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ABSTRACT Indoor pedestrian motion detection based on the Wi-Fi Received Signal Strength (RSS) has
been commonly deployed in recent years. However, the Channel State Information (CSI) based indoor local-
ization methods can be selected to achieve higher localization accuracy since it contains the finer-grained
physical-layer information of the signal. Lack of theoretical analysis of the CSI-based error bound that
leverages the pedestrian motion posses a challenge to investigate the ideal performance. In this circumstance,
this paper proposes the Cramer-Rao Lower Bound (CRLB) concept to derive out the indoor localization
error bound leveraging the pedestrian motion that depends on the constructed signal propagation model
by considering the relationship between the localization accuracy and the path loss, shadow fading, and
multipath effect. Through the experimental comparison, this paper analyzes the difference between the actual
localization error and the derived localization error bound, and the impact of different experimental parame-
ters on the localization performance is analyzed, as well as discusses the influence of the asynchronous effect
between the transmitter and the receiver on the performance of the proposed localization error bound. The
experimental results show that the derived error bound has the same trend as the actual error, which validate
our theoretical analysis.

INDEX TERMS Indoor localization, channel state information, pedestrian motion, CRLB, asynchronous
effect.

I. INTRODUCTION
The complexity of the indoor layout results in the signal
fading caused by the obstacle and pedestrian motion, thus
the widely used Global Positioning System (GPS) [1] is
unable to meet the accuracy requirement of most of the
indoor Location-based Service (LBS) [2]. In recent years,
Many scholars have carried out a series of research on
indoor localization technology and proposed a variety of
indoor localization methods according to the different signal
sources, such as Bluetooth [3], Radio Frequency Identifica-
tion (RFID) [4], [5], ZigBee [6], Ultra Wide Band (UWB)
[7], and Wi-Fi [8] indoor localization method. The biggest
advantage of Bluetooth indoor localization technology is the
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small size of the device, low power consumption, and easy
to integrate in mobile devices such as mobile phones. How-
ever, for complex indoor environments, Bluetooth indoor
localization technology is seriously interfered by noise, and
the price of Bluetooth devices is relatively expensive. The
indoor localization technology based on RFID can achieve
centimeter-level localization accuracy, and lower cost. How-
ever, RFID is not easy to integrate into mobile devices and
has a short working distance [9], [10]. As a low-power
and low-cost localization method, ZigBee indoor localization
technology has very high working efficiency, but ZigBee’s
signal transmission is seriously interfered by multipath
effects and pedestrian motion, and excessively depends on
the accuracy of the localization algorithm. Compared with
the traditional localization systems, the UWB localization
system has the advantages of stronger penetration, better
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anti-multipath effect, higher safety, and higher-precision
localization. However, its power consumption is higher, and
it needs to be arranged in advance. Compared with the above
localization methods, Wi-Fi indoor localization technology
based on Received Signal Strength (RSS) [11] have become
the mainstream of indoor localization technology due to its
wide signal coverage, low hardware requirements and simple
network deployment. However, due to its susceptibility to
multi-path effects and its poor stability, the application of
localization technology based on RSS in the actual indoor
environment is greatly restricted. In comparison with often
Wi-Fi based on RSS, the CSI achieves higher localization
accuracy due to finer-grained physical-layer information of
the signal [12]. At present, indoor localization technology
based on CSI have deployed in various applications such
as indoor localization, intrusion detection, path planning in
large-scale indoors and underground parking lots [13]–[16].

The CSI-based localization methods leveraging the pedes-
trian motion are relatively mature, but there is a lack of
the related theoretical analysis of the indoor localization
error bound, which makes it challenging to investigate these
methods ideal localization performance. Meanwhile, the
asynchronous effect of hardware equipment is one of the
main factors affecting the CSI-based localization accuracy
[17], [18] and it is incurred by the crystal oscillating circuits
in different devices and will incur a sampling time offset
or sampling frequency offset. To summarize, the two main
contributions of this paper are listed as follows.
• The concept of the Cramer-Rao Lower Bound (CRLB)
in the frequency domain is used to analyze the CSI-based
localization error bound leveraging the pedestrian
motion.

• By considering the relationship between the localization
accuracy and the path loss, shadow fading, multipath
effect, and asynchronous effect, the CSI-based local-
ization error bound leveraging the pedestrian motion is
derived out.

The rest of this paper is organized as follows. Some related
works on indoor localization methods based on pedestrian
motion, localizaiton error bound and some factors affecting
localization accuracy are surveyed in Section II. The pro-
posed approach is described in detail in Section III, The
problem formulation and solution is shown in IV and V,
and then Section VI shows the related experimental results.
Finally, Section VII concludes this paper.

II. RELATED WORK
Due to the rich physical layer information and high sta-
bility of the CSI, more and more scholars have conducted
research on indoor localization methods based on pedestrian
motion. Authors in [14] propose a device-free human track-
ing system only using existing commercial WiFi supported
devices, which consider a human walking trajectory consists
of a series of moving behaviors and determine the trajec-
tory by detect those behaviors. Authors in [19] present an
accurate device-free passive indoor location tracking sys-

tem that adopts channel state information (CSI) and use
the fine-grained subchannel measurements for multiple input
multiple output (MIMO) orthogonal frequency-division mul-
tiplexing physical layer parameters to improve localization
and tracking accuracy. Authors in [20] propose a CSI-based
indoor tracking system which combines velocity estimation
to track human trajectory. Authors in [21] analyze the sen-
sitivity of CSI and achieve location matching by quadratic
discriminant analysis to classify CSI fingerprints. Authors
in [22] propose a new passive human trajectory tracking
algorithm based on the channel state information (CSI) in
indoor environment to support many applications with the
elder health care.

In the process of wireless signal propagation, the atten-
uation of signal strength is mainly caused by three factors:
multipath fading, path loss, shadowing. Due to the multipath
effect, each signal component will reach the receiver through
different paths during the propagation process, and then these
different signal components superimpose each other to cause
interference, which distorts the original signal. The path loss
refers to the signal loss caused by the signal propagation dis-
tance and channel characteristics. And the shadowing is that
signal power loss caused by the shadow effect caused by the
blocking of the building on the propagation path. [23]–[25].

When using CSI for localizaiton, the transmitter uses
Orthogonal Frequency Division Multiplexing (OFDM)
technology to send data in parallel on multiple orthogonal
subcarriers and demodulate at the receivers, but due to asyn-
chronous effects (such as Carrier FrequencyOffset (CFO) and
the clock asynchronization) [26], it is difficult to ensure the
orthogonality of the receiving subcarriers, so the performance
of CSI-based indoor Wi-Fi localization method will decrease
due to the impact of Inter Symbol Interference (ISI) and Inter
Carrier Interference (ICI).

As a key part of the indoor Wi-Fi localization technology
based on CSI, OFDM technology needs to use an effec-
tive synchronization mechanism to ensure the efficiency and
reliability of the modulation process, so the analysis of
asynchronous effects in OFDM technology is particularly
important. Therefore, Authors in [27] propose a blind car-
rier frequency offset estimator for OFDM systems based on
the frequency analysis of the received signal, and derives
a closed-form CFO estimate. Authors in [28] propose a
cost-effective sampling frequency offset (SFO) compensa-
tion scheme based on a simple training symbol (TS) and
experimentally demonstrate in an OFDM transmission sys-
tem. Authors in [29] propose a CFO compensation algo-
rithm based on preamble, and combine with OFDM model
to solve the problem of energy loss and distortion of the
received signal caused by CFO. Authors in [30] propose a
maximum likelihood method for jointly estimating carrier
frequency offset and sampling frequency offset in receivers
for orthogonal frequency division multiplexing signals. In the
indoor Wi-Fi localization process based on CSI, the exist-
ing asynchronous effects when using OFDM technology to
modulate Wi-Fi signals will lead to a decrease in localization
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accuracy. Therefore, it is necessary to analyze the impact
of asynchronous effects on localization performance, and to
improve the effectiveness and robustness of the localization
system.

Although the CSI-based localization method leveraging
the pedestrian motion is relatively mature, there is a general
lack of theoretical analysis on the localization error bound.
To the best of our knowledge, most of the studies on the
indoor localization error bound are based on the concept of
the Cramer-Rao Lower Bound (CRLB) [31]–[34]. For exam-
ple, Authors in [31] use an information-theoretic lens to view
the error bound of wireless local area network localization,
which is recognized as one of the superior candidate local-
ization techniques in the GPS-denied environment. Authors
in [32] uses Fisher information matrix (FIM) to derive the
localization error bounds under different signal distributions
to evaluate the error bound of RSS-based indoor localizaiton
systems. Authors in [33] rely on an indoor signal propa-
gation model considering the multi-path effect to analyze
the impact of shadow fading and the anchor node number
on the CSI-based indoor localization error bound. Authors
in [34] investigate the relationship between the CSI-based
indoor localization error bound and the signal propagation
delay and the antenna number from the perspective of the
frequency domain. However, the current studies on the indoor
localization error bound based on the CRLB rarely consider
the pedestrian motion.

In this paper, considering the relationship between the
indoor localization error bound and the environment factor
such as the path loss, multi-path effect, noise and the device
factor such as the AP number, AP locations, bandwidth and
asynchronous effect, we derive and propose the closed-form
solution to the CSI-based indoor localization error bound
leveraging the pedestrian motion, which can be used to inves-
tigate the ideal performance of the existing indoor localiza-
tion methods when the pedestrian is moving.

III. SYSTEM MODEL
A. SIGNAL MODEL
CSI considered as the physical-layer information of the sig-
nal, contains the amplitude and phase information of each
subcarrier that can be used to describe the attenuation and
frequency deviation characteristics of the signal propagating
from the transmitter to the receiver. The signal amplitude
attenuation occurs during the propagation process, and it is
also affected by the multi-path effect due to obstacles such as
the floor, wall, and ceiling [35]. Meanwhile, by considering
slow speed pedestrian movement within the indoor environ-
ment, the Doppler frequency deviation of the signal ranging
within 10-20 Hz can be ignored. Thus, the waveform of the
received signal in the time domain can be represented as

r(t) =
l∑
i=1

a(i)s(t − τ (i))+ z(t) (1)

where s(t) is the transmitted signal waveform, l is the propa-
gation paths number, a(i) and τ (i) is the i-th propagation path

for the amplitude and propagation delay of the received signal
respectively. z(t) is the noise following the Gaussian distri-
bution with the mean 0 and variance δ2. After conducting
the Analog-to-Digital Converter (ADC) transformation, the
waveform of the received signal is converted into

r(nT ) =
l∑
i=1

a(i)s(nT − τ (i))+ z(nT ) (2)

where n = 1, · · · ,L, T is the sampling period and L is
the number of sampling points. Based on this, the waveform
of the received signal at the m-th (m = 1, · · · ,N ) Access
Point (AP) can be represented as

rm(nT ) =
l∑
i=1

a(i)m s(nT − τ
(i)
m )+ z(nT ) (3)

where n = 1, · · · ,L, a(i)m and τ (i)m are the amplitude and
propagation delay of the received signal respectively on the
i-th propagation path at the m-th AP. Conducting the L-point
Discrete Fourier Transform (DFT) of rm(nT ), the correspond-
ing waveform of the received signal in the frequency domain
can be obtained as

Rm(k) =
l∑
i=1

a(i)m S(k)e
−j2πkτ (i)m

LT + η(k) (4)

where k = 0, · · · ,L − 1, S(k) and η(k) are the power
spectrums of the transmitted signal and the noise following
the Gaussian distribution with the mean 0 and covariance Lδ2

respectively.

B. LOCALIZATION ERROR BOUND MODEL
According to the Fisher information theory [36], the CRLB
is defined as the inverse of the Fisher Information Matrix
(FIM), which describes the variance of the estimated value
of unknown parameters. The FIM in the time domain can be
expressed as

J (θ) = −E
(

∂2

∂θi∂θj
ln f (θ )

)
(5)

where θi and θj are the unknown parameters in the parameter
θ to be estimated respectively, f (θ ) is Probability Density
Function (PDF) of θ , E is expectation operation, the mean
square error matrix can be calculated from FIM inequality
[32], [33] as

var
(
_

θ
)
= E

((
_

θ − θ
) (

_

θ − θ
)T)
≥ J (θ )−1 (6)

where
_

θ is the estimated value of θ and J (θ )−1 is CRLB
of θ . We set the vector of parameters to be estimated as
the 2-dimensional (2-D) coordinate of the pedestrian θ =
(θ1, θ2)

T, the mean square error matrix can be calculated as

var
(
_

θ
)
= E

{(
_

θ − θ
) (

_

θ − θ
)T}

=

[
σ 2
1
σ21

σ12
σ 2
2

]
≥ J(θ)−1 (7)
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where σ 2
1 = E

(
_

θ 1 − θ1

)2 (
≥ J22

/
|J (θ )|

)
and σ 2

2 =

E
(
_

θ 2 − θ2

)2 (
≥ J11

/
|J (θ )|

)
are the mean square error of θ1

and θ2 respectively, and σ12 = E
{(

_

θ 1 − θ1

) (
_

θ 2 − θ2

)T}
(
≥ J12

/
|J (θ )|

)
and σ21 = E

{(
_

θ 2 − θ2

) (
_

θ 1 − θ1

)T}
(
≥ J21

/
|J (θ )|

)
are covariance of

_

θ 1 and
_

θ 2,
_

θ 2 and
_

θ 1 respec-
tively. The FIM with respect to θ can be expressed as

J (θ ) =
[
J11 J12
J21 J22

]
(8)

where J11 = −E
(
∂2

∂θ1
2 ln f (θ)

)
, J22 = −E

(
∂2

∂θ2
2 ln f (θ)

)
,

and J12 = J21 =−E
(

∂2

∂θ1∂θ2
ln f (θ)

)
. Based on this, the error

bound equals to

Vθ =
J11 + J22

J11J22 − J212
(9)

Different from the previous studies on the CSI-based
indoor localization error bound using the time-domain model
[32], we rely on the frequency-domain model shown in (4),
to derive out the error bound with the benefit of mak-
ing the waveform information consistent with the practical
capability of the Intel 5300 toolkit used for receiving the
CSI and avoiding the problem that the FIM of the param-
eter to be estimated cannot be obtained due to the PDF
of the parameter to be estimated is not available in the
time domain. To achieve this goal, we set the expectation
of the vector of X = (Rm(0), · · · ,Rm(L − 1))T as µ =(
Rm(0), · · · ,Rm(L − 1)

)T
and the vector of parameters to

be estimated as the 2-dimensional (2-D) coordinate of the
pedestrian θ = (θ1, θ2)

T, where Rm(k) is the expectation of
Rm(k) and T is the transpose operation. The element on the
i-th row and j-th column in the FIM with respect to θ is then
calculated as [36]

Iij = 2Re
[
∂µH

∂θi
Σ−1

∂µ

∂θj

]
, i, j = 1, 2 (10)

where Re and H are real-part and matrix conjugate transpose
operations, Σ = Lδ2E is the covariance matrix of X , and E
is identitiy matrix. Based on this, the error bound equals to

V ′θ =
I11 + I22
I11I22 − I212

(11)

IV. CRLB FOR LOCATION ESTIMATION
The waveform of the received signal at the m-th AP from
the pedestrian movement by the moment t from (1) can be
represented as

ym(t) =
l∑
i=1

a(i)t,ms(t − τ
(i)
t,m)+ z(t) (12)

where a(i)t,m and τ (i)t,m are the amplitude and the propaga-
tion delay of the received signal respectively on the i-th

FIGURE 1. Geometrical relationship between the m-th AP and pedestrian
locations by moments t and t + T .

propagation path at the m-th AP by the moment t . In this
case, the vector of parameters to be estimated by the
moment t can be constructed as θ ′ =

(
a(1)t,1, τ

(1)
t,1 , · · · ,

a(l)t,1, τ
(l)
t,1, · · · , a

(1)
t,N , τ

(1)
t,N , · · · , a

(l)
t,N , τ

(l)
t,N

)
.

To derive out the CSI-based indoor localization error bound
considering the pedestrian motion at every two consecutive
moments, we propose the association of parameters. Firstly,
we set 2-D coordinates of the pedestrian by the moment t and
the m-th AP as (xt , yt ) and (xm, ym) respectively, then we cal-

culate the inter distance as dt,m =
√
(xt − xm)2 + (yt − ym)2.

Since the signal-sampling rate is much higher than the step
rate of the pedestrian, we have θt,m ≈ θt+T ,m, where θt,m
and θt+T ,m are the horizontal angles of directions from pedes-
trian locations by moments t and t + T to the m-th AP
respectively. Based on this, the distance between pedestrian
locations by moments t and t + T can be derived as dt,t+T =
vT ≈

∣∣dt,m − dt+T ,m∣∣ cos θt,m, then we can obtain dt,m ≈
vT cos θt,m + dt+T ,m, where v is is the moving speed of the
pedestrian, as shown in Fig. 1.

To characterize multipath propagation, we need to consider
the propagation process of multipath signals. Since the propa-
gation distance of multipath signals cannot be obtained accu-
rately, we use weighted methods to represent the propagation
delay of multipath signals as much as possible, according to
the random weighting theory [33], we have

τ
(i)
t,m =

λimdt,m
c
≈
λim
(
vT cos θt,m + dt+T ,m

)
c

=

λim

(
vT cos θt,m +

√
(xt+T − xm)2 + (yt+T − ym)2

)
c

(13)

where c is the speed of light, λim is the weighting factor of the
i-th propagation path at the m-th AP.
Due to the small-scale fading caused by the multipath

effect is negligible in the indoor environment, the amplitude
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attenuation during signal propagation is only related to the
distance. Specifically, the equipment used in the CSI posi-
tioning process is basically equipped with multiple antennas
[17], [37], so it can be explained that the propagation wave-
form can be modeled as a spherical wave, that is, the signal
amplitude is inversely proportional to the signal propagation
distance. Then we have

a(i)t,m =
a0

λimdt,m
εp

i
m ≈

a0
λim
(
vT cos θt,m + dt+T ,m

)εpim
=

a0

λim

(
vT cos θt,m+

√
(xt+T−xm)2+(yt+T−ym)2

)εpim
(14)

where a0 is the amplitude of the received signal at 1 m
from the transmitter (reference location), ε (∈ (0, 1)) is the
environment coefficient, and pim is the number of reflections
of the signal on the i-th propagation path at the m-th AP.
According to (13) and (14), we can find that the estimation

of θ ′ is equivalent to the estimation of θ = (xt+T , yt+T ), then
the waveform of the received signal at the m-th AP by the
moment t can be represented as

ym(t) =
l∑
i=1

a0
λimdt,m

εp
i
ms(t −

λimdt,m
c

)+ z(t) (15)

By conducting the L-point DFT of ym(t), the corresponding
frequency domain can be obtained as

Ym(k) ≈
l∑
i=1

a0εp
i
m

λimdt,m
S(k)e

−j2πkλimdt,m
LTc + η(k) (16)

From (10), by setting the expectation of the vector of
observations X =

(
Y (1)
1 (0), · · · ,Y (1)

1 (L − 1), · · · ,Y (l)
N (0),

· · · , Y (l)
N (L − 1)

)T
as µ =

(
Y (1)
1 (0), · · · ,Y (1)

1 (L − 1), · · · ,

Y (l)
N (0), · · · ,Y (l)

N (L − 1)
)T

, where Y (i)
m (k) is the observation

on the i-th propagation path at the m-th AP and Y (i)
m (k) is the

expectation of Y (i)
m (k), the FIMwith respect to θ is constructed

as

Iθ =
2
Lσ 2

[
Ixx Ixy
Iyx Iyy

]
=

2a20
Lδ2

M∑
m=1

HmDm (17)

where

Hm =
l∑
i=1

L−1∑
k=0

|S(k)|2(
1

d4t,m(
λim

εp
i
m
)
2 +

4π2k2

L2c2T 2d2t,m(
1
εp
i
m
)
2 )

(18)

Dt,m =
[

cos2θt,m cosθt,m sin θt,m
sin θt,mcosθt,m sin2θt,m

]
(19)

and |S(k)| is the amplitude of the transmitted signal.
Finally, the CSI-based indoor localization error bound

leveraging the pedestrian motion is derived as (20), as shown
at the bottom of the page.

V. ASYNCHRONOUS EFFECT ANALYSIS
A. ERROR BOUND UNDER THE CLOCK ASYNCHRONOUS
EFFECT
The asynchronous clock effect caused by the clock deviation
between the target and AP will bring the phase deviation
of the frequency domain signal, which will affect the signal
demodulation result and increase the bit error rate. Specif-
ically, the phase deviation of the frequency domain signal
introduced by the difference in hardware devices will cause
the sampling time of the target and the AP to be out of
sync, which in turn causes a fixed time offset τ0 between
the actual sampling time of the AP and the optimal sampling
time [34], [38].

According to (12), (13) and (14), we represent the wave-
form of the received signal with the clock asynchronous effect
at them-thAP by themoment t under the pedestrianmotion as

ỹm(t) =
l∑
i=1

a(i)t,ms(t − τ
(i)
t,m − τ0)+ z(t) (21)

By conducting the L-point DFT of ỹm(t), the corresponding
frequency domain can be obtained as

Ỹm(k) ≈
l∑
i=1

a0εp
i
m

λimdt,m
S(k)e

−j2πk(λimdt,m+cτ0)
LTc + η(k) (22)

In this case, the vector of parameters to be estimated by
the moment t can be obtained as θ̃ =

(
a(1)t,1, τ

(1)
t,1 , · · · ,

a(l)t,1, τ
(l)
t,1, · · · , a

(1)
t,N , τ

(1)
t,N , · · · , a

(l)
t,N , τ

(l)
t,N , τ0

)
. There are not

only the to be estimated parameters xt+T and yt+T for the tar-
get position estimation, but also the time offset τ0 caused by
the clock asynchronous effect. Similarly, according to (10),
the FIM with respect to θ̃ is constructed as

I
θ̃
=

[
A B
BT C

]
(23)

where

A =


M∑
m=1

Hm cos θ2t,m

M∑
m=1

Hm cos θt,m sin θt,m

M∑
m=1

Hm sin θt,m cos θt,m
M∑
m=1

Hm sin θ2t,m


(24)

Vθ =
Lδ2

2a20

N∑
m=1

Hm

(
N∑
m=1

Hmcos2θt,m)(
N∑
m=1

Hmsin2θt,m)− (
N∑
m=1

Hm cos θt,m sin θt,m)
2 (20)
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B =

[
M∑
m=1

Jm cos θt,m
v

M∑
m=1

Jm sin θt,m
v

]T
(25)

C =
M∑
m=1

Jm (26)

where Jm =
l∑
i=1

L−1∑
k=1
|S(k)|2 4π2(εp

i
m )

2
k2

(λim)
2d2t,mL2T 2

.

However, we are only interested in the location information
of the target, which can be obtained with equivalent Fisher
information matrix (EFIM).

According to [39], construct EFIM about θ̃ as

IE = A− BC−1BT (27)

which has the property that
[
I−1
θ̃

]
2×2
= I−1E , where [·]n×n

is the submatrix of the first n rows and first n columns of
the matrix, the CSI-based indoor localization error bound
with asynchronous effect leveraging the pedestrian motion is
derived as

V
θ̃
= tr

{
I−1E

}
=
Lδ2

2a20

I4
I1I2 − I32

(28)

where

I1=
N∑
m=1

Hmcos2(θm)−

(
N∑
m=1

Jm cos θm

)2

c2
N∑
m=1

Jm

,

I2=
N∑
m=1

Hmsin2(θm)−

(
N∑
m=1

Jm sin θm

)(
N∑
m=1

Jm sin θm

)
c2

N∑
m=1

Jm

,

I3=
N∑
m=1

Hm sin θm cos θm−

(
N∑
m=1

Jm cos θm

)(
N∑
m=1

Jm sin θm

)
c2

N∑
m=1

Jm

,

I4=
N∑
m=1

Hm −

(
N∑
m=1

Jm cos θm

)2

+

(
N∑
m=1

Jm sin θm

)2

c2
N∑
m=1

Jm

.

B. ERROR BOUND WITH THE CARRIER FREQUENCY
OFFSET
According to [40], the CFO is caused by the difference
between the receiver oscillator and the transmitter oscillator
and the doppler frequency shift. The phase noise introduced
by the channel nonlinearity and the phase shift caused by the
CFO will destroy the orthogonality of subcarriers. The CFO
is unpredictable, but can be regarded as a constant during a
short-time measurement. We set f is frequency shift caused
by the CFO, then received signal after DFT with CFO at the

m-th AP by the moment t under the pedestrian motion as

Y ′m(k) ≈
l∑
i=1

a0εp
i
m

λimdt,m
S(k − f )e

−j2π(k−f )λimdt,m
LTc + η(k) (29)

In this case, the vector of parameters to be estimated by
the moment t can be obtained as θ ′′ =

(
a(1)t,1, τ

(1)
t,1 , · · · ,

a(l)t,1, τ
(l)
t,1, · · · , a

(1)
t,N , τ

(1)
t,N , · · · , a

(l)
t,N , τ

(l)
t,N , f

)
. Similarly, there

are not only the to be estimated parameters xt+T and yt+T
for the target position estimation, but also the frequency shift
f caused by CFO. Similarly, according to (5), the FIM with
respect to θ ′′ is constructed as

I
θ̃
=

[
E F
FT G

]
(30)

where

E =


M∑
m=1

Pm cos θ2t,m

M∑
m=1

Pm cos θt,m sin θt,m

M∑
m=1

Pm sin θt,m cos θt,m
M∑
m=1

Pm sin θ2t,m


(31)

F =

[
M∑
m=1

Zm cos θt,m
M∑
m=1

Zm sin θt,m

]T
(32)

G =
M∑
m=1

Um (33)

where the values of Pm, Zm and Um are as follows (34), as
shown at the bottom of the next page.

Similarly, we are only interested in the location informa-
tion of the target, which can be obtained with equivalent
Fisher information matrix (EFIM). We can construct EFIM
about θ̃ as

IE = E− FG−1FT (35)

According to
[
I−1
θ̃

]
2×2
= I−1E , the CSI-based indoor localiza-

tion error bound with CFO leveraging the pedestrian motion
is derived as

Vθ ′′ = tr
{
I−1E

}
=
Lδ2

2a20

χ4

χ1χ2 − χ
2
3

(36)

where the values of χ1, χ2, χ3 and χ4 are as follows (37), as
shown at the bottom of the next page.

VI. EXPERIMENTAL RESULTS
The real indoor experiment is conducted in a 49.3m by 17.8m
as in Fig. 2 to evaluate localization error bounds correspond-
ing to 5 different motion paths and compare them with the
actual localization errors. The setup comprises of randomly
deployed 7 Intel 5300 toolkit APs to receipt the CSI from the
TP-LINK TL-WR2041N transmitter carried by the moving
pedestrian. Especially to deserve to be mentioned, we use the
method of controlling variables to observe the influence of
different parameters on the error bound and actual error. The
main parameters in the simulation are listed in table 1.
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FIGURE 2. Environmental layout.

A. IMPACT OF DIFFERENT PARAMETERS ON ERROR
BOUND
Experimental evaluation for the proposed theoretical analysis
is carried out by analysing parameters such as the pedestrian
motion, the AP’s density impact, the noise power, and the
bandwidth. From the observation of the Cumulative Den-
sity Function (CDF) curve in Fig. 3, we observe a distinct

TABLE 1. The main parameter in the simulation.

difference between the relationship trend for the error bound
and the actual error towards localization of each pedestrian
motion path. This is due to the reason that the localization
error bound is obtained by the assumption of the ideal CSI
acquisition, signal propagation modelling, and parameters
estimation, which are impossible to be satisfied in the real
indoor environment. However, the variation trend of the
CDFs ismuch the same, which demonstrates the effectiveness
of the derived and proposed localization error bound leverag-
ing the pedestrian motion.



Pm =
l∑
i=1

L−1∑
k=1


(
εp

i
m

)2
S (k − f )(

λimdt,m
)3

∣∣∣∣∂S (k − f )∂ (k − f )

∣∣∣∣ +
(
εp

i
m

)2
4π2 (k − f ) |S (k − f )|2

λimdt,mL2T 2c2


Um =

l∑
i=1

L−1∑
k=1

( εp
i
m

λimdt,m

)2 ∣∣∣∣∂ |S (k − f )|∂ (k − f )

∣∣∣∣+ 4π2
(
εp

i
m

)2
|S (k − f )|2

L2T 2c2


Zm =

l∑
i=1

L−1∑
k=1

|S (k − f )|2


(
εp

i
m

)2
(
λimdt,m

)4 + 4π2(k − f )2(
λimdt,m

)2L2T 2c2


(34)



χ1 =

N∑
m=1

Pm −

(
N∑
m=1

Zm cos θt,m

)2

+

(
N∑
m=1

Zmsinθt,m

)2

N∑
m=1

Um

χ2 =

N∑
m=1

Pm cos θ2t,m −

(
N∑
m=1

Zm cos θt,m

)2

N∑
m=1

Um

χ3 =

N∑
m=1

Pmsinθ2t,m −

(
N∑
m=1

Zmsinθt,m

)2

N∑
m=1

Um

χ4 =

N∑
m=1

Pmcosθt,msinθt,m −

(
N∑
m=1

Zm cos θt,m

)(
N∑
m=1

Zmsinθt,m

)
N∑
m=1

Um

(37)
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FIGURE 3. Error bound vs. actual error on different motion paths.

FIGURE 4. Error bound vs. actual error under different AP number.

The density of the AP deployment number has played a
big deal towards indoor localization performance in recent
years and with a fast-track trend increase. Thus, we evaluate
the impact toward the error bound as in Fig. 4. Observing the
CDF’s, an increase of the AP number density has a positive
impact on the localization performance as expected, bringing
a richer CSI about characteristics of the propagation path.

Indoor environments comprise of noise power that is
always time-variant and unpredictable, always considered
to follow a Gaussian distribution model. The ideal use of
the model in localization error bound derivation results in a
distinct difference as we observe the CDF’s in Fig. 5 with dif-
ferent noise power. This result indicates that with the increase
of the noise power, both the local error bound and the actual
error towards localization increase with the similar variation
trend.

The increase of the bandwidth toward both the localization
error bound and the actual error show the downward trend
as observed in Fig. 6 CDF’s, due to the fact that an increase
of the bandwidth improves the time resolution ability of the
AP for discriminating directions of the received multi-path
signals.

FIGURE 5. Error bound vs. actual error with different noise power.

FIGURE 6. Error bound vs. actual error with different bandwidth.

B. IMPACT OF THE DEPLOYMENT OF APs
In order to future verify the proposed localization error
bound, we compare the localization error under different
APs distribution (symmetric distribution shown in 7(a), linear
distribution shown in 7(b), minimize error bound distribution
shown in 7(c)). As shown in 7(d), the value of the localizaiton
error bound under the linear distribution is the largest, and
then APs is deployed based on the proposed localizaiton error
bound which minimizes the value of error bound. The 7(e)
shows that the actual localization error is consistent with the
correspond APs deployment. The result also shows that the
derived error bound can be used to guide the APs deployment
to optimize localization system leveraging pedestrian random
motion.

C. IMPACT OF ASYNCHRONOUS EFFECT ON ERROR
BOUND
Fig. 8(a) and Fig. 8(b) show localization error bound and
the actual localization error with the clock synchronization
and asynchronization, respectively. It can be observed that
the clock asynchronous effect has a negative impact on
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FIGURE 7. Impact of the geometry of APs.

FIGURE 8. Error bound vs. actual error under clock synchronization and
ansychronization.

FIGURE 9. Error bound vs. actual error with CFO and without CFO.

the localization accuracy, especially in the actual environ-
ment. Therefore, the clock asynchronous effect should be
eliminated as much as possible to achieve high-precision
localization.

Fig. 9(a) and Fig. 9(b) show localization error bound and
the actual localization error with the CFO and without the

CFO, respectively. It can be seen observed the proposed local-
ization error bound can effectively show the impact of CFO
on error bound, and Meanwhile, it also shows that the CFO
will seriously affect the localization accuracy. Therefore, the
CFO also should be eliminated as much as possible to achieve
high-precision localization.

VII. CONCLUSION
This paper proposes the closed-form solution to the
CSI-based indoor localization error bound, verified to inves-
tigate the ideal performance of indoor pedestrian localization
methods. Experimental results in a real indoor environment
demonstrate the effectiveness of the derived localization error
bound compared to the existing localization error based on
different environment and device factors. The derived local-
ization error bound can be used to guide the AP deployment
to optimize localizaiton system leveraging pedestrian random
motion.
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