
Received June 30, 2020, accepted August 5, 2020, date of publication August 20, 2020, date of current version August 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3017074

Predictive Tracking of Continuous Object
Boundaries Using Sparse Local Estimates
DIMITRIS V. MANATAKIS 1,2, (Senior Member, IEEE),
AND ELIAS S. MANOLAKOS 1, (Senior Member, IEEE)
1Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 16122 Zografou, Greece
2Emulate Inc., Boston, MA 02210, USA

Corresponding author: Elias S. Manolakos (eliasm@di.uoa.gr)

This research was co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational
Program ‘‘Education and Lifelong Learning’’ of the National Strategic Reference Framework (NSRF) - Research Funding Program:
Heracleitus II, Investing in knowledge society through the European Social Fund.

ABSTRACT Environmental hazards (wildfires, floods, oil spills) are often modeled as ‘‘continuous objects’’
which evolve in space and time taking irregular shapes. Tracking their boundaries and accurately predicting
their spatiotemporal spreading patterns is of paramount importance to combat their often catastrophic
consequences. Wireless Sensor Networks (WSN) have been very instrumental for this purpose. However,
currentWSN-basedmethods require a prohibitively large density of deployed sensors to achieve a reasonable
boundary reconstruction accuracy because they are based on the explicit identification of nodes close to
the boundary. We present a novel approach that can track and predict the global boundary using only a
relatively small number of distributed local front estimates. Our approach first filters and fuses the available
sparse set of local front estimates (e.g. vectors of local orientation, direction and speed) and then uses the
resulting information to reconstruct a smooth curve prediction of the evolving object’s boundary at a future
time. Moreover, since the uncertainty of the local front parameters is modeled, it can provide a heatmap
representation of the evolving object, indicating the probability for each point in the area of interest to be
reached at a future time by the spreading hazard. These predictive modeling capabilities when combined
enable effective decision support for crisis management. We demonstrate that different types of continuous
objects can be tracked with accuracy, even when only a relatively small number of noisy local front estimates
is available. Our approach is practical since it can be applied in many situations where global boundary
prediction updates are important to obtain by new sparsely distributed noisy local front estimates as soon as
they reach a control center while the hazard is still progressing.

INDEX TERMS Continuous object tracking, predictivemodeling, hazards tracking, boundary reconstruction
algorithm, environmental monitoring.

I. INTRODUCTION
During the last decade, there is a growing interest in exploit-
ing Wireless Sensor Networks (WSNs) and remote sens-
ing technologies to track effectively diffusive hazardous
phenomena (e.g. wildfires, oil spills, chemical leaks etc.)
[1]–[17]. Predicting accurately the evolution of such ‘‘contin-
uous objects’’ spreading over a large geographical area is of
paramount importance, since it allows authorities to optimize
their response (hazard suppression, evacuation plans etc.)

The associate editor coordinating the review of this manuscript and

approving it for publication was Gongbo Zhou .

to save lives and limit the scope of a hazard’s catastrophic
effects.

Several WSN-based methods have been proposed for
tracking the boundaries of a continuous object [2]–[15]. Their
key strategy is to identify over time the sensor nodes closest
to the object’s evolving front-line (called boundary nodes).
More specifically, they either use techniques to reconstruct
the continuous object’s boundary (e.g. by determining the
convex-hull polygon of the boundary nodes locations [15])
or rely on human operators to identify the boundary’s shape
using the boundary nodes locations. As a results, exist-
ing methods demand unrealistic sensor densities (i.e. thou-
sands of sensors per km2), a requirement that renders them

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 152881

https://orcid.org/0000-0001-9196-198X
https://orcid.org/0000-0001-6376-0419
https://orcid.org/0000-0001-9759-1895

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

impractical for real-world environmental monitoring appli-
cations. In addition, they do not track the local evolution
characteristics of different parts of the continuous object
and thus cannot provide decision support using predic-
tive modeling. Dynamic Data Driven Application Systems
(DDDAS) [16]–[19] try to address some of these severe
limitations. Their main objective is to continuously improve
the quality of predictions produced by hazard-specificmodels
(mathematical, semi-empirical, etc.) by recalibrating them
periodically using available sensing data streams from the
field. However, the development of such systems is a very
difficult task since in most cases it is almost impossible
to exploit raw sensor data to recalibrate the parameters of
hazard-specific simulation models.

Computing the convex-hull, is a very well studied
problem [20], [21] and it has been extensively used in
many application domains (e.g. image analysis, epidemiol-
ogy, etc.) to determine the boundary of a given set of points
(e.g. pixels, patient locations, etc.). However, there are many
cases where the convex-hull cannot accurately represent the
shape of the area occupied by the set of points (e.g. when the
points form a non-convex shape). To overcome this difficulty,
many convex-hull generalization algorithms have been pro-
posed [22]–[25]. Although, they can determine a ‘‘tighter’’
non-convex area occupied by the given set of points, their
boundary reconstruction accuracy greatly depends on the
selection of specific parameters which are very difficult or
even impossible to estimate [25], [26]. Moreover, all these
algorithms assume a dense set of points uniformly distributed
along the object’s boundary area, a fact that renders them
impractical for scenarios where only a small number of irreg-
ularly distributed points is available. Finally, these algorithms
cannot take into account boundary reconstruction constraints
(like C1 and C2 as defined in Section IV-A) which are
necessary to capture correctly the evolution dynamics of a
continuous object.

The boundary (global front) of a continuous object can be
approximated by a set of line segments (local fronts) and
each segment’s evolution can be represented by a model
with a small number of parameters (e.g. orientation, direc-
tion, and speed), as shown in [27]–[29]. In our prior work
we have introduced a probabilistic framework and asso-
ciated distributed algorithms that can estimate the local
evolution characteristics of a propagating hazard’s front
using WSNs of realistic density. As the hazard progresses,
we have shown how the deployed sensor nodes can be
dynamically re-organized into small-size ad-hoc clusters
(node triplets) and compute, within their local area, esti-
mates of the hazard’s characteristics. Moreover, we have
shown how the sensor nodes can update the local front
model parameters using closed-form expressions (analytical
solutions of a Bayesian parameter estimation problem)
that are easy to implement using their commodity micro-
processors [30]. Importantly, a unique feature of our
WSN-based environmental monitoring methodology is
that each sensor node can also estimate the uncertainty

associated with the local front estimates it produces as the
hazard progresses [29].

In this work (that complements [29]) we address the inter-
esting problem of how a stream of sparse (in space and time)
and inherently noisy local front estimates can be used (as they
are becoming available to the decision center) to reconstruct
accurately the global boundary of a continuous object. Our
approach, which combines machine learning and computa-
tional geometry methods, offers the following novelties and
unique advantages that are also very important from a prac-
tical standpoint for environmental monitoring applications:
(i) It can reconstruct the boundary of an evolving continu-
ous object using only a small number of sparse local front
estimates; (ii) it is robust to local front parameter estimation
errors; (iii) in contrast to other methods [2], [6], [8]–[14]
it determines the global boundary explicitly and does not
require a human in the loop to recognise it implicitly based
on the locations of the identified boundary nodes; (iv) it
supports a probabilistic notion of a continuous object that is
now viewed as a field, indicating for each point of the consid-
ered area the probability to be reached by the hazard at any
given time. The methods presented here are quite general as
different sensor modalities (WSN’s, smart cameras etc.) can
be abstractly viewed as nodes of a heterogeneous monitoring
system generating inherently noisy estimates of local scope
that a data center has to reconcile and fuse continuously in
order to predict with accuracy an evolving hazard’s irregular
global boundary, even in areas with a limited number of
available sensors.

The rest of the paper is organized as follows:
In Section II we introduce the notation and preliminar-
ies needed to understand the paper and motivate the key
elements of the proposed global boundary tracking and
prediction approach. In Section III we explain how the
available local front estimates can be filtered and fused
in order to generate consistent information for feeding the
boundary reconstruction algorithm, presented in Section IV.
In Section V we present and discuss simulation results for
different types of hazards. Finally, we summarize our findings
and outline work in progress in Section VI. Illustrative video
animations [31], [32] (provided also as supplementary mate-
rial) are used to demonstrate the online reconstruction algo-
rithm ‘‘in action’’. We urge the readers to view these videos
as they study Section V.

II. PRELIMINARIES
A. LOCAL FRONT MODELS
The boundary of a continuous object can be approximated by
a piecewise linear curve. We represent each segment of this
curve (to be called a local front) by a simple model that cap-
tures locally (i.e. within a circular area Ci of radius Ri which
depends on the sensor node type, see Fig. 1) its local evolution
characteristics (e.g. direction, orientation and speed). So in
our abstract model, a local front estimatemi is represented by
the following parameters:

152882 VOLUME 8, 2020

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

FIGURE 1. The model mi of a local front segment and its parametric
representation.

• Location (Pi = (xi, yi)): The physical coordinates of the
line segment’s middle point. Local front segments are
assumed to be at close proximity to the surface of the
earth (the z offset is ignored).

• Length (li): The length of the line segment that approx-
imates locally (within a circle of radius Ri =

li
2) the

continuous object’s boundary. The larger the radius Ri
the larger the scope of the local model.

• Evolution direction (δi): A vector perpendicular to the
line segment. It may take one of the two values+1(−1),
if the local front evolves into the positive (negative) half
plane with respect to line εi.

• Orientation parameters (φi, σi): The angle 8i formed
by the local segment and the horizontal axis (x-axis) is
considered to be a random variable following a Normal
distribution 8i∼N (φi, σ 2

i). We will denote with φ̂i a
realization (random sample) of 8i.

• Speed parameters (ui, si): The speed Ui of the local
front’s line segment is considered to be a random vari-
able that follows a Normal distribution Ui∼N (ui, s2i).
We will denote with ûi a realization (random sample)
of Ui.

• Local front model parameters estimation time (ti), mea-
sured with respect to a global time reference.

Using the center coordinates Pi = (xi, yi), the length li,
and the orientation φ̂i of a local front estimate mi, we can
determine the coordinates of its end points PEzi = (xEzi , y

Ez
i)

where z = {1, 2} (for the proof see Appendix A).
We will use the notation mi(tj) to denote the evolution of

the local front model estimate mi generated at time ti to a
future time instance tj (tj > ti). In the text we may refer to
mi(tj) as the future ‘‘projection’’ of estimate mi(ti). The mid-
point, the end-points and the circular area of the space-time
evolved local front mi(tj) will be denoted as Pi(tj) =(
xi(tj), yi(tj)

)
, PEzi (tj) =

(
xEzi (tj), y

Ez
i (tj)

)
(where z = {1, 2})

and Ci(tj) respectively (see Fig. 2). In Appendix B we pro-
vide the derivation of the closed form algebraic expressions
used to calculate the location coordinates of a space-time
evolved local front. Finally, we will use Ai(tj) to denote the

‘‘area covered’’ or ‘‘swept’’ by mi during its space-time evo-
lution from time ti to time tj (see green shaded area in Fig. 2).

FIGURE 2. The space-time evolution (prediction) of local front mi
generated at time ti to some future time tj > ti .

B. KEY ELEMENTS OF THE PROPOSED APPROACH
We assume that a distributed monitoring system (e.g. based
on remote sensing, WSNs etc. [29]) provides to a decision
center a stream of sparse in space and time local front
estimates sampling the evolution behavior of a continuous
object (hazard) at different locations and/or time instances,
denoted by the black line segments in Fig. 3a. As soon
as a sufficient number of local front estimates has become
available, the proposed algorithm filters and fuses their infor-
mation to determine the subset of them (see black segments
in Fig. 3b) that can best (most consistently) represent the con-
tinuous object’s evolution and will thus be used to reconstruct
its boundary at a desirable time point (e.g. time instance t12
in Fig. 3). Next, using the local fronts’ evolution parameters,
the algorithm predicts their projected locations at the desired
reconstruction time (see Fig. 3c) and determines a polygon
approximating the continuous object’s boundary (see black
dashed polygon in Fig. 3d). Subsequently, using uniform
cubic B-splines the algorithm determines a ‘‘smooth’’ curve
which is the reconstruction of the hazard’s boundary curve
(see red curve in Fig. 3d). Finally, based on the uncertain-
ties associated with the local front estimates, the algorithm
provides a probabilistic view of the continuous object, com-
puting for each location and time instance the probability to
be covered by the object (see Section V-D).

III. FILTERING AND FUSING LOCAL ESTIMATES
In this section we elaborate on the procedure used to deter-
mine the best subset of local front estimates providing a con-
sistent view of the phenomenon and can be used to reconstruct
a faithful representation of the continuous object’s boundary.

Let’s assume that we want to predict where the hazard’s
global boundary will be located at time tb. From the available
local front estimates we select those with estimation times
ti ≤ tb, and form a set M containing their parameters
(see Section II-A).

VOLUME 8, 2020 152883

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

FIGURE 3. a) Each green curve depicts an expanding hazard’s boundary
at a different time (ground truth). Available local front estimates (black
segments) are sparse in space and/or time, generated at different
locations of assumed available sensors. b) Dark segments depict the
subset of estimates selected to participate to the boundary reconstruction
attempted for time t = t12. c) The future-evolved (predicted) locations of
the selected local front segments at reconstruction time t = t12. d) The
reconstructed polygon (black dashed line) and the smooth curve (red
curve) approximating the hazard’s true boundary (green curve).

Our objective is to combine (i.e. filter and fuse) the
spatio-temporal information of available local front estimates
inM in order to determine the best subset of local front esti-
mates that provide us with a consistent view of the hazard’s
front at the boundary reconstruction time tb. If M contains
at least N (specified by the user) of local front estimates
(i.e. (|M| ≥ N)), we initiate the following procedure. At this
point we have to mention that in order to reconstruct a
smooth boundary (see Section IV-B) we need at least 2 local
front estimates (N ≥ 2). However, for higher values of N ,
we expect to have delayed (the algorithm waits until N local
fronts become available) but more accurate reconstructions
of the evolving boundary.
Step 1: We assume that two local front estimates mi and

mj, generated at ti and tj respectively where ti ≤ tj, describe
the same reality (same part of the evolving boundary), if the
Euclidean distance of their mid-points (||Pi,Pj||) is smaller
or equal to the larger radius of their circular areas of scope
(see Fig. 4).

||Pi,Pj|| ≤ max(Ri,Rj) (1)

For each pair of local front estimates in M (e.g. (mi,mj))
that satisfies condition (1), we keep only the estimate gen-
erated more recently (mj in Fig. 4, since we assume w.l.o.g
that ti < tj). This decision is justified based on the pre-
sumption that the more recent local front estimate captures
better the current time varying evolution characteristics of the
continuous object. The time complexity of Step 1 is bounded
by O(|M|2). At the end of this filtering step, we use the
local fronts remaining in M to form a new set Mf ⊆ M

FIGURE 4. Model elimination procedure: Local front estimates mi (ti) and
mj (tj) (where ti < tj) are considered to describe the evolution behavior
of the same part of the evolving continuous object’s boundary. Only the
more recent estimate (mj (tj)) is kept in M (see text for details).

containing their parameters information. Next, we check if
Mf contains at leastN local front estimates, and if so proceed
to the next step.
Step 2:Reconstructing the boundary of a continuous object

at time tb, based on the space-time evolved local front
estimates in Mf without considering possible intersections
of their evolution paths usually leads to boundary shapes
that deviate considerably from reality. Below we propose a
method that first identifies and then handles ‘‘events’’ that
may lead to such distortions.
Events Identification Procedure: For each pair of local

front estimates in Mf (e.g. (mi,mj), where w.l.o.g. ti ≤ tj),
we check if any of the following mutually exclusive events
may occur:
Type-1 event - Evolved center Pi approaches center Pj:

After projecting the local front estimate mi to the time tj of
the local front estimate mj we check if {{Pi(tj) ∈ Cj and
Pj 6∈ Ai(tj)} or {Pj ∈ Ci(tj) and Pj 6∈ Ai(tj)}}. If the above
condition holds (see Fig. 5a), an event of type-1 is registered
for time tj.
Type-2 event - Evolved mi area covers Pj: After projecting

the local front estimate mi to time tj we check if {Pj ∈ Ai(tj)}.
If the above condition holds (see Fig. 5b), an event of type-2 is
registered for time tj.
Type-3 event - Two evolving local front models block each

other: If during the joint space-time evolution of two local
fronts (mi,mj) beyond time tj there exist a time instance td
(ti ≤ tj < td ≤ tb) such that the evolution path of one event
blocks the evolution path of the other i.e. {Pi(td) ∈ Aj(td)},
or ({Pj(td) ∈ Ai(td)}), an event of type-3 is for time td
(see Fig. 5c).
Type-4 event - Two evolving local front models can be

fused: If during the space-time evolution of the two local
fronts (mi,mj), there is a time instance tf such that ti ≤ tj <
tf ≤ tb) where the Euclidean distance of their mid-points
becomes equal to the larger radius of their circular areas and
none of them falls within the already covered area of the other,
an event of type-4 is registered for time tf (see Fig. 5d).

152884 VOLUME 8, 2020

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

FIGURE 5. (a)-(d) The four event types (1)-(4) identified and handled by
the proposed algorithm during the space-time evolution of the local front
estimates (see text for details).

At this point we have to mention that all the registered
event time instances (e.g. tj, td and tf) correspond at the start-
ing time of the corresponding events. Moreover, the events
identification procedure can be parallelized to increase the
computational efficiency. At the end of the events identi-
fication procedure the algorithm finds the registered event
with the earliest time and passes the involved pair of model
estimates (e.g. {mi,mj}) to the events handler (see below) that
implements the following procedure for each event type.
Events Handling Procedure:
Handling type-1 events: In this case the two local front

estimates mi(tj) and mj describe at time tj the evolution
behavior of the same part of the continuous object boundary
(see Fig. 5a). Using the presumption that the more recently
estimated local front (mj) describes better the current evolu-
tion behavior of the continuous object, we keep in Mf only
the most recently updated local front (mj).
Handling type-2 events: In this case the local estimate mj

appears inside the area which has been already covered by
mi(tj) (see green shaded area in Fig. 5b). This implies that
the evolved local front mi(tj), failed to describe the evolu-
tion behavior of the continuous object boundary, since the
more recent local front mj at time tj, should be located on
the continuous object’s boundary and not inside the area
which has already been covered by the continuous object.
Based on this reasoning we keep in Mf only the local front
estimate mj.
Handling type-3 events: In this case the evolution path of

a local front estimate mj(td), ‘‘blocks’’ the evolution path of
mi(td) or vice versa (see Fig. 5c). To handle this event type we
keep inMf only the most recent local front estimate (mj(td)).

Handling type-4 events: In this case two local front esti-
mates (mi(tf) and mj(tf) in Fig. 5d) ‘‘meet’’ at some point
during their space-time evolution without actually blocking
each other. We consider this as an indication that two parts of
the global boundary are ‘‘merging’’ at tf . To handle this event
type properly we apply a technique that fuses the information
of the two local front estimates {mi(tf),mj(tf)} to produce
a new local front estimate {mf (tf)} that better describes at
time tf the local evolution behavior of the continuous object’s
boundary (see darkest local front mf in Fig. 5d). To estimate
the parameters of the new local front model we apply the
following equations:

Zf =
∑
k={i,j}

wkZk where Z = {ûf , φ̂f , lf , xf , yf }

uf =
∑
k={i,j}

wkuk , s2f = wis2i + wjs
2
j + wiwj(ui − uj)

2

φf =
∑
k={i,j}

wkφk , σ 2
f = wiσ 2

i + wjσ
2
j + wiwj(φi − φj)

2

(2)

The equations in (2) above, indicate that the parameters
of the new local front mf (after the fusion), are calculated
as linear combinations of the corresponding parameters of
the fused local fronts mi(tf) and mj(tf). The derivation of
equations (2) and the calculations of the weights {wi,wj} are
presented in Appendix C.

Events are handled in increasing event registration time.
After handling any event, we repeat Step 2 until there are no
unhandled events involving local front estimate pairs inMf .
The time complexity of this step is bounded by O(|Mf |

2).
At the end of Step 2we check if |Mf | ≥ N : If the condition

holds, the procedure finds the space-time evolutions of the
local fronts in Mf at the desired boundary reconstruction
time tb, forms a new set Mb that contains their information,
and proceeds to the third and final step. The derivation of
the equations used to calculate the location of projected local
fronts is provided in Appendix B.
Step 3: This final correction step adjusts the length param-

eter of some projected local front estimates in Mb in order
to avoid boundary deformations during the final curve recon-
struction (see Fig. 6a).
The procedure checks if there is (are) any pair(s) of local

front estimates in Mb for which their local circular areas
overlap (e.g. see {mi(tb),mj(tb)} in Fig. 6a). Next, it finds
the local front with the earliest estimation time and reduces
their lengths by an amount that is inversely proportional to
the confidence ({wi,wj}) we have about their correspond-
ing estimated evolution parameters, such that their circular
areas do not overlap but osculate externally (see equation (3)
and Fig. 6b).

R′i + R
′
j = ||Pi(tb),Pj(tb)|| (3)

VOLUME 8, 2020 152885

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

FIGURE 6. Local front lengths correction. a) The overlap of two local front
segments results to a loopy B-spline curve during boundary
reconstruction, b) The length reduction procedure prevents
loopy curve formation.

where {R′i, R
′
j} are the new radii of the local fronts’ circular

areas calculated using equations (4) and (5) below.
R′i = Ri −

c
wi

R′j = Rj −
c
wj

(4)

c =
wiwj(Ri + Rj − ||Pi(tb)Pj(tb)||)

wi + wj
(5)

Equations (4) reduce the radii {Ri,Rj} by an amount that
is inversely proportional to the corresponding local front
weights {wi,wj}. Equation (5) is the solution for c of the
system of equations (3) and (4).

Using the new radii R′k where k = {i, j}, we calcu-
late the end-point coordinates PEzk (tb) = (xEzk (tb)), y

Ez
k (tb))

where z = {1, 2} of the affected local front estimates (see
Appendix A), update the corresponding information in Mb
and repeat Step 3. This step completes when there are nomore
overlaps between circular areas of local fronts in Mb. The
time complexity of Step 3 is bounded by O(|Mb|

2).

IV. GLOBAL BOUNDARY RECONSTRUCTION
We present now the algorithm which reconstructs the contin-
uous object’s boundary using the information of the selected
local front estimates in Mb. The algorithm has to two main
phases:
Phase 1: It forms a polygonal approximation of the

boundary.
Phase 2: It constructs a curve that smoothly approximates

the polygonal boundary.
To better explain the two phases and without loss of gen-

erality, we will use a running example: Let’s assume that
Mb contains after filtering and fusing 14 local front estimates
(see Fig. 7). In Fig. 7 the black arrows indicate the evolution
directions of the local front segments and the black dots their
mid- and end-points.

A. PHASE 1: POLYGONAL APPROXIMATION
This phase has two Steps: Step 1 determines the order in
which the local front segments inMb have to be ‘‘stitched’’ in
order to form the polygonal approximation of the continuous
object’s boundary. Using the local fronts’ connection order

determined in Step 1 and their evolution direction parameters,
Step 2 constructs the polygonal approximation.

For the approximation to be realistic, the formed polygon
should satisfy the following two conditions:

• C1: Be simple (no intersections between its edges).
• C2: Local front evolution direction vectors should point
towards outside the polygon’s area.

Before initiating Step 1, we form the following sets:
C: Contains the mid-points of all local front estimates

in Mb.
V: Contains the vertices of the convex hull of points in

set C (in our example, V = {P3,P4,P7,P8,P11,P13,P14},
see Fig. 7a) in a connection order that forms the convex hull
polygon. To find the convex hull polygon we use the Graham
scan algorithm. The time complexity of this algorithm is
O(|C| · log(|C|)). It holds that V ⊆ C.
Q = C ∩ Vc: Contains the points in C that do not

belong to the convex hull polygon. In Fig. 7a, Q =

{P1,P2,P5,P6,P9,P10,P12}. Note thatV andQ are partition
subsets of C.

The time complexity for the formation of the sets C andQ
is bounded by O(|Mb|).

STEP 1
At this step the algorithm appropriately places the points of
Q in V . At the end of this step, the ordering of points in V ,
indicates the order in which the local fronts in Mb have
to be connected to form the polygon that approximates the
continuous object’s boundary.

We check the set Q :
• If {Q = ∅} :We continue to Step 2, since all local front
mid-points are already included in V .

• If {Q 6= ∅} (the general case): We repeat the following
procedure until Q becomes empty:

Using the polygon determined by V (e.g. see convex polygon
in Fig. 7a) we partition Q into the following subsets:

Qon: Contains the points of Q located on the polygon’s
edges.

Qout : Contains the points of Q located outside the poly-
gon’s area.

Qin: Contains the points ofQ located inside the polygon’s
area.

Then we check:
If {Qon 6= ∅}: We select a point from Qon (e.g. P2

in Fig. 7c), determine the polygon’s edge on which it lies (e.g.
P1P3 in Fig. 7c) and apply an ‘‘edge split’’ operation (i.e. the
point becomes a vertex of the polygon). An edge split occurs
when a point fromQ (P2 in Fig. 7c) becomes a polygon vertex
(and is inserted into V , between points P1, P3 which define
the edge on which it lies). After an edge split we remove
the ‘‘new’’ polygon vertex (P2) fromQ. The aforementioned
procedure is repeated until Qon becomes empty.
If {Qon = ∅ and Qout 6= ∅}: We use the points in Qout

and form the following sets: QI
out : Contains the points of

Qout that are centers of local front segments intersecting at

152886 VOLUME 8, 2020

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

FIGURE 7. Polygonal approximation construction. Example showing how local fronts are processed (see text for details).

least one edge of the polygon (e.g. P9 in Fig. 7d). QT
out :

Contains the points of Qout that are centers of local front
segments located totally outside (do not intersect) the polygon
(e.g. P5 in Fig. 7f). QI

out and QT
out are partition subsets

of Qout .
After forming these subsets we check:
If {QI

out 6= ∅}: We find the point in QI
out with the small-

est distance to the polygon’s edge that it intersects (e.g. P9
in Fig. 7d). Using this point, we split the intersected edge
(edge P8P10 is split to P8P9 and P9P10, see Fig. 7e) and
update the sets V andQ. After an edge split we repeat Step 1
from the beginning.

If {QT
out 6= ∅}: We find the point inQT

out (e.g. P5 in Fig. 7f)
with the smallest distance to a polygon’s edge and apply
an edge split (e.g. edge P4P6 is split into P4P5 and P5P6,
in Fig. 7g). After an edge split, we update the sets V and Q
and repeat Step 1 from the beginning.

If {Qon = ∅ andQout = ∅ andQin 6= ∅}: We partitionQin
into two subsets:QI

in: Contains the points ofQin that are cen-
ters of local front segments intersecting at least one edge of
the polygon (e.g. {P1,P6,P10} in Fig. 7a). QT

in: Contains the
points of Qin that are centers to local front segments located
totally inside the polygon (e.g. {P2,P5,P9,P12} in Fig. 7a).
QI
in and Q

T
in are partition subsets of Qin.

VOLUME 8, 2020 152887

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

Then we check:
If {QI

in 6= ∅}: We find the point in QI
in (e.g. P1, in Fig. 7a)

with the smallest distance from the polygon’s edge that it
intersects. Using this point we split the intersected edge
(P14,P3, in Fig. 7a), and update the sets V and Q. After an
edge split we repeat Step 1 from the beginning.

If {QT
in 6= ∅}: We derive for each point inQT

in the equation
of the line that emanates from it and is perpendicular to the
local front segment (e.g. line ε in Fig. 7h for point P12). For
each such line, we determine its intersection points with the
polygon. We select the intersection point that is consistent
with the local front’s evolution direction (point A in Fig. 7h).
Next, we find the point in QT

in with the smallest distance
from the corresponding intersection point and use it to split
the corresponding polygon’s edge (e.g. P11P13 is split into
P11P12 and P12P13, in Fig. 7h). After the edge split we update
the sets V , and Q and repeat Step 1 from the beginning. The
time complexity for the formation of the setsQon,Qout ,Qin,
QI
out ,QT

out ,QI
in andQ

T
in isO(|Q|·|E |) where |E | is the number

of the polygon’s edges. Step 1 is repeated |Q| times. Thus the
complexity of Step 1 is bounded by O(|Q|2 · |E |).
At the end of Step 1, the ordered set V uniquely determines

a polygon (see Fig. 7i) which indicates the connection order
of the local fronts.

STEP 2
This step uses the connection order and evolution direc-
tion parameters of the local fronts and first produces a
refined polygonal approximation of the continuous object’s
boundary.

First, we sort the information inMb according to the order-
ing of the mid-points of local fronts in V . To sort the infor-
mation in Mb we used the Heapsort algorithm that has time
complexityO(|Mb| · log(|Mb|)). Next, using the coordinates
of the end-points of the first two local front segments in Mb
(e.g. {PE11 ,P

E2
1 ,P

E1
2 ,P

E2
2 } in Fig. 8a) we find the minimum

distance pair of end-points (excluding pairs that belong to
the same segment), and connect them (see red dashed edge
PE11 PE12 in Fig. 8a). Then, using the non-connected end-point
of the second local front segment (PE22) and the end-points

of the third local front segment (PE13 ,P
E2
3), we find the

minimum distance pair and connect these points (see edge
PE22 PE13 in Fig. 8a). Applying the aforementioned sequential
procedure successively to all local front segments in Mb,
results to a refined polygon which has as vertices the mid-
and the end-points of the local front segments (see Fig. 8b).
However, the aforementioned construction procedure does

not guarantee that the refined polygon will satisfy conditions
C1 and C2 discussed in Phase I for polygonal approxima-
tions of continuous object boundaries. To ensure that these
conditions hold we do the following: For each local front
segment we check: a) if the edges that connect it with its
adjacent local front segments intersect with other edge(s)
(non-simple polygon), and b) if its evolution direction vector

FIGURE 8. Successive refinements to obtain a faithful representation of
the boundary curve: a) Connecting end-points of subsequent local front
segments. The red dashed lines show the first steps of local front
segment ‘‘stitching’’ (see text for details). b) First polygonal
approximation of the boundary, note that the direction vectors of m1 and
m10 point towards inside the polygon. c) A refined polygonal boundary
describing better the evolution behavior of a diffusive object’s boundary
(direction vectors of m1 and m10 point towards outside the polygon after
interchanging the connections of their end-points). d) Smooth boundary
reconstruction using a B-spline (red curve).

points towards inside the polygon’s area. If at least one of
these conditions hold (e.g. in Fig. 8b the direction vectors of
m1 andm10 point towards inside the polygon), we interchange
the corresponding local front’s end-point connections to its
neighbors (see Fig. 8c). If after a connections interchange,
either one of the aforementioned conditions still holds true,
we drop the ‘‘problematic’’ local front estimate from Mb
and form a new polygon by connecting the end-points of
its adjacent remaining local front segments. The time com-
plexity for the formation of the refined polygon is bounded
by O(|Mb|

2).

B. PHASE 2: SMOOTH BOUNDARY RECONSTRUCTION
In this phase we use the vertices of the refined polygon in
conjunction with uniform cubic B-splines to generate a curve
that smoothly approximates the continuous object’s bound-
ary. In nature, the boundaries of phenomena that can be mod-
eled as continuous objects (e.g. wildfires, oil spills, etc.) tend
to form smooth shapes and not polygonal. Inspired by this
observation we used the popular cubic B-splines [33]–[36]
to produce a smooth approximation of the continuous object
polygonal boundary. Cubic B-splines use 3rd degree poly-
nomials to represent each curve segment, and constraint the
points that join the curve segments to meet C2 continuity
(no polarity changes in slope at the transition between seg-
ment i and segment i + 1) which guaranties a smooth curve
boundary representation [37].

152888 VOLUME 8, 2020

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

In our case the cubic spline curve uses as first control point
the end-point of a local front segment (PE11 , see Fig. 8a). This
selection guaranties that the formed cubic spline will be tan-
gent to mid-points of the local front segments. The red curve
in Fig. 8d corresponds to the formed B-spline curve approxi-
mating the refined polygon approximation of the continuous
object. For the smooth boundary reconstruction we applied
the Carl R. de Boor’s algorithm which requires O(ξ2)+O(ξ)
operations where ξ is the degree of the polynomial functions
(in our case ξ = 3). The time complexity for reconstruct-
ing a smooth boundary using cubic B-splines is bounded
by O(|Mb| · ξ

2) [37].

V. EVALUATION RESULTS
We present next simulation results demonstrating the abil-
ity of the proposed algorithm to track and predict with
accuracy the boundary of continuous objects under different
conditions.

A. THE SIMULATION ENVIRONMENT
For the evaluation of the boundary tracking and prediction
algorithm we developed a flexible simulator in MATLAB
which allows us to generate scenarios with different:
a) propagating continuous object properties (shape, speed,
acceleration), b) placement strategies (number and locations)
of distributed sensors in the continuous object’s propagation
area, and c) induced estimation errors of local fronts’ evolu-
tion parameters.

Before initiating a simulation, a MATLAB procedure takes
as input the continuous object’s propagation properties and
the location coordinates of the assumed available sensors
that when reached generate the local front estimates. Using
this information, the MATLAB procedure computes the local
front evolution characteristics (speed, orientation and direc-
tion) when the hazard reached a sensor, thus simulating the
local sensing process (see Appendix D for details), and store
them in a structure containing for each local front the values
of its parameters, as defined in Section II. The generated
structure is then passed as input, along with the continuous
object’s propagation properties, to another MATLAB simula-
tor which implements the proposed boundary reconstruction
algorithm and evaluates its accuracy.

B. EVALUATION METRICS
To evaluate the accuracy of the proposed algorithm, we con-
sider the continuous object’s area as a grid of square cells, and
based on the real and reconstructed boundaries we classify
the cells as True Positive, False Positives or False Negatives.
To assess the boundaries similarity of the true and the recon-
structed continuous object we use the F1-Score which is the
harmonic mean of precision and recall (see Appendix E for
details).

C. EXPERIMENTAL SETUP
Anotable advantage of our proposed boundary reconstruction
algorithm is that it can track with accuracy continuous objects

using a small number of local front estimates (sparsity).
To demonstrate this novel feature we have used local front
estimate densities that are considered low for environmental
monitoring applications, specifically {10−5, 2 × 10−5, 3 ×
10−5, 4× 10−5} estimates

m2 , corresponding to 10, 20, 30 and 40
sensors available within a 1km2 square area respectively. For
each density valuewe used a large number of randomly drawn
sensor placements and demonstrate how the algorithm per-
forms under different densities as well as errors of local front
evolution parameters (speed and direction). For all experi-
ments the local front segments length was set to l = 100m
(i.e. assuming sensors of sensing area with radius R = 50m).
The evolution parameters (speed, orientation angle and direc-
tion) of the local fronts were set equal to the true values that
the spreading hazard had when it reached the corresponding
sensor that provided themeasurement (perfect estimation, see
assignment method details in Appendix D). However, to eval-
uate how the algorithm performs under local front orienta-
tion and speed estimation errors, we have repeated 6 times
each experiment and tested the accuracy of the boundary
construction. Specifically the data values used to model the
orientation and percent speed errors were {10o, 20o and 30o}
degrees and {10%, 20% and 30%} deviation from the ground
truth boundary’s speed respectively. For all experiments the
minimum number of local front estimates required for the
initiation of the boundary reconstruction algorithm was set
to N = 3.

D. DIFFUSIVE HAZARD WITH REGULAR SHAPE
In Experiment 1 the diffusive hazard is modeled as a circular
continuous object of fixed center but increasing radius, with
the center located at the middle point of a 2km× 2km square
area. Considering the area’s bottom left corner as being at the
origin, the circle is centered at point (1000m, 1000m) and has
initial radius equal to 1m. The speed at which the radius is
increasing is described by a triangular function (see Fig. 9)
with initial value 2.5m/min. The speed increases with con-
stant rate (0.0265m/min2) until it reaches its maximum value
(5m/min). Beyond that time point the speed starts decreasing
at the same rate until it returns back to its initial value. At the
end of the simulation the circle encloses the 1km2 local fronts’

FIGURE 9. The time varying speed profile of the circular front (see text for
details).

VOLUME 8, 2020 152889

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

placement square area centered at point (1000m, 1000m)
(see red circle in Fig. 10f). Modeling propagating hazards
with circular shape is justified as an approximation because
Fick’s second law indicates that the diffusion of a substance
emanating from a single point source covers a circular area
whose size is increasing at a rate indicated by the diffusion
coefficient [39].

FIGURE 10. Video frame snapshots: Panels (a) through (f) show
6 snapshots of the simulation of Experiment 1. Line segments represent
the available sparse local front estimates. With black color we mark the
local front estimates selected to participate to the boundary
reconstruction algorithm at each tb. The blue curve represents the
reconstructed boundary. The full video is available at [31].

We have created a MATLAB animation [31] (provided
online and as supplementary material) that demonstrates the
ability of the proposed algorithm to track the boundary of the
evolving continuous object. Fig. 10a shows the circular front
(red circle), its center (red dot), the 20 randomly placed local
front estimates (magenta line segments) and their placement
area (dashed square area of 1km2). We assume that a local
front estimate starts participating to the boundary recon-
struction algorithm when the front reaches the mid-point
of the corresponding line segment (assumed measurement
time at the sensor located at the mid-point). With black
color, we indicate the subset of the local front segments
(see Fig. 10b - 10f) that are selected to contribute to the
approximation of the boundary curve, based on the selection
method described in Section III. Using the characteristics of
the corresponding local fronts, we determine their space-time
evolutions (see Appendix B) and based on their ‘‘new’’

(predicted) locations (black segments on blue curve) we
derive the ‘‘smooth’’ B-spline curve (blue curve) that approx-
imates the circular continuous object, based on the algorithm
described in Section IV.

To evaluate the boundary tracking accuracy of the proposed
algorithm we attempt to reconstruct the boundary of the
diffusive phenomenon 20 times during its evolution at equally
spaced (every 188/20 min) time points. We have to note that
at each boundary reconstruction time point (tb), we use only
the local front estimates at locations reached by the diffusive
phenomenon up to this time. The boxplots in Fig. 11a summa-
rize the distribution of the boundary tracking accuracy con-
sidering 1000 random estimate placements (1000 runs) per
local front estimates’ density value. For the generation of each
boxplot we used as sample points the F1-scores computed at
all the time points a boundary reconstruction was attempted.
As we observe from the boxplots the boundary reconstruction
accuracy increases with the local front estimates density.
Moreover the variability of the boundary reconstruction accu-
racy decreases as the density of local estimates increases. This
implies that as the number of local front estimates increases
we become more certain that the proposed algorithm will
reconstruct with accuracy the diffusive object’s boundary.

FIGURE 11. For different local front estimate densities: a) Boxplots
summarizing the distribution of the boundary tracking algorithm’s
accuracy. b) The average boundary reconstruction accuracy as a function
of time. c) The mean number of local front estimates available to
participate at each time instance to the boundary reconstruction
algorithm. d) The probability of successive boundary reconstruction as a
function of time.

Fig. 11b shows the average boundary reconstruction accu-
racy (F1-score) as a function of time for different local front
estimate densities.We observe that the accuracy of the bound-
ary tracking drops slightly for a certain time interval and then
recovers again. The time extent and experienced accuracy dip
increases as the density of available local estimates decreases.
To explain this behavior we have to consider the following:

152890 VOLUME 8, 2020

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

At the first time steps the size of the continuous object is
small and therefore a small number of local estimates suf-
fices to produce an accurate representation of its boundary.
As the size of the diffusive phenomenon gets bigger with
time the accuracy of the boundary reconstruction drops until
a sufficient number of local estimates becomes available (see
also Fig. 11c) to participate in the boundary reconstruction
algorithm.

In Fig. 11c we see that as the local front estimates’ density
increases, the mean number of the available local estimates
that participate to the boundary reconstruction algorithm at
each time step of the diffusive phenomenon evolution also
increases. This larger number of available local estimates
explains why the time interval where the accuracy drops
is smaller at larger densities (see Fig. 11b). The slightly
decreasing trend of the accuracy observed beyond 150 min is
explained if we consider that up to that time point most local
estimates have become available (see Fig. 11c) and therefore
the reconstruction of the boundary beyond that point is based
mostly on ‘‘outdated’’ local front estimate projections.

Another interesting observation is that beyond t = 150min
the boundary reconstruction accuracy reaches almost the
same high level for all considered local front estimate densi-
ties (see Fig. 11b). This behavior can be explained if we con-
sider that the proposed algorithm selects only a small number
(themost suitable subset) of the available local front estimates
(see Section III) to reconstruct the object’s boundary, which
was about the same for all the local front densities. This shows
that the prediction ability of our algorithm is almost insensi-
tive to the local front estimates’ density, a fact that further
supports our claim that it can be used to accurately track and
predict the evolving boundary of a continuous object using
sparse local front estimates.

Fig. 11d shows the probability to have a successful bound-
ary reconstruction event at each one of the considered time
instances. We observe that as the local estimates density
increases, the probability for a successful boundary recon-
struction event also increases for all reconstruction time
instances (dots on the curves of the Fig. 11d). This behavior is
justified if we consider that the higher local estimates density
implies more available local estimates at each reconstruction
time instance which in turn increases the probability to have a
sufficient number of local front estimates inMb (|Mb| ≥ N
see Section III) which is necessary condition for a boundary
reconstruction to be attempted.
Boundary tracking evaluation under orientation and speed

estimation errors
In this experiment we evaluate the boundary tracking accu-

racy of the proposed algorithm under different local front
orientation and percent speed error values. For each scenario
(specific density and error values) the measured evolution
parameters (orientation or speed) of each local front estimate
are distorted by applying the selected error values (discussed
in Section V-C). The distortion is implemented by adding to,
or subtracting from, each estimate (randomly selected action)
the chosen error value for the corresponding parameter.

Fig. 12a and 12b show for each angle and percent speed
error value used, the average boundary tracking accuracy for
all the local estimates density scenarios considered. For the
20o angle error and the 20% speed error we also provide for
each local estimates density value the corresponding standard
deviations (error bar). The standard deviations for the other
angle (10o, 30o) and percent speed errors (10%, 30%), are
similar to these shown for the 20o angle and 20% speed
error respectively. For each case (e.g. 20 local estimates,
10 degrees angle error) the results are generated using as
sample points the F1-score values estimated from all the
boundary reconstructions that occurred using 1000 differ-
ent (randomly selected) local estimates placements. The line
plots in Fig. 12a and 12b indicate that as the angle and
speed error increase, the boundary reconstruction accuracy
decreases. Another observation is that the difference, between
the boundary reconstruction accuracies achieved for each
angle or percent speed error value, gets smaller as the number
of local estimates increases. This behavior is justified if we
consider that for higher densities, the mean distance that
the local front segments (which participate in the boundary
construction) have to ‘‘travel’’ as we project them to the future
in order to predict the diffusive objects boundary is smaller
(they continuously get replaced by more recent estimates).
Traveling smaller distances with erroneous evolution param-
eters implies smaller boundary location errors and therefore
higher boundary reconstruction accuracy. This also explains
why the standard deviation drops as the local fronts’ density
increases for all the considered angle and speed error cases.

FIGURE 12. Boundary tracking accuracy (mean and standard deviation
under a) angle errors, b) speed percent errors for different local front
estimate densities.

Probabilistic boundary tracking of a continuous object
As discussed in Section II, the evolution characteristics

(orientation and speed) of the local fronts {mi} that partici-
pate in the boundary’s reconstruction algorithm are described
by scalar values {φ̂i, ûi} randomly sampled from the corre-
sponding Normal distributions (for 8i and Ui). This random
sampling implies that if we run the boundary reconstruction
algorithm several times, we will get similar but not identical
boundary shapes. Based on this observation we developed a
technique which allows us to consider the area occupied by
a continuous object as a field of probabilities where every
point has a probability to be affected by the continuous object.
To calculate the probability field we do the following:

VOLUME 8, 2020 152891

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

We consider the continuous object’s evolution area as a
grid of square cells. A cell is assumed to be affected by the
evolving continuous object when its center is located inside
the object’s area. To calculate the probability for a cell C to
belong to the continuous object at a specific time instance tb,
we run the boundary reconstruction algorithm n times and
count the number nC of simulation scenarios that cell C
is located inside the object’s area. The probability for the
continuous object to arrive at cell C can then be estimated
as:

P(C) =
nC
n
. (6)

FIGURE 13. Probability of circular continuous object (experiment
1) affecting a cell of the considered area at time tb = 188min. Each color
correspond to different coverage probability as indicated by the colorbar
on the right.

Fig. 13 shows for experiment 1 the probability field at
tb = 188min that produced after running 1000 times the
boundary reconstruction algorithm of a specific local fronts’
placement scenario with 20 local fronts per km2. As observed,
the proposed boundary reconstruction algorithm exploits the
uncertainties of evolution parameters of local fronts to char-
acterize the uncertainty about the continuous object’s bound-
ary location. In this example the used angle and speed uncer-
tainties of the local front segments in 8i and Ui were set to
σi = 10o degrees and si = 10% respectively.

E. DIFFUSIVE HAZARDS WITH IRREGULAR SHAPE
In Experiment 2 we evaluate the proposed boundary
reconstruction algorithm using diffusive hazards with irregu-
lar evolution patterns (e.g. non-geometric front shapes, large
propagation speed variations). To simulate such hazards with
realistic characteristics we exploited FLogA [38], a web-
based interactive tool which allows to draw a forest area
anywhere in Europe over Google Earth [40] insert fire igni-
tion points (‘‘hotspots’’), define wind direction and speed
scenarios, and then simulate and geo-animate the evolving
wildfire.

Using FLogA [38] we defined a square forest area of
3km × 3km at Hymettus mountain in Attica Greece and

simulated a wildfire scenario. The fire was initiated from a
single ignition point which was placed at the middle of the
considered 9km2 forest area. The wind orientation and speed
parameters were fixed within the forest area and their values
were set to 0o (with respect to the x-axis) and 2m/s respec-
tively. Fig. 14 show four snapshots that help us visualize on
Google Earth the ignition point as well as the corresponding
part of the forest area that has been affected by the fire
(continuous object is shown with red color) 50, 100 and
150 minutes after the ignition respectively.

FIGURE 14. a) The wildfire’s ignition point, located at the center of the
considered 9km2 square forest area. Snapshots (b), (c), (d) show the
parts of the forest area that have been affected by the fire (red area) 50,
100, 150 minutes after the ignition.

In Fig. 15 and 16 we present a summary of the results for
experiment 2 following the same format as for Fig. 11 and 12
respectively.

Similarly to Experiment 1, we evaluated the proposed
boundary reconstruction algorithm under different local
front: a) densities ({10, 20, 30, 40} estimates per 1km2),
b) placements (1000 random placements), and c) orientation
and percent speed error scenarios ({10o, 20o and 30o} and
{10%, 20% and 30%} respectively.

In summary, in this experiment the mean boundary recon-
struction accuracy (F1-scores) was on average smaller by
3.91% (standard deviation 1.15%) relatively to Experiment 1
considering the results from all simulation scenarios. This
accuracy drop is justified considering the complex evolu-
tion behavior of the wildfire’s front line (irregular accelera-
tions/decelerations) which makes the boundary tracking a lot
more difficult.

Similarly to Experiment 1 we have created a
MATLAB animation [32] that is provided online and as
supplementary material that shows how the proposed

152892 VOLUME 8, 2020

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

FIGURE 15. Wildfire simulation (Experiment 2): For different local front
estimate densities: a) Boxplots summarizing the distribution of the
boundary tracking algorithm’s accuracy. b) The average boundary
reconstruction accuracy as a function of time. c) The mean number of the
local front estimates available to participate at each time instance to the
boundary reconstruction algorithm. d) The probability of successive
boundary reconstruction as a function of time.

FIGURE 16. Wildfire simulation (Experiment 2): The average boundary
tracking accuracy and the standard deviation (error bars) under different
local front estimates densities and (a) angle errors, (b) speed percent
errors.

algorithm can track accurately evolving continuous objects
with complex boundary shapes and evolution behavior
(Fig. 17). In Fig. 17a we can see the area affected by an
evolvingwildfire (pink area), the wildfire’s ignition point (red
dot), the 20 randomly placed local front estimates (magenta
line segments) and their placement area (dashed square area
of 1km2). The simulation terminates when the wildfire covers
the local fronts’ placement area (152min after the ignition).

A local front model estimate gets activated and partic-
ipates in the boundary reconstruction when its mid-point
is reached by the wildfire’s front line. With black color
(see Fig. 17b - 17f) we depict the set of the local front seg-
ments that participate (after the selection/fusion procedure,
see Section III) to the boundary reconstruction algorithm.
Based on local fronts evolution characteristics, we determine
their space-time propagation (black segments on the blue
curve, see also Appendix B) and using the proposed boundary
reconstruction algorithm (see Section IV) we reconstruct the
‘‘smooth’’ B-spline curve (blue curve) that approximates the

FIGURE 17. Video frame snapshots: Panels (a) through (f) show
6 boundary reconstruction snapshots for the wildfire simulation of
Experiment 2. Line segments represent the available local front
estimates. With black color we indicate the local front estimates used in
the boundary reconstruction. The blue curve represents the reconstructed
boundary. The full video is available at [32].

boundary of the wildfire. Fig. 17b - 17f, demonstrate the
ability of the proposed algorithm to track continuously with
accuracy the irregular shapes of the boundaries which result
from wildfire’s complex evolution behavior, despite the very
small number of the local fronts estimates used (only 20
in 9km2). Notice that the boundary tracking algorithm under-
estimates the wildfire’s boundary only in regions where no
local front estimates are available (see Fig. 17b - 17e).
Furthermore, in Fig. 17f the underestimation of the wild-
fire’s boundary is expected if we observe that the wildfire’s
boundary is located outside the sensors placement area and
therefore its tracking is based mostly on ‘‘outdated’’ and far
away local front estimate projections.

In real hazard tracking applications the topography at the
hazard’s site can skew the placement of the local front esti-
mates in the field. To evaluate the accuracy of our boundary
reconstruction algorithm under this assumption, we repeated
Experiment 2 using highly skewed placements of the local
front estimates in the 1 km2 square area (dashed square
in Fig. 17) generated as follows:

We partition the 1 km2 square deployment area into 4 equal
square areas (0.25 km2 each) by connecting the middle points
of its opposite sides. Next we randomly select 2 of the
4 formed square areas and we randomly deploy there 80%

VOLUME 8, 2020 152893

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

of the local front estimates used in the specific local front
estimate density scenario. The rest 20% of the local front
estimates are randomly deployed in the other 2 non-selected
squares. This procedure allows us to generate highly skewed
placements of the local front estimates in the original deploy-
ment area (1 km2 square area).
Using the placements we evaluated the proposed

boundary reconstruction algorithm under different local
front densities ({10, 20, 30, 40} estimates per 1km2).
As expected, the boundary reconstruction accuracy was
higher in the square areas where the 80% of the local
fronts were placed. However, an interesting finding is that
the average boundary reconstruction accuracies (F1-scores)
did not significantly drop compared to the nominal
Experiment 2. More specifically, for each local front esti-
mate densities scenario (i.e. {10, 20, 30, 40}) the percentage
reduction of the average boundary reconstruction accuracy
was {5.98%, 4.66%, 2.8%, 2.62%} respectively. The results
clearly show that our boundary reconstruction algorithm is
almost insensitive to the skewed placements of the local front
estimates, and its sensitivity is further reduced as the density
of the local front estimates increases.

F. COMPARISON TO CODA
As mentioned in the introduction Section, most of the
reportedWSN-based schemes use the locations of the bound-
ary sensor nodes to implicitly determine the boundary of a
continuous object. Therefore these schemes rely on a human
expert in order to reconstruct the boundary curve of a contin-
uous object. One notable exception is the work in [15] where
the authors propose CODA - a Continuous Object Detec-
tion and Tracking Algorithm which approximates a contin-
uous object’s boundary using the convex hull polygon of
the boundary node locations. For completeness we compared
CODA to our method assuming the local front estimates
density scenarios (10, 20, 30 and 40 sensor nodes deployed
within 1km2 and 9km2 square areas for Experiment 1
and Experiment 2 respectively). For all density scenar-
ios, CODA failed to track with accuracy the continuous
object’s boundary. The accuracy (F1-score) of CODA for
Experiment 1 and Experiment 2 were on average smaller
by 50.71% and 59.36% respectively, relatively to the pro-
posed boundary reconstruction scheme. We remark that these
results were extracted using for each density a large number
(1000) of randomly drawn sensor node deployments.

We also repeated the aforementioned experiments with
very high density sensor networks with 5 × 10−4, 10−3,
2 × 10−3 and 3 × 10−3 sensors

km2 corresponding to 500, 1000,
2000 and 3000 sensor nodes respectively deployed within
a square area of 1km2. Even for these very high densities,
the accuracy (F1-score) achieved by CODA for Experiment 1
and Experiment 2 were on average smaller by 1.55% and
7.79% percent, relatively to the proposed boundary recon-
struction scheme. The smaller boundary reconstruction accu-
racy of CODA in this case can be explained if we consider
its inability to predict the location of the boundary when the

object moves beyond the sensor nodes deployment area (see
animations [31], [32] and Fig. 10f, 17f). Moreover, the larger
decrease of the boundary reconstruction accuracy for Exper-
iment 2, can be justified if we consider that CODA can form
only convex boundary shapes. Therefore, the more realistic
non-convex shapes formed for example as a wildfire evolves
(see Fig. 17f and animation [32]) cannot be tracked accurately
using CODA.

VI. CONCLUSION
We have presented a novel approach which allows us to
track accurately the boundary of an evolving continuous
object using only sparse in space and time estimates of its
local front characteristics provided by distributed sensors.
Our continuous object tracking scheme has the following
unique characteristics relatively to prior schemes: a) It first
filters and fuses the information of the available local front
estimates, and b) then uses the surviving subset of estimates
to reconstruct a smooth curve approximating the evolving
object’s boundary; c) it requires a much smaller number of
sensors to provide local front estimates than othermethods; d)
it supports predictive modeling of the boundary even in areas
with limited number of sensors; e) it provides higher accuracy
and remains robust to local front estimate errors. Moreover,
by exploiting the inherent uncertainties associated with the
local front estimates, it can provide a field representation
of the continuous object, indicating for every location the
probability to be reached by the continuous object at any
given time. Realistic simulations demonstrate that the pro-
posedmethod can track accurately the evolving boundaries of
different types of continuous objects (e.g. with time-varying
evolution characteristics and/or irregular shapes), using a
realistic number of possibly noisy local estimates. Moreover,
global boundary reconstruction remains robust to local front
estimation errors.

We are currently investigating a method that will allow
us to determine the number of continuous objects that may
evolve simultaneously in an area of interest. Furthermore,
we are developingmethods to probabilistically associate local
front estimates to their originating continuous object. Solving
these challenging problems can help us extend the current
framework allowing us to track the boundaries of multiple
co-evolving hazards. Finally, we are working on the devel-
opment of a novel method able to estimate for every bound-
ary point (using the evolution characteristics of the sparse
local front estimates) the following parameters i.e. latitude
and longitude coordinates, speed, direction and acceleration.
This information can be directly exploited by hazard-specific
predictive models in order to re-calibrate their parameters and
to improve their prediction accuracy.

APPENDIX A
COORDINATES OF LOCAL FRONT END POINTS
Using the mid-point coordinates Pi = (xi, yi), the length
li = 2Ri, and the orientation φ̂i of a local front esti-
mate mi, we can calculate the coordinates of its end-points,

152894 VOLUME 8, 2020

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

PEzi = (xEzi , y
Ez
i) where z = {1, 2}, by solving the following

system of equations:{
εi : y

Ez
i − yi = tan(φ̂i)(x

Ez
i − xi)

Ci : (x
Ez
i − xi)

2
+ (yEzi − yi)

2
= R2i

(7)

The first equation in (7) defines a line (εi in Fig. 18) on
which the local front’s line segment lies. The second equation
defines a circle (Ci) of radius Ri =

li
2 , centered at the local

front’s segment mid-point Pi the assumed sensor location.
The solution of (7) provides the following closed form alge-
braic expressions which are used for the computation of the
local front’s end-point coordinates (xEzi , y

Ez
i), z = {1, 2}.

xEzi = xi ±
Ri
√
tan2(φ̂i)+ 1

tan2(φ̂i)+ 1

yEzi = yi ±
Ritan(φ̂i)

√
tan2(φ̂i)+ 1

tan2(φ̂i)+ 1

(8)

FIGURE 18. The local front estimate mi centered at Pi ; the coordinates of
its end-points (red dots) are determined by the points line εi intersects
circle Ci .

APPENDIX B
SPACE-TIME EVOLUTION OF A LOCAL FRONT ESTIMATE
Let’s assume that we want to determine the location of a local
front mi(ti) (with parameters estimated at time ti) at a future
time instance tj, where tj > ti.
Using the speed realization ûi, we calculate the distance d̂ij

‘‘traveled’’ by mi if we assume that it ‘‘moves’’ for time
interval equal to 1tij = tj − ti.

d̂ij = ûi1tij (9)

Next, by solving the system of equations in (10)
below, we can determine the mid-point’s coordinates
Pi(tj) = (xi(tj), yi(tj)) of the space time projected local front
estimate mi(tj). εi : yi(tj)− yi =

−1

tan(φ̂i)
(xi(tj)− xi)

Ci : (xi(tj)− xi)2 + (yi(tj)− yi)2 = d̂2ij

(10)

The first equation in (10) defines a line (εi in Fig. 19) which
is perpendicular to the local front and emanates form its
middle point Pi = (xi, yi). The second equation defines a
circle of radius d̂ij centered at the local front’s segmentmiddle
point Pi (see Fig. 19).

FIGURE 19. Space-time evolution of the local front mi (ti) from time ti of
its generation to some future time tj (tj > ti).

Solving this system of equations provides two closed form
expressions for computing the intersection points of line εi
and circle Ci (see Fig. 19). From these solutions we accept
only the point that lies in the half plane indicated by the
direction parameter δi (green point in Fig. 19)

xi(tj) = xi ±
d̂ijtan(φ̂i)

√
tan2(φ̂i)+ 1

tan2(φ̂i)+ 1

yi(tj) = yi ∓
d̂ij
√
tan2(φ̂i)+ 1

tan2(φ̂i)+ 1
.

(11)

Pi(tj) = (xi(tj), yi(tj)), is the new location of the mid-point
of mi(tj). For the calculation of mi(tj) end-point coordinates,
(PEzi (tj) = (xEzi (tj), y

Ez
i (tj)) where z = {1, 2}), we apply the

equations (8) of Appendix A.
APPENDIX C
LOCAL FRONTS INFORMATION FUSION
We present the proposed information fusion technique
applied to handle events of type 4 (see Section III, Step 2).
This technique uses the information of two close by local
front estimates mi(tf) and mj(tf) in Fig. 20 that satisfy the
condition of event 4 to calculate the parameters of a new local
front mf capturing locally the evolution characteristics of the
continuous object’s boundary at time tf .

The information fusion technique calculates for each local
front estimate mk (tf) (where k ∈ {i, j}), the time differences
1tk = tf − tk . Next, using the parameters of the speed
distributions Uk , it determines for each local front estimate
mk the distance Dk that it will cover if it moves for time
interval equal to 1tk . Since the speed Uk is described by a
Normal distribution N (uk , s2k), the distance Dk will also be
described by Normal distributionN (dk , ω2

k) with parameters

dk = uk1tk
ωk = sk1tk . (12)

It is worth mentioning that as the time difference 1tk
increases, the uncertainty (ωk) about the local front’s (mk)

VOLUME 8, 2020 152895

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

FIGURE 20. Information fusion of local fronts.

traveled distance will also increase. Next, we calculate for
each local front mk the distance d̂k , that it will cover if it
moves with speed ûk for time interval 1tk

d̂k = ûk1tk . (13)

Using the distribution for the orientation 8k and dis-
tance Dk , and the realization values φ̂k and d̂k , we calculate
the weights (see equation (14)) that will be used for the
calculation of the fused model mf parameters

wk =
8k (φ̂k)Dk (d̂k)∑

l={i,j}
8l(φ̂l)Dl(d̂l)

. (14)

For the calculation of the weights we consider that
the local front estimate with the larger likelihood values
(8k (φ̂k),Dk (d̂k)) should be trusted more.

Using the weights wk k ∈ {i, j}, we calculate the parame-
ters of the new local front estimate mf as follows

Zf =
∑
k={i,j}

wkZk where Z ∈ {ûf , φ̂f , lf , xf , yf }. (15)

To estimate the evolution direction parameter δf we use
the local fronts’ orientations (φ̂k), evolution directions (δk)
and the weights (wk) and determine two vectors which:
a) are perpendicular to the corresponding local front seg-
ments, b) point towards the corresponding local fronts’ evo-
lution directions and c) the ratio of their lengths is equal
to the corresponding ratio of their weights wi

wj
. Next, using

these vectors we calculate their resultant which determines
the evolution direction of the new local front estimate mf .
Using the equation of the line where the new local front
estimate mf lies, we determine in which half plane (positive
or negative) the vector of the resultant points to and assign the
corresponding value (+1 or−1) to the direction parameter δf .
To calculate the speed (orientation) distribution of mf we

apply the following procedure:
Using the weights wk k ∈ {i, j} and the corresponding

speed (orientation) distributions Uk , (8k) of the local front
estimates, we find their Gaussian mixture (see Fig. 21):

pU (u) = wi ·N (u|ui, s2i)+ wj ·N (u|uj, s2j)

p8(φ) = wi ·N (φ|φi, σ 2
i)+ wj ·N (φ|φj, σ 2

j) (16)

FIGURE 21. Estimating the orientation/speed (8f /Uf) distributions of
fusion model mf . (a) The orientation/speed distributions of models mi
and mj . (b) The mixture models P8/PU resulting by combining
orientation/speed normal distributions of {mi , mj } and the normal
distribution 8f /Uf that best approximates P8/PU by minimizing the
Kulback-Leibler divergence.

Next, by applying variational calculus we approximate the
Gaussian mixture in (16) by the Normal distribution which
minimizes the Kullback-Leibler (KL) divergence (maximizes
the similarity) from theGaussianmixture (see [41], [42]). The
equations which can be used to compute the parameters of
these Normal distributions are:
Speed parameters

uf = wiui + wjuj (17)

s2f = wis2i + wjs
2
j + wiwj(ui − uj)

2 (18)

Orientation parameters

φf = wiφi + wjφj (19)

σ 2
f = wiσ 2

i + wjσ
2
j + wiwj(φi − φj)

2 (20)

The parameters calculated from the above equations
govern mf ’s speed (Uf∼N (uf , s2f)) and orientation angle
(8f∼N (φf , σ 2

f)) normal distributions after the fusion.

APPENDIX D
INITIALIZATION OF LOCAL FRONT PARAMETERS
We explain here how we initialize the local front evolution
parameters for the experiments presented in Section V-C,
to simulate the measurements process of distributed sensors
producing the local front estimates in the absence of errors
(perfect sensing).
A. EXPERIMENT 1: CIRCULAR FRONT
Let’s assume that the circular boundary of a continuous object
reaches the mid-point (sensor location) of a local front seg-
ment (mi) at time instance tR (see Fig. 22a). We set the speed
(ui) parameter of mi to the speed of the circle’s radius at
time tR, and its orientation (φi) parameter to the angle formed
between the x-axis and the circle’s tangent line (εi in Fig. 22a)
that osculates from the middle point of mi.
B. EXPERIMENT 2: IRREGULAR FRONT
FLogA (Fire Logic Animator) is a web-based software tool
which allows the user to define (draw) a forest area on Google
Earth anywhere in Europe, insert interactively fire ignition
points, simulate and geo-animate the behavior of the evolving

152896 VOLUME 8, 2020

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

FIGURE 22. Initalization of the local front parameters when a continuous
object reaches a sensor location, (a) for a circular object and (b) for a
more realistic non-convex object as a spreading wildfire.

FIGURE 23. The blue (red) curve corresponds to the real (reconstructed)
boundary of the diffusing phenomenon. Classifying the square cells of
the gridified area as shown in the figure, we can evaluate the accuracy of
the proposed boundary reconstruction algorithm using the F1-Score.

fire line under different weather conditions [38]. FLogA con-
siders the forest area as a grid of square cells, with every cell
experiencing different topography and weather conditions.
The dimensions of the cells are defined by the user. To sim-
ulate the evolution behavior of a wildfire, FLogA accepts as
input a set of raster ASCII files that contain information about
the forest’s topographic layers (slope, aspect, fuel model, fuel
moisture), the prevailing weather conditions (wind speed and
wind direction) in the forest’s area, as well as the number
and locations of the fire ignition points (‘‘hotspots’’). FLogA
uses cellular automata like algorithms to predict for each cell
of the grid information such as the expected time of fire’s
arrival, the fire line’s speed, the fire line’s evolution direction
etc. (see Fig. 22b). We set the speed (ui) and orientation (φi)
parameters of a local front estimatemi at a sensor location Pi,
to be equal to the speed and evolution direction values of the
hazard for the forest cell containing the mid-point of the line
segment of mi (sensor location).
APPENDIX E
ASSESSING SIMILARITY OF CONTINUOUS OBJECTS
To evaluate the accuracy of the proposed boundary recon-
struction algorithm, we compare the similarity of the areas

occupied by the real and the reconstructed continuous object
as described below:

We consider the continuous object’s evolution area as a grid
of square cells (see Fig. 23). For all conducted experiments
we set the size of the square cells to be 20m× 20m. Based on
the real and reconstructed boundary of the continuous object,
we classify the square cells to the following categories:
• True Positives (TP): Cells located inside the real and the
reconstructed object.

• False Positives (FP): Cells located outside the real but
inside the reconstructed object.

• False Negatives (FN): Cells located inside the real but
outside the reconstructed object.

To estimate the boundary reconstruction accuracy we used
the F1-Score which is the harmonic mean of precision and
recall

F1 = 2 ·
precision · recall
precision+ recall

where

precision =
TP

TP+ FP
, recall =

TP
TP+ FN

.

APPENDIX F
TABLE OF SYMBOLS

TABLE OF SYMBOLS
Symbols Definitions

mi The i-th local front model.
Pi = (xi, yi) The physical coordinates of the i-th line

segment’s mid-point.
PEzi = (xEzi , y

Ez
i), z =

{1, 2}
The physical coordinates of the i-th line segment’s

end-points.
li The length of the i-th line segment.
δi The evolution direction of the i-th line segment.
8i∼N (φi, σ 2i) The model for the orientation of the i-th

line segment.
φ̂i A realization (random sample) of 8i.
Ui∼N (ui, s2i) The model for the speed of the i-th line segment.
ûi A realization (random sample) of Ui.
Ci(tj) The circular local area of model mi at time tj.
Ri The radius of the circular area Ci.
R′i The adjusted radius of mi circular area.
Ai(tj) The area covered by mi during its space time

evolution from time ti to time tj.
ti The time instance of mi parameters estimation

by a sensor located at Pi.
td The earliest time instance when the evolution

path of mi is blocked by the evolution path of mj.
tf The time instance where mi and mj fuse

their information.
tb The time instance of a boundary reconstruction.
Dk∼N (dk , ω2k), k =

{i, j}
The model for distance that mk (tf) will cover

if it moves for time interval equal to 1tk .
d̂k The distance that will be covered by mk

if it moves with the sample speed ûk
for time interval 1tk .

1tk The time difference between tf and tk .
wk The weight used for the information fusion

of the local front models mi and mj.
Zf The set of mf parameters which result after

fusing the information of mi and mj.
M A set that contains the parameters of all the

local front models.
Mb A set that contains the parameters of all the

local front models selected to be used to
reconstruct the boundary at time tb.

C A set that contains the mid-points of all local front
estimates inMb.

V An ordered set that contains the vertices of the
convex hull polygon of C.

VOLUME 8, 2020 152897

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

Q A set that contains the mid-points in C that
do not belong to the convex hull polygon.

Qon A set that contains the points ofQ located
on the polygon’s edges.

Qout A set that contains the points ofQ located
outside the polygon’s area.

QI
out A set that contains the points ofQout that

are centers of local front segments intersecting
at least one edge of the polygon.

QT
out A set that contains the points ofQout that

are centers of local front segments located
totally outside (do not intersect) the polygon.

Qin A set that contains the points ofQ located
inside the polygon’s area.

QI
in A set that contains the points ofQin that

are centers of local front segments intersecting
at least one edge of the polygon.

QT
in A set that contains the points ofQin that

are centers of local front segments
located totally inside (do not intersect) the polygon.

P(C) The probability for the continuous object to
arrive at cell C .

nC The number of simulation scenarios that cell C is
located inside the object’s area.

n Total number of simulation scenarios.
N The minimum number of local front estimates

required for launching a boundary reconstruction.

ACKNOWLEDGMENT
The authors would like to thank Mr. Nikos Bogdos, Uni-
versity of Athens, for generating the wildfire scenario of
Experiment 2 and for providing useful comments.

REFERENCES
[1] S. Duttagupta, K. Ramamritham, and P. Kulkarni, ‘‘Tracking dynamic

boundaries using sensor network,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 22, no. 10, pp. 1766–1774, Oct. 2011.

[2] H. Hong, S. Oh, J. Lee, and S.-H. Kim, ‘‘A continuous object
tracking protocol suitable for practical wireless sensor networks,’’
in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2013,
pp. 2351–2356.

[3] S. Imran and Y.-B. Ko, ‘‘A continuous object boundary detection and
tracking scheme for failure-prone sensor networks,’’ Sensors, vol. 17, no. 2,
p. 361, Feb. 2017.

[4] H. Ping, Z. Zhou, T. Rahman, and Y. Duan, ‘‘Localization and tracking of
continuous objects boundary area leveraging planarization algorithms in
duty-cycled wireless sensor networks,’’ in Proc. 43rd Annu. Conf. IEEE
Ind. Electron. Soc. (IECON), Oct. 2017, pp. 8476–8481.

[5] Y. Zhang, Z. Wang, L. Meng, and Z. Zhou, ‘‘Boundary region detection
for continuous objects in wireless sensor networks,’’ Wireless Commun.
Mobile Comput., vol. 2018, May 2018, Art. no. 5176569.

[6] S. Park, S.-W. Hong, E. Lee, S.-H. Kim, and N. Crespi, ‘‘Large-
scale mobile phenomena monitoring with energy-efficiency in
wireless sensor networks,’’ Comput. Netw., vol. 81, pp. 116–135,
Apr. 2015.

[7] S. Tarek, K. Shehryar, S. Elhadi, and M. Menshawi, ‘‘Continuous objects
detection and tracking in wireless sensor networks,’’ J. Ambient Intell.
Hum. Comput., vol. 7, pp. 489–508, May 2016, 10.1007/s12652-016-
0380-5.

[8] H. Park, S. Oh, E. Lee, S. Park, S.-H. Kim, and W. Lee, ‘‘Selective
wakeup discipline for continuous object tracking in grid-based wireless
sensor networks,’’ in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Apr. 2012, pp. 2179–2184.

[9] Y. Xu, W. Bao, and H. Xu, ‘‘An algorithm for continuous object tracking
in WSNs,’’ in Proc. Int. Conf. Res. Challenges Comput. Sci., Dec. 2009,
pp. 242–246.

[10] C. Yang, Q. Li, and J. Liu, ‘‘Amultisink-based Continuous Object Tracking
inwireless sensor networks byGIS,’’ inProc. 14th Int. Conf. Adv. Commun.
Technol. (ICACT), Feb. 2012, pp. 7–11.

[11] J. Kim, K. Kim, S. Chauhdary, W. Yang, and M. Park, ‘‘DEMOCO:
Energy-efficient detection and monitoring for continuous objects in
wireless sensor networks,’’ IEICE Trans. Commun., vol. 91, no. 11,
pp. 3648–3656, Nov. 2008.

[12] G. Han, J. Shen, L. Liu, A. Qian, and L. Shu, ‘‘TGM-COT: Energy-efficient
continuous object tracking scheme with two-layer grid model in wireless
sensor networks,’’ Pers. Ubiquitous Comput., vol. 20, no. 3, pp. 349–359,
Jun. 2016.

[13] S.-W. Hong, S.-K. Noh, E. Lee, S. Park, and S.-H. Kim, ‘‘Energy-efficient
predictive tracking for continuous objects in wireless sensor networks,’’ in
Proc. 21st Annu. IEEE Int. Symp. Pers., Indoor Mobile Radio Commun.,
Sep. 2010, pp. 1725–1730.

[14] S.W.Hong, S. K. Noh, E. Lee, S. Park, and S. H. Kim, ‘‘A novel continuous
object tracking scheme for energy-constrained wireless sensor networks,’’
in Proc. IEEE 72nd Veh. Technol. Conf. (Fall), Sep. 2010, pp. 1–5.

[15] W.-R. Chang, H.-T. Lin, and Z.-Z. Cheng, ‘‘CODA: A continuous object
detection and tracking algorithm for wireless ad hoc sensor networks,’’ in
Proc. 5th IEEE Consum. Commun. Netw. Conf., Jan. 2008, pp. 168–174.

[16] Y. Wang, R. Tan, G. Xing, J. Wang, and X. Tan, ‘‘Accuracy-aware
aquatic diffusion process profiling using robotic sensor networks,’’ inProc.
ACM/IEEE 11th Int. Conf. Inf. Process. Sensor Netw. (IPSN), Apr. 2012,
pp. 281–292.

[17] L. A. Rossi, B. Krishnamachari, and C.-C.-J. Kuo, ‘‘Distributed parameter
estimation for monitoring diffusion phenomena using physical models,’’
in Proc. 1st Annu. IEEE Commun. Soc. Conf. Sensor Ad Hoc Commun.
Netw. (SECON), Oct. 2004, p. 460.

[18] X. Yan, F. Gu, X. Hu, and S. Guo, ‘‘A dynamic data driven application sys-
tem for wildfire spread simulation,’’ in Proc. Winter Simul. Conf. (WSC),
Dec. 2009, pp. 3121–3128.

[19] T. Artes, A. Cencerrado, A. Cortes, T. Margalef, D. R. Aseretto, T. Petro-
lagkis, and J. S. M. Ayanz, ‘‘Towards a dynamic data driven wildfire
behavior prediction system at European level,’’ in Proc. 14th ICCS, vol. 29,
2014, pp. 1216–1226.

[20] R. L. Graham, ‘‘An efficient algorith for determining the convex hull of a
finite planar set,’’ Inf. Process. Lett., vol. 1, no. 4, pp. 132–133, Jun. 1972.

[21] R. A. Jarvis, ‘‘On the identification of the convex hull of a finite set of
points in the plane,’’ Inf. Process. Lett., vol. 2, no. 1, pp. 18–21, Mar. 1973.

[22] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel, ‘‘On the shape of a set of
points in the plane,’’ IEEE Trans. Inf. Theory, vol. 29, no. 4, pp. 551–559,
Jul. 1983.

[23] A. J. C. Moreira and Y. M. Santos, ‘‘Concave hull: A k-nearest neighbours
approach for the computation of the region occupied by a set of points,’’ in
Proc. Int. Conf. Comput. Graph. Theory Appl., 2007, pp. 61–68.

[24] J. S. Park and S. J. Oh, ‘‘A new concave hull algorithm and concaveness
measure for n-dimensional datasets,’’ J. Inf. Sci. Eng., vol. 29, no. 2,
pp. 379–392, 2013.

[25] S. Asaeedi, F. Didehvar, and A. Mohades, ‘‘Alpha-concave hull, a gen-
eralization of convex hull,’’ Theor. Comput. Sci., vol. 702, pp. 48–59,
Mar. 2017.

[26] T. J. Cholewo and S. Love, ‘‘Gamut boundary determination using alpha-
shapes,’’ in Proc. 7th Color Imag. Conf. (IS&T/SID), 1999, pp. 200–204.

[27] D. V. Manatakis and E. S. Manolakos, ‘‘Collaborative sensor network
algorithm for predicting the spatiotemporal evolution of hazardous phe-
nomena,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct. 2011,
pp. 3439–3445.

[28] D. V. Manatakis and E. S. Manolakos, ‘‘Predictive modeling of the spa-
tiotemporal evolution of an environmental hazard and its sensor network
implementation,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2011, pp. 2056–2059.

[29] D. V. Manatakis and E. S. Manolakos, ‘‘Estimating the spatiotemporal
evolution characteristics of diffusive hazards using wireless sensor net-
works,’’ IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 9, pp. 2444–2458,
Sep. 2015.

[30] D. V. Manatakis, M. G. Nennes, I. G. Bakas, and E. S. Manolakos,
‘‘Simulation-driven emulation of collaborative algorithms to assess
their requirements for a large-scale WSN implementation,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2014,
pp. 8360–8364.

[31] Animation of Algorithm’s Behavior in the Presence of Diffusive Hazard
With Regular Shape (See Supplementary Material), IEEE, 2020.

[32] Animation of Algorithm’s Behavior in the Presence of Diffusive Hazard
With Irregular Shape (See Supplementary Material), IEEE, 2020.

[33] N. Laiche and S. Larabi, ‘‘Retrieval of 2D objects and shape matching
using the B-splines representation,’’ in Proc. IEEE Int. Conf. Signal Image
Process. Appl. (ICSIPA), Kuala Lumpur, Nov. 2011, pp. 495–500.

[34] L. Stanberry and J. Besag, ‘‘Boundary reconstruction in binary images
using splines,’’ Pattern Recognit., vol. 47, no. 2, pp. 634–642, Feb. 2014.

152898 VOLUME 8, 2020

D. V. Manatakis, E. S. Manolakos: Predictive Tracking of Continuous Object Boundaries

[35] H. Hang, X. Yao, Q. Li, and M. Artiles, ‘‘Cubic B-Spline curves with
shape parameter and their applications,’’ Math. Problems Eng., vol. 2017,
Dec. 2017, Art. no. 3962617.

[36] M. Sarfraz, M. Ishaq, and M. Z. Hussain, ‘‘Shape designing of engineer-
ing images using rational spline interpolation,’’ Adv. Mater. Sci. Eng.,
vol. 2015, Mar. 2015, Art. no. 260587.

[37] L. Piegl, W. Tiller, The NURBS Book (Monographs in Visual Communica-
tion), 2nd ed. New York, NY, USA: Springer-Verlag, 1997.

[38] N. Bogdos and E. S. Manolakos, ‘‘A tool for simulation and geo-animation
of wildfires with fuel editing and hotspot monitoring capabilities,’’ Envi-
ron. Model. Softw., vol. 46, pp. 182–195, Aug. 2013.

[39] U. S. Tristan. (Apr. 10, 2018). The Diffusion Equation A Multi-
dimensional Tutorial. [Online]. Available: www.rpgroup.caltech.
edu/~natsirt/aph162/diffusion.pdf

[40] (Apr. 10, 2018). Google Earth. [Online]. Available: http://
www.earth.google.com

[41] A. Runalls, ‘‘Kullback-Leibler approach to Gaussian mixture reduction,’’
IEEE Trans. Aerosp. Electron. Syst., vol. 43, no. 3, pp. 989–999, Jul. 2007.

[42] J. R. Hershey and P. A. Olsen, ‘‘Approximating the Kullback Leibler
divergence between Gaussian mixture models,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Apr. 2007, p. IV-317.

DIMITRIS V. MANATAKIS (Senior Member,
IEEE) received the M.Sc. degree (Hons.) in sig-
nal processing for communications and multime-
dia and the Ph.D. degree in informatics from the
Department of Informatics and Telecommunica-
tions, University of Athens, Greece. Hewas a Post-
doctoral Research Associate with the Department
of Computational and Systems Biology, School
of Medicine, University of Pittsburgh, PA, USA.
He is currently an Associate Director in biomedi-

cal data science, Emulate Inc., Boston,MA,USA.He has played critical roles
in many NIH and EU funded research projects. His Ph.D. research proposal
was selected after the National and International Evaluation for Support from
the Heracleitus II Grant, co-financed by the national and EU funds. His
research interests include machine learning, causal inference, artificial intel-
ligence, deep learning, bioinformatics, data mining, data fusion, statistical
analysis, wireless sensor networks, computational geometry, signal process-
ing, predictive modeling, dynamic systems modeling, and optimization and
estimation theory. He received the Prize from the Greek State Scholarships
Foundation after ranking among the top students in his class.

ELIAS S. MANOLAKOS (Senior Member,
IEEE) received the Diploma degree in EE from
the National Technical University of Athens,
the M.Sc. degree from the University of Michi-
gan, Ann Arbor, and the Ph.D. degree from the
University of Southern California. He was a Vis-
iting Scholar with the Wyss Institute of Biolog-
ically Inspired Engineering, Harvard University.
He was also a tenured Faculty Member with
the ECE Department, Northeastern University,

Boston. He is currently a Professor with the Department of Informatics
and Telecommunications, National and Kapodistrian University of Athens.
He is also a Visiting Professor with Northeastern University. He enjoys
interdisciplinary research. He has played a leadership role in more than
20 funded research projects in EU and USA. He has authored or coauthored
with his students and more than 130 publications in refereed journals and
conference proceedings. His research interests include machine learning,
signal processing, parallel and distributed computing, and their applications
in biomedicine and environment. He was elected and served for two terms
with the IEEE SPS Technical Committees on Machine Learning for Sig-
nal Processing and the Design and Implementation of Signal Processing
Systems. He has served on the editorial board for several journals, such as
the IEEE TRANSACTIONS ON SIGNAL PROCESSING, the IEEE SIGNAL PROCESSING

LETTERS, the Journal of Signal Processing Systems (Springer), and so on.

VOLUME 8, 2020 152899

