∼ U (0, 1),

and λ is the penalty coefficient.

I. ZERO-VAE-GAN
Zero-shot learning (ZSL) is a challenging task due to the lack
of unseen class data during training. Existing works attempt
to establish a mapping between the visual and class spaces
through a common intermediate semantic space. The main
limitation of existing methods is a strong bias towards seen

classes, known as the domain shift problem. This leads to
unsatisfactory performance in both conventional and gener-
alized ZSL tasks. Zero-VAE-GAN [88] tackles this challenge
by converting ZSL to a conventional supervised learning
by generating features for unseen classes. Zero-VAE-GAN
is a joint generative model that couples variational autoen-
coder (VAE) and generative adversarial network (GAN). The
main ideas of this model are:1) generate more seen CNN
features 2) labeled unseen CNN features.

The Zero-VAE-GAN model consists of four compo-
nents:1) Encoder E , and 2) Generator G: by combining two
generative models, the model is capable of synthesizing high-
quality features, 3) Discriminator D: for discriminating real
features and fake generated features, 4) Categorizer C : a
classifier to help the model generate more discriminative
features for the classification task. The generator G and the
discriminator D learn the distribution of features through a
two-player minimax competition. G tries to minimize the
following loss:

LG,D = −E[logD(G(z, s))]− E[logD(G(z′, s))] (39)

where x ∼p(x), s ∼ p(s) and N z ∼ (0, 1), p(x) and p(s)
denote the prior distributions of real features and semantic
embeddings, respectively. z′ = E(x, s) ∈ Rd denotes the
d-dimensional latent representation generated by the encoder
E. Compared with z′, z ∈ Rd is the arbitrary representation
drawn from aGaussian distribution, which is used as the input
for theGANalongwith the semantic embedding. On the other
hand, D tries to minimize the following loss:

LD = −E[logD(x))]− E[log(−D(G(z, s)))]
−E[log(1− D(G(z′, s)))] (40)

Unlike f-VAEGAN-D2, Zero-VAE-GAN uses feedback
classification probabilities generated from pretrained multi-
layers-perceptron (MLP) or k-nearest neighbor classifiers to
generate pseudo labels for the real unseen CNN features.
These classifiers are trained on the synthesized (fake) data
generated from the trained generator G in the first step.
The classifiers’ pseudo labels probabilities are used for self-
training-refinement of the generator G to improve the gener-
ation of the features of unseen data.

J. HYPERSPHERICAL VAE
One way to improve any Bayesian model is to change the
prior distribution based on the data [89]. The prior distribution
does not need to have an objective basis, so it can be based
in part or completely on subjective beliefs. Further, an ideal
latent space should separate clusters for each class [90].
However, in normal VAEs, due to the Gaussian prior, there
are limitations in the latent space, e.g., the Gaussian prior
leads to improper clustering in high dimensional data, and
further cannot effectively represent directional data such as
spanning from protein structure [91]. Therefore, to improve
the clusters in the latent space in high dimensions and learn
useful representations on directional data, there is a need to
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replace the Gaussian prior to a prior that separates the classes
over the entire latent space. One solution is to use von Mises-
Fisher (vMF) for the prior.

The vMF distribution [92] refers to a continuous prob-
ability distribution model on a circle, which is also called
a circular normal distribution. Some views regard it as an
approximation to the wrapped normal distribution, as it is a
cyclic simulation of the normal distribution. This is a normal
distribution in hyperspherical space [93]. Figure 15 shows
sets of points sampled from VMF distributions on the 3D
sphere.

FIGURE 15. Sets of points sampled from VMF distributions on the 3D
sphere.

Hyperspherical VAE (S-VAE) [94] uses the vMF distri-
bution as an alternative to the Gaussian distribution. This
replacement leads to a hyperspherical latent space as opposed
to a hyperplanar one, where the Uniform distribution on the
hypersphere is conveniently recovered as a special case of the
vMF. Let z ∈ Rm, then we can define the vMF distribution of
latent variable as:

q (z|µ, κ) = Cm (κ) eκµ
T z (41)

where parameters µ and κ are called the mean direction
and concentration parameter, respectively. The greater the
value of κ , the higher the concentration of the distribution
around the mean directionµ. The distribution is unimodal for
κ >0 and is uniform on the sphere for κ = 0 where
||µ2
|| = 1. Cm (κ) is the normalization constant and is equal

to

Cm (κ) =
κm/2−1

(2π)2 Jm/2−1 (κ)
(42)

whereJm/2−1 (κ) is modified Bessel function of the first kind
at order v.
The authors use a special case of KL divergence such that

uniform prior is placed on the latent space.

Given Gamma function,

0 (z) = (z− 1)! =
∫
∞

0
tz−1e−tdt (43)

Steifel manifold area is

τ (d, r) =
2rπmr/2

π r(r−1)/45r
j=10

p−r+1
2

(44)

Von Mises-Fisher distribution is a case of Steifel manifold
with radius r = 1. This is actually the surface area of the n-
sphere of radius 1. Thus, uniform distribution of vMF, a case
where the κ = 0 is

Cm (0) = τ (d, 1) =
21πm/2

π1(1−1)/451
j=10

m−1+1
2

=
2πm/2

0 (m/2)

(45)

Then, in this case of KL Divergence derivation to uniform
distribution, posterior is vMF = q (z|µ, κ) and prior is
U
(
Sm−1

)
= p (z) . Then

q (z|µ, κ) = Cm (κ) eκµ
T z
=

κm/2−1

(2π)2Im/2−1 (κ)
eκµ

T z (46)

and

p (z) =
(

2πm/2

0 (m/2)

)−1
=
0 (m/2)
2πm/2

(47)

Finally, the KL Divergence with vMF term
KL(vMF(µ, κ))||U

(
Sm−1

)
to be optimized is:

KL[q (z|µ, κ))||p(z))]

= κ
Jm/2 (κ)
Jm/2−1 (κ)

+ logCm (κ)+ log

(
0 (m/2)

2
(
πm/2

)) (48)

Since the KL term does not depend on µ, this parameter
is only optimized in the reconstruction term. One difficulty
is that the modified Bessel function in Cm (κ) in the above
expression cannot be handled by automatic differentiation
packages. Thus, to optimize this term, the gradient is derived
with respect to the concentration parameter κ:

∇κKL(vMF(µ, κ))||U
(
Sm−1

)
=

1
2
κ(

Jm/2+1 (κ)
Jm/2−1 (κ)

−
Jm/2 (κ) (Jm/2−2 (κ)+Jm/2 (κ))

Jm/2−1 (κ)2
+1)

(49)

In the S-VAE all digits occupy the entire space. S-VAE
is naturally suited to capture data with a hyperspherical
latent structure, while outperforming a normal VAE, in low
dimensions. However, the available spherical surface area
can be limited and may collapse in higher dimensions.
Figure 16 shows the visualization of latent space represen-
tation of MNIST for S-VAE. Visualization of latent space
representation of MNIST for S-VAE.
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FIGURE 16. Visualization of 3D latent space representation (left) and 2D
latent space representation (right) of MNIST for S-VAE.

IV. EXPERIMENTS AND RESULTS
A. MNIST DATASET
For all experiments, we used the Modified National Institute
of Standards and Technology (MNIST) benchmark dataset.
There has been extensive research on this dataset for various
purposes such as image classification and generation. The
dataset consists of 60,000 images for training purpose and
10,000 images for testing purpose, and both are sharing the
same distribution. All images are of size 28 × 28 and the
dataset contains ten label classes from [0-9]. In all experi-
ments, Keras framework has been utilized to build all versions
and variations of VAE included in this paper.

B. IMPLEMENTATION DETAILS
The hardware specifications for executing different imple-
mentations use Tesla P100 GPU with 25 GB RAM.
Table 1 shows some values of hyper-parameters which are
used in all experiments. For comparison purpose, some
parameters for all VAE variants have been set to the
same values to perform fair comparison on the MNIST
dataset. All codes are available at https://github.com/VAEs-
Tutorial/paper.

TABLE 1. Hyper-parameters used in all experiments.

C. RESULTS
1) QUALITY OF THE GENERATED IMAGES
We applied VAE, INFO VAE, β-VAE, VAE-GAN, GMVAE,
VaDE, VQ-VAE and S-VAE on the MNIST dataset with
5000 epochs. The generated image results are shown
in Fig. 17 and Fig. 18. It is clearly seen in the figures that
GMVAE generated more clear digits as compared to other
VAE models. After GMVAE, β-VAE and VaDE produced
better digits, but some blurriness is also present in these

FIGURE 17. MNIST digits generated at 5000 epochs: VAE (Top Left), Info
VAE (Top Right), β-VAE (Bottom Left) and VAE-GAN (Bottom Right).

FIGURE 18. MNIST digits generated at 5000 epochs: GMVAE (Top Left),
VaDE (Top Right), VQ-VAE (Bottom Left) and S-VAE (Bottom Right).

digits. β-VAE and INFO VAE tend to find more latent factors
consistently and learn more clearly the characterization of
disentanglement than other VAEmodels. InfoVAE provides a
good way to handle latent code ignorance issues. However, its
generated images have high distortion in digits as compared
to β-VAE. VaDE and GMVAE are clustering models, they
can perform clustering tasks in addition to generating digits
better than other VAE models. Images generated from the
GMVAE have better quality than the ones generated from
VaDE. VAE-GAN, VQ-VAE and S-VAE produced noise in
image and digits are not very clear. In addition, some digits
generated by VQ-VAE and VAE-GAN have not clear shape
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TABLE 2. Quantitative results of VAE and its variants on MNIST.

and edges. Images generated from the VAE-GAN have bet-
ter quality than the ones generated from VQ-VAE. If we
increase epochs, the quality of generated images can improve.
However, we compared the results at 5000 epochs only for a
consistent comparison.

2) QUANTITATIVE RESULTS ON THE MNIST DATASET
Table 2 shows quantitative results of all VAE variants on
the MNIST dataset. The evaluation metrics are classification
accuracy, loss, and computational time (seconds per epoch).
We fixed 5000 epochs for all experiments. Table 1 shows
other fixed hyperparameter values for these experiments to
perform fair comparison.We use a pre-trained CNN classifier
to calculate the classification accuracy of the re-generated
images. Initially, the quality and accuracy of generated
images is very low because generator does not know much
about real data. But after various epochs, the generator starts
to learn and generates more accurate images. As we can see,
the highest classification accuracy is obtained by GMVAE
i.e. 96.3%. The computational time (seconds per epoch) to
perform this experiment is also less i.e. two seconds, which
shows the efficiency of VAE. The lowest classification accu-
racy score is 51.87 % by VAE-GAN. Figure 19 shows com-
parison of classification accuracy of VAE and its variants on
the MNIST dataset. If we analyze computational time, then

FIGURE 19. Comparison of classification accuracy on MNIST with GAN
and its variants.

VaDE takes highest time to complete experiment i.e. 65 sec-
onds. However, VAE takes 2 seconds to complete each epoch
which is the shortest time. The computation time depends
upon the system specifications as well. If you have faster
GPU, then it helps to decrease the time. If we look at the
loss values in Table 2, then there is high fluctuation among
them. Loss values do not tell much about VAE’s performance
as compared to other deep learning models. We are not sure
when to stop training in a VAE. In VAE, the KL divergence
loss and the reconstruction loss compete with each other,
and improvement in one term means more loss in the other.
Depending upon the diversity of the dataset, both loss terms
of KL divergence and reconstruction start to converge at some
point after certain number of epochs.When there is no further
decrease in loss of KL divergence and reconstruction terms,
it indicates training is almost complete.

The convergence in loss terms of KL divergence and recon-
struction shows that the model has learned well enough and
it cannot be improved further. However, the loss value may
bounce around a bit and this number is not very informative.
If the model is not reaching convergence, we may need to
change the learning rate or other hyper-parameters. Till now,
there is no proper evaluation metric for VAEs. Sometimes
good qualitative results may have less accuracy. Also, there
are different loss functions used in VAEs making it difficult
to perform fair comparison among them.

Therefore, evaluation metric and training procedure should
be chosen according to desired application or task, e.g. a vari-
ety of disentanglement evaluation protocols have been pro-
posed leveraging the statistical relations between the learned
representation and the ground-truth factor of variations [95].
Also, a VAE model’s good performance in one domain does
not necessarily mean good performance in another domain.

V. COMPARATIVE EVALUATION OF VAES
We have introduced the most significant problems present in
the original VAE design, which are 1) blurry outputs, 2) latent
representations are not interpretable, 3) Gaussian distribution
as priori has limitations because the representations that are
learned can only be unimodal and do not allow for more
complex features, 4) the Gaussian definition is based on
the L2-norm that suffers from the curse of dimensionality.
We have surveyed significant VAE-variants that remedy these
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TABLE 3. Description of different Models.

problems through three design considerations. We compare
the performance between the variations of the VAE.

A. ARCHITECTURE-VARIANTS
Some of the VAE that improve upon the traditional archi-
tecture are VAE-GAN and f-VAEGAN-D2. VAE-GAN com-
bines VAE and GAN architectures and can generate high
quality images and classifications. f-VAEGAN-D2 also com-
bines conditional VAE and GAN architectures and can gen-
erate enough CNN visual features for small sample learning
tasks. However, they both have complex network structures
and high-computational complexity and instability on longer
training problems

B. REGULARIZE POSTERIOR-VARIANTS
Regularization of the posterior or the loss function can help
in obtaining better disentangled representations. INFO VAE
improves representation learning by regularizing the ELBO

by MMD. β-VAE, a special case of INFO VAE, regularizes
the ELBO through hyperparameter β. They both combine
VAEs with feature learning and are capable of learning useful
latent disentangled representations automatically. They are
scalable, stable to train, and are easy to implement. How-
ever, both suffer from the blurred image generation problem.
Moreover, at this point there is no clear relationship between
disentangled representations and downstream tasks such as
classification [95]. β-VAE models cannot effectively trade-
off weighing of X and Z and information preferences and is
also encounters under-fitting or ignoring a subset of the latent
variables.

C. PRIOR-VARIANT
One way to improve any Bayesian model is to change the
prior distribution based on the data. VaDE and GMVAE
adds clustering through imposition of a GMM priori on
VAEs. The number of clusters can be set to the number of
classes in each dataset. However, they both have problems of
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TABLE 4. Pros and Cons between different Models.
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high-computational complexity and their generated image
quality is low. Moreover, VaDE has no specified stability for
differ ent settings of the number of clusters, K . GMVAE is
slightly more complicated than VaDE, and it is computation-
ally expensive because of the need to sample an additional
latent space (w).

VQ-VAE proposes combining VAEs with discrete latent
representation by imposing a vector quantization algorithm
on the latent space. It can learn useful and discrete representa-
tions automatically as well as abstract away noise and details.
However, VQ-VAE has the problem of a complex sampling
procedure and is unstable in challenging datasets (i.e., high
entropy). S-VAE utilizes spherical latent representation by
replacing Gaussian distribution priori in the classical VAE
with von Mises-Fisher (vMF) distribution. It can utilize the
hyperspherical space to separate clusters for each class with-
out forcing its mean to be close to the center.

Among the different approaches surveyed in this work,
it was shown that variations of the VAEs can improve the
generated image quality and their diversity. It has been
indicated in [99] that the capacity and performance of VAEs
are related to the network size and batch, which follows that
a well-designed architecture is critical for good VAE per-
formance. However, modifications to the architecture alone
do not fully improve generation of data. Redesign of the
loss function including regularization and normalization can
help improve effective reconstruction for VAEs. In addition,
replacing the Gaussian prior can improve the VAE model to
learn appropriate latent representations.

There are other types of VAEs that have been introduced
but are not frequently used in applications. For example, Con-
ditional VAE (CVAE) [96], which is similar to Conditional
GAN, where a control vector ‘‘c’’ is used as an input with
the data ‘‘x’’, as well as the latent variables ‘‘z’’, to be
a part of the VAE structure. In most applications of this
type of VAE, the label data is used as this control variable.
Moreover, other types of VAE are introduced where the KL
distribution similarity measurement metric is not used, and
other metrics are utilized. As an example of these types,
the Wass Wasserstein VAE (WAE) [97], where Wasserstein
distance is used instead of the KL term in the loss function
to measure the similarity between the model distribution and
the target distribution.S3VAE [98] learns disentangled time-
invariant and time-varying representations for sequential data
(e.g., videos and audios) under self-supervision. This makes
it possible for sequential data generation, high-resolution
video generation, video prediction and image-to-video
generation.

There is no single VAE design that can be claimed to
be the best. The choice of a specific VAE type depends
on the application. For instance, if an application requires
the sampling of different classes in the latent space, there
is a need of clustering. VaDE, GMVAE, S-VAE can be
good choices here. S-VAE can do a better job on direc-
tional data compared to the other two. If an application
requires production of enough high-quality images (requiring

FIGURE 20. Variation Type of VAEs.

generation of images which are very diverse), VAE-GAN can
be good choices here. If an application requires production
of enough CNN visual images for few-shot/zero-shot learn-
ing (requiring generation of images which are very diverse),
f-VAEGAN-D2/ Zero-VAE-GAN can be a good choice.
If there is a need to learn useful latent disentangled represen-
tations automatically, in order to create more attributes of the
image to further improve the classification problems, INFO
VAE and β-VAE can be good choices.

Table 3 summarizes the different variants along with their
description and variation type. Table 4 lists the pros and cons
of different VAE designs discussed in this paper. Figure 20.
shows variation type of VAEs.

VI. FUTURE OPPORTUNITIES AND CONCLUSIONS
VAEs and its variations have played a very important role
in unsupervised data generation (especially in image genera-
tion), deep clustering and representation learning.

The improvement in the variations of the VAEs can be
summarized into three perspectives:

1) Architecture: By enhancing the network design with
other architectures, VAEs can improve the image quality, e.g.,
VAEs combined with GANs can decrease the blurred effect
of the image.

2) Posterior distribution: Regularization of the posterior
distribution can be used to boost the disentangled features,
e.g., β-VAE and Info-VAE provide disentanglement and hier-
archical organization of features.

3) Structured prior distribution: VAE variants can also
introduce a structured prior distribution such as imposing
a GMM priori (GMVAE, VaDE), and Vector Quantiza-
tion (VQ) on VAEs (VQ-VAE). These accomplish better
clustering and representation of data.

Based on the analyses and the comparative evaluation pro-
vided in this paper, we believe that understanding the VAE
model from the perspective of variational optimization and
information theory will be important research trends in the
near future. We summarize some of the potential areas of
research in the VAE field as:

1) Enhancing the VAE model by improving the variational
optimization of the latent variable space, thereby avoiding
or minimizing the limitations of the existing methods. This
can make learning more meaningful by providing valuable
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information in the variational inference process. Many
research opportunities have not been explored in the intersec-
tion of these methods, i.e., integrating regularization-based
methods while bringing in structured priors.

2) Separation of information: By weakening the dependen-
cies between non-associative features, disentanglement and
generation capabilities of VAEs will be greatly improved.
By calculating the mutual information index between the
various influence factors in VAEs, the model can potentially
discriminate influencing factors from non-descriptive ones.

3) Disentanglement learning: It is unclear whether the solu-
tion of disentangled representations is useful for downstream
tasks. Therefore, future research on disentangled represen-
tations learning should consider the role of inductive biases
supervision.

4) Posterior collapse: Posterior collapse in VAEs arises
when the variational posterior distribution closely matches
the prior for a subset of latent variables [100]. Conventional
wisdom largely assigns blame for this phenomenon on the
undue influence of KL-divergence regularization. Although
there is now a vast literature on the various potential causes of
posterior collapse, there remains ambiguity as to exactly what
is this phenomena [101]. Therefore, more significant progress
towards understanding the causes of posterior collapse is
needed.

These proposed enhancements will improve the ability to
generate meaningful artificial data. This data can be used
for representation learning or to improve the classification in
deep networks where currently there is not enough training
data, or a particular class is underrepresented.

We have provided a comprehensive insight, and a compar-
ative evaluation summary of the variations in VAEs so that
researchers can grasp the fundamental theory as well as the
intuition behind the variations onVAEs. Further, we have pro-
vided reference implementations for the different VAE varia-
tions on github. We hope that this will be useful in improving
the state of the art leading to research breakthroughs in related
fields.
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