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ABSTRACT The channel state information (CSI) obtained from channel estimation will be outdated quickly
in the millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems employing
time-division duplex (TDD) setting, which results in significant performance degradation for the precoding
and coherent signal detection. In order to overcome the CSI delay problem, this article proposes a novel
downlink transmission scheme for the mmWave massive MIMO systems. In the proposed scheme, the base
station (BS) estimates the channel coefficients by using the uplink pilots, and calibrates the CSI by employing
an enhanced predictor which exploits the channel sparsity in both the angle and the time domains, followed
by the interpolation to obtain the channel coefficients at the data rate. Then the signal radiated from the BS
array is precoded by using the predicted channel coefficients so that the propagated signal can be added
coherently and detected at the terminal. Simulation results show that the proposed scheme can overcome
the CSI delay problem effectively, and improve the signal detection performance. We show that for system
with 125 Hz Doppler frequency shift and 0.96 ms time slot, the uncoded bit error rate (BER) is improved
from 2.4× 10−2 to 2.5× 10−3 by using our proposed method when the noise power ratio (SNR) is 10 dB.

INDEX TERMS Channel prediction, CSI calibration, massive MIMO, millimeter wave, outdated CSI,
precoding.

I. INTRODUCTION
Recently, the millimeter wave (mmWave) communication is
regarded as one of the most potential solutions for the expo-
nentially expanding wireless data traffic in the future, due
to the wide usable spectrum in the mmWave band. To com-
pensate for the huge pathloss of communication in mmWave
bands, massive multiple-input multiple-output (MIMO) tech-
nique is fundamental for providing beamforming gain to
ensure coverage of a serving cell [1]. The application of mas-
sive MIMO at mmWave frequencies would be very popular
in the foreseen future [2], [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Luyu Zhao .

Despite the great potential of the mmWave massiveMIMO
cellular communications, there are some key technical chal-
lenges need to be addressed. The mmWave systems com-
municate at the extremely high-frequency band, for which
the channel usually suffers from much faster variation than
that in lower-frequency band communication (due to the fact
that the effect of mobility in terms of Doppler shift increases
linearly with frequency) [4]. Moreover, the massive MIMO
systems often employ time-division duplex (TDD) setting
[5], in which the time spent on uplink pilot transmission
and downlink channel state information (CSI) feedback may
surpass the coherence time of the channel [6], [7]. The bit
error rate (BER) performance can be severely affected by the
feedback delay. The delayed CSI appears due to the relative
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FIGURE 1. Channel output and path gains versus sample interval. Set the velocity of terminal to 1.5 m/s and the carrier frequencies to 25 GHz
(a) and 50 GHz (b), respectively. The corresponding maximum Doppler shifts are 125 Hz and 250 Hz.

movement between the antennas and the scatterers. In fact,
the channel varies between when it is learned via estimation
and when it is used for precoding or detection due to the time-
varying nature of real channels. The study in [8] shows that
the channel fading rate can be significantly reduced by using
highly directional antennas. However, in order to perform
beam forming and make the received signal change slowly,
we also need to know the actual channel state information in
advance [3].

Fig. 1 presents the step response of the channel and the
corresponding path gain snapshots for different values of
the sample interval property by configuring a channel with
delay profile clustered-delay-line-B (CDL-B) from Technical
Report (TR) 38.901 [9], where the channel power is normal-
ized to 1. As is shown in Fig. 1, the channel will be quickly
outdated even at fast walking or jogging speed (1.5 m/s),
while the channel sample intervals are also very short (0.48
ms, 0.96 ms, 1.92 ms). This challenge will become more
pronounced as the carrier frequency grows. In TDD systems,
for downlink transmission, CSI can only be obtained by esti-
mating uplink channel, thus resulting in unavoidable outdated
problem [10], which will seriously degrade the performance
of precoding and coherent signal detection.

There have been some papers dealing with the problem of
channel estimation and tracking for precoding technique in
mmWavemssiveMIMO systems [11]–[13]. Particularly, [14]
develops a three-step multi-user channel estimation scheme
for hybrid mmWave MIMO systems, and investigates the
hybrid precoding system design. The prior investigations on
channel estimation and tracking aim to obtain the up-to-date
CSI of training symbols. However, as is shown in Fig. 1, the
CSI of training stage in the uplink will be quickly outdated
and could not be used for data transmission in the downlink.

Channel prediction techniques have been studied to effec-
tively compensate for the outdated CSI in the adpative trans-
mission systems. For the MIMO systems, the minimum
mean-square-error (MMSE) or adaptive channel predictors
are proposed in [15], [16], and a parametric-model-based
channel prediction method is proposed in [17]. They all
work on each pair of antennas in the array domain. For the
OFDM systems, most of the existing predictors are realized
on each subcarrier in the frequency domain [18], while [19]
proposes to predict the channel in the time domain. For the
MIMO-OFDM systems, the previously proposed prediction
methods operate on each subcarrier in each antenna pair
of MIMO-OFDM channel [6], [20]. [10] comprehensively
investigates the channel prediction in different domains for
mmWave Massive MIMO systems.

To the best of our knowledge, general framework for
mmWave massive MIMO downlink transmission and signal
detection considering the outdated problem is not available
in the literature. In this article, we develop a novel precoding
and signal detection scheme which exploits the predicted
channel coefficients to improve system performance. The
main contributions of this article are as follows.
• We develop a novel framework for themmWavemassive
MIMO downlink transmission, which consists of the
uplink pilot transmission and channel estimation, the
angle-time domain (Ag-TD) channel prediction, channel
interpolation, massive MIMO precoding and coherent
signal detection. The proposed scheme utilizes the pre-
dicted channel coefficients instead of estimated channel
coefficients to overcome the CSI delay problem.

• The channel prediction and interpolation are performed
in the Ag-TD, as the Ag-TD channel is composed of
fewer physical paths and thus is more predictable than
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FIGURE 2. The data transmission structure of mmWave massive MIMO system for TDD operations.

FIGURE 3. System blocks of the proposed precoding and signal detection scheme.

that in the other domains [10]. The channel sparsity in
both the angle and time domains is also exploited for
channel prediction to eliminate the noise perturbation
and to reduce the computational burden.

• Unlike the prior investigations, our proposed framework
does not assume that the wireless channel remains time-
invariant during channel estimation, channel prediction,
or data transmission, which means that the mmWave
massive MIMO channel will change sample-by-sample,
resulting in highly challenging channel acquisition
strategies. Therefore, we propose the new framework to
make the transmitter and receiver be synchronized with
the channel dynamics.

The remainder of this article is organized as follows. The
system model is described in Section II. The proposed down-
link transmission and coherent signal detection scheme is pre-
sented in Section III. Section IV evaluates the performance
of the proposed scheme by numerical results and the paper is
concluded in Section V.

II. MmWave MASSIVE MIMO SYSTEM DESCRIPTION
We consider a massive MIMO system deploying uni-
form linear arrays (ULA) geometry at base station (BS)
with M antennas, and the terminal with one antenna. As
the mmWave channel is usually wideband and frequency-
selective, an orthogonal frequency division multiplex-
ing (OFDM) technique with K sub-carriers is combined with
the MIMO technique to turn the frequency-selective fading
channel into a set of flat fading channels. The channel esti-
mation of massive MIMO is operated in TDD mode, where
pilots are transmitted in the uplink and then the estimated CSI
is further processed and feedback in the downlink.

The data transmission structure of mmWave massive
MIMO system for TDD operations is given in Fig. 2. There

are T symbols in one time slot. In each time slot, the terminal
first transmits τup pilot symbols and τud data symbols in the
uplink, and then the BS estimates the propagation channels
using the pilot symbols. During the remainder of the time
slot (consisting of T − τup − τud symbols), the BS will
transmit data to the terminal with a proper precoder. Finally,
coherent signal detection can be performed at the terminal. To
perform precoding and signal detection in the downlink, the
BS must acquire the CSI. However, with a limited coherence
time in mmWave massive MIMO systems, the estimated
channel coefficients in the uplink could not be directly used
for precoding and detection. Therefore, we propose a general
framework for downlink transmission and signal detection to
overcome the CSI delay problem.

III. PROPOSED FRAMEWORK FOR DOWNLINK
TRANSMISSION AND COHERENT SIGNAL DETECTION
In this section, we detail the main blocks (shown in Fig. 3)
of general framework for downlink transmission and signal
detection in mmWave massive MIMO systems.

A. UPLINK TRANSMISSION AND CHANNEL ESTIMATION
In the uplink transmission, for independent Rayleigh fading,
propagations between the M BS antennas and the terminal
with one antenna are described by M normalized channels.
The terminal transmits pilot sequence, which consists of τup
symbols. The BS correlates the received symbols with the
conjugates of the pilot sequence, which yields the following
processed signal:

ym [i, k] =
√
τupρuhm [i, k]+ nm [i, k] , (1)

where hm [i, k] is the normalized channel at the k-th subcar-
rier and the i-th symbol time for the m-th antenna of the BS,
nm [i, k] is the background noise plus interference term of the
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m-th receive antenna, which can be approximated as a zero
mean additive white Gaussian noise (AWGN) with variance
σ 2
n , and ρu is a measure of the expected signal to noise power

ratio (SNR) of the uplink channel. The MMSE estimation for
hm [i, k] can be given as

h̃m [i, k] =
√
τupρu

1+ τupρu
ym [i, k] . (2)

B. CHANNEL PREDICTION
The mmWave MIMO-OFDM channel prediction can be
performed in four domains: the array-frequency (Ar-FD),
array-time (Ar-TD), angle-frequency (Ag-FD), as well as
Ag-TD. In each of the four domains, if there exist correla-
tions between channel elements, the correlations should be
exploited to improve the performance of channel prediction.
The channel taps with different delays are often assumed to be
wide sense stationary (WSS), independent, and narrowband
complex processes. Meanwhile, in each channel tap, differ-
ent physical paths (sinusoids) contribute to different angle
domain bins, and thus the channel coefficients in different
angle domain bins are spatially uncorrelated. Therefore, the
Ag-TD channel elements are uncorrelated, and the channel
prediction in the Ag-TD achieves higher accuracy than the
other three domain prediction techniques without exploiting
channel correlations [10]. In this article, an enhanced Ag-TD
channel predictor which exploits the channel sparsity in both
the angle and the time domains is employed to predict the
channels.

The estimated channel in (2) is the so called Ar-FD repre-
sentation of MIMO-OFDM channel. The OFDM technique
employs discrete-Fourier-transform (DFT) in the receiver
to transform the time domain channel into the frequency
domain, and thus we can establish the relationship between
the time domain and frequency domain of channel by using
DFT and inverse-DFT (IDFT). Hence, the Ar-TD channel
estimation can be obtained as

g̃m [i, l] = IDFT
{
h̃m [i, k]

}
, (3)

where g̃m [i, l] is the channel estimation of the l-th channel
tap at the i-th OFDM symbol transmitted from the terminal
to the m-th antenna of the receiver.

A cyclic prefic (CP) is attached to every OFDM symbol to
mitigate the effect of channel delay spread. As the channel’s
maximum delay does not exceed the CP length of OFDM
system Lcp, for l = Lcp,Lcp + 1, . . . ,K − 1, we have

g̃m [i, l]=n′m [i, l] , (4)

where n′m [i, l] is the transformed noise in the Ar-TD. The
mmWave channel has only a few path clusters due to the
limited scattering effect [21], [22], also known as multipath
sparsity. Therefore, the wideband radio channel is sparse in
the time domain. When the time domain channel is described
as a tapped delay line, the sparseness of resolvable multipaths
allows only a few taps to be nonzero. Therefore, g̃m [i, l],

l = 0, 1, . . . ,Lcp-1, can be modeled as

g̃m [i, l]=


gm [i, l]+ n′m [i, l] , significant tap

n′m [i, l] , zero-valued tap,

(5)

where gm[i, l] is the real channel of the l-th channel tap at the
i-th OFDM symbol transmitted from the terminal to the m-th
antenna of the receiver.

Then, by the nonzero channel taps identification algorithm,
we can revise the result of channel estimation as

for l = 0, 1, · · · ,Lcp − 1

g̃ [i, l] =


g̃ [i, l] , if σ 2

gl − σ
2
n′ ≥ σ

2
n′

0, if σ 2
gl − σ

2
n′ < σ 2

n′

for l = Lcp,Lcp + 1, · · · ,K − 1

g̃ [i, l] = 0,

where g̃ [i, l] is the columnwise arrangement of g̃m [i, l],m =
0, 1, . . . ,M − 1, σ 2

gl is the average power of the l-th Ar-TD
channel tap given as

σ 2
gl = E

{∥∥g̃ [i, l]∥∥2} ,
which can be computed from the past channel estimates, and
the noise power σ 2

n′ can be estimated by

σ 2
n′ =

1
K − Lcp

K−1∑
l=Lcp

σ 2
gl , (6)

because for l = Lcp,Lcp + 1, · · · ,K − 1, the channel tap
g̃ [i, l] is only composed of noise.

TheMIMO technique extends the radio channel into space,
for which we can abstract the array domain model into the
angle domain model in terms of spatially resolvable paths.
Therefore, we can transform the Ar-TD channel representa-
tion into Ag-TD representation as [23], [24]

g̃a [i, l] = UH
r g̃ [i, l] , (7)

where the superscript ‘‘H ’’ denotes conjugate transpose, the
superscript ‘‘a’’ denotes the angle domain variables, Ur is
the M × M unitary matrix of which the (u, v) -th entry is
1
√
M
exp

(
−j2πuv
M

)
for u, v = 0, 1, . . . ,M − 1, g̃a [i, l] is the

column wise arrangement of g̃aφ [i, l], φ = 0, 1, . . . ,M − 1,
and g̃aφ [i, l] is the estimate of the channel from the transmitter
to the φ-th receive angle in the l-th channel tap at the i-th
OFDM symbol.

For each significant channel tap, as some angle domain
bins contain no physical signal due to limited scattering,
the corresponding channel coefficients approach zeros. If the
l-th channel tap is significant, we can further identify the
significant angle domain coefficients of this channel tap by

g̃aφ [i, l] =


g̃aφ [i, l] , if σ 2

gaφ,l
− σ 2

na ≥ σ
2
na

0, if σ 2
gaφ,l
− σ 2

na < σ 2
na ,

(8)
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where

σ 2
gaφ,l
= E

{∣∣∣g̃aφ [i, l]∣∣∣2}
is the average channel power of the channel from the trans-
mitter to the φ-th receive angle in the l-th channel tap at the
i-th OFDM symbol, and σ 2

na is the noise power of eachAg-TD
bin, which can be estimated as

σ 2
na =

1
(K − Lcp)M

K−1∑
l=Lcp

M−1∑
φ=0

σ 2
gaφ,l
. (9)

Finally, the channel prediction can be performed on
each significant element in the Ag-TD, and the autoregres-
sive (AR) based method [25] is employed to perform channel
prediction as

ĝaφ [i+ T , l] =
P−1∑
p=0

dgaφ,l (p)g̃
a
φ [i− pT , l] , (10)

where T is the slot symbol number shown in Fig. 2 (also
known as prediction interval), P is the prediction order, and
dgaφ,l (p), for p = 0, 1, · · · ,P − 1 are the prediction coeffi-
cients for the channel from the transmitter to the φ-th receive
angle in the l-th channel tap. The prediction coefficient in the
vector form

dgaφ,l =
[
dgaφ,l (0) , dgaφ,l (1) , · · · , dgaφ,l (P− 1)

]T
can be calculated based on MMSE principle as [26]

dgaφ,l =
(
Rgaφ,l

+ σ 2
naI
)−1

rgaφ,l , (11)

where I is the identity matrix, Rgaφ,l
is the channel auto-

correlation matrix, and rgaφ,l is the channel auto-correlation
vector, as defined in [10].

TABLE 1. The procedure of prediction block.

The prediction block procedure is summarized in Table 1.
The performance of channel prediction has been evalu-
ated in some paper. Reference [27] analyzes the theoreti-
cal performance of the channel prediction as a function of
several parameters: the number of scatterers, model order,
sampling rate and the Signal-to-Noise ratio (SNR). [10]
investigates and presents the prediciton performance in the
Ar-FD, Ar-TD, Ag-FD, as well as Ag-TD.

C. CHANNEL INTERPOLATION AND TRANSFORMATION
In an OFDM system using pilots for channel estimation,
time interpolation among pilots of different OFDM symbols
is commonly used to improve the estimation. As is shown
in Fig. 2, the channel coefficients can be estimated at the
begining of each time slot. As the channel estimating rate
(perform estimation once every T OFDM symbols) is much
lower than the OFDM symbol rate, interpolation is employed
to estimate the channel coefficients at the symbol rate. In
our interpolation method, NI consecutively time slots are
firstly used to obtain the channel coefficients,includingNI−1
estimated coefficients and 1 predicted coefficient. The NI
channel coefficients are interpolated by a cubic spline inter-
polator [28] to generate estimates of the channel coefficients
at the symbol rate, between the channel prediction sample and
the last of channel estimation samples, as shown in Fig. 2.

It should be noted that channel prediction and interpolation
are performed in the Ag-TD in this article. However, as the
precoding and coherent signal detection are performed in the
Ar-FD, the prediction results in other domain representations
should be transformed back into Ar-FD. The transformation
can be conducted by inverse operations of (3) and (7). Thus,
we can obtain the Ar-FD channel prediction ĥm [i, k].

D. DOWNLINK PRECODING AND SIGNAL DETECTION
The downlink data symbol received by the mobile terminal at
the k-th subcarrier and the i-th symbol time is given by

x [i, k] =
√
ρdhT [i, k] s [i, k]+ z [i, k] , (12)

where the superscript ‘‘T ’’ denotes transpose, h [i, k] is the
column wise arrangement of the channel hm [i, k], m =

0, 1, . . . ,M−1, s [i, k] is theM×1 input to the BS’s antennas,
ρd is the transmitted power coefficient, and z [i, k] is the noise
at the terminal. Here we assume that the z [i, k] is AWGNwith
unit variance.

As the channel has been obtained and known to the BS,
the signal radiated from each BS antenna should be weighted
[29] so that the propagated signal can be added coherently at
the receiver. In this article, the BS precodes data of its user
through an M × 1 vector w [i, k] such that

s [i, k] = w [i, k] d [i, k] , (13)

where d [i, k] is the message-bearing symbol intended for the
terminal, and the m-th weight coefficient of w [i, k] is

wm [i, k]=
ĥ∗m [i, k]

ĥH [i, k] ĥ [i, k]
, (14)

where the superscript ‘‘∗’’ denotes conjugation. Finally, the
terminal can directly detect the received signal using tradi-
tional methods.

We assume that the message-bearing symbols are uncorre-
lated with unit variance

E
{
d∗ [i, k] d [i, k]

}
= 1.

Hence, the expected SNR of the received signal at the termi-
nal would be equal to ρd .
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E. COMPUTATIONAL COMPLEXITY
This article employs the channel prediction instead of channel
estimation to overcome the CSI delay problem. Compared
with the traditional methods, the computational complexity
is increased due to the use of 3 modules: the MMSE channel
prediction, the channel interpolation and the transformation
between different domains.

The MMSE channel prediction technique can compute
optimal predictor coefficients using the Levinson recursion,
and its computational complexity is O

(
P2
)
. The cubic spline

interpolator using NI consecutively channel coefficients is
employed for channel interpolation, and the computational
complexity of the interpolation is O (NI + log (NI )). Mean-
while, two types of transformations are employed in the
proposed prediction techniques: the first type is transfor-
mation between the array domain and the angle domain,
which requires a computational complexity of O (2M) for
each channel coefficient; the second one is the transforma-
tion between the frequency domain and the time domain,
which gives a computational complexity of O

(
log2K

)
(the

DFT/IDFT can be conducted using FFT/IFFT) for each chan-
nel coefficient. The increased complexity of the proposed
scheme is summarized in Table 2.

TABLE 2. The increased computational complexity.

The precoding and coherent signal detection performance
improvement of the proposed scheme comes at the expense
of increasing the computational complexity. Nevertheless,
it is important to note that the proposed scheme exploits the
channel sparsity in both the angle and the time domains to
find the nonzero tap positions and nonzero angle domain
coefficients for channel prediction, thereby reducing compu-
tational complexity of the proposed scheme.

IV. SIMULATION RESULTS
MATLAB simulations are carried out to evaluate the perfor-
mance of the proposed scheme in ammWavemassiveMIMO-
OFDM system. The standardized 3GPP channel model TR
38.901 [9] is employed to test our proposed scheme, and
the simulated channel is constructed by using the clustered
delay linemodel with delay profile CDL-B. It should be noted
that the CDL-B of 3GPP TR 38.901 is double directional
3D channel model with both azimuth and elevation angles.
However, only azimuth angle is considered in this article.

The velocity of the terminal is set as 1.5 m/s, modeling
slow velocity scenarios like fast walking or jogging. The
deployed antenna number at BS is set as M=128. We set the
normalized separation between antennas of BS as 1r=0.5λ,
where λ is the wave length. There are K = 256 OFDM
subcarriers, and the CP length is Lcp = K/4, which is larger

FIGURE 4. BER performance comparison for downlink transmission,
maximum Doppler frequency 125 Hz.

FIGURE 5. BER performance comparison for downlink transmission,
maximum Doppler frequency 250 Hz.

than the maximum channel delay. 200 slots are simulated:
the first 100 slots are used for computing prediction coef-
ficients, while the second 100 for performance evaluation.
The data sampling rate is set as 10 MHz. We assume that
the symbol numbers of uplink and downlink transmission are
equal τup + τud = τdd , and the pilot symbol number in the
uplink is τup = 10. Then, the specific symbol numbers can
be decided by slot duration and data sampling rate. Note that
in order to perform channel prediction, the channel sampling
rate (pilot density) is set as higher than the Nyquist rate which
is twice of the maximum Doppler frequency occurring with
the wireless channel. The message-bearing quadrature ampli-
tude modulation (QAM) symbols with unit power are used.
The SNR of uplink channel is ρu = 10 dB. The prediction
order is P = 10. The channel coefficients number used for
interpolation is NI = 10, including 9 estimated coefficients
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and 1 predicted coefficient. The channel coefficients number
used for computing average power σ 2

gl and σ
2
gaφ,l

is also set
as 10.

We simulate the uncoded BER performance of the
mmWave massive MIMO-OFDM system with the novel
downlink transmission and signal detection scheme using
predicted channel coefficients. The traditional scheme
employing estimated CSI and ideal case employing per-
fect CSI are also simulated for comparison. The results are
showed in Fig. 4 and Fig. 5, with carrier frequencies set
as 25 GHz and 50 GHz (the resulting maximum Doppler
frequencies are 125 Hz and 250 Hz, respectively). In the sim-
ulations, each figure tests two slots (channel sample intervals)
to evaluate the performance improvement. As is observed in
the simulations, the detection error caused by the delay of
estimated CSI is unacceptable, even when the terminal moves
at fast walking or jogging speed. Therefore, we expect to
improve the precoding and coherent signal detection utilizing
the predicted channel information. The simulations show that
the proposed precoding and signal detection scheme using
the predicted channel coefficients outperforms the traditional
methods.

V. CONCLUSION
Motivated by the fact that the TDD reciprocal assumption,
which indicates that the uplink and downlink channel paths
are similar, is invalid even when the terminal moves at just
fast walking or jogging speed in mmWave massive MIMO
communications, a novel framework for downlink transmis-
sion and signal detection is proposed in this article. Instead
of using estimated channels for precoding and detection,
an enhanced channel predictor followed by interpolation
exploiting the channel sparsity in both the angle and the time
domains is employed by the proposed scheme to acquire CSI.
Our main contribution in this article is to propose a novel
framework of the downlink transmission and signal detection,
which employs Ag-TD sparse channel prediction algorithm
to improve system performance.
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