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ABSTRACT Face recognition in unconstraint surveillance is a complicated problem on account of motion
blur, expression variations and low resolution. Recent works have demonstrated that patch-attention is strictly
more powerful than convolution in recognition models. In this study, we investigate the task of unconstraint
surveillance face recognition. First, a Patch-Attention Generative Adversarial Network (PA-GAN) model is
devised to aggregate some robust features on behalf of a set of raw surveillance frames, which not only
increases the recognition accuracy but also reduces the computational costs of face matching. Second,
an improved center loss function combined with abundant unlabeled surveillance faces is utilized to
accurately classify the known identities. With the proposed method, the discriminativeness of the face
representations is largely enhanced. Finally, the proposed method is verified in two widely used datasets,
IJB-A dataset and QMUL-SurvFace dataset to demonstrate the effectiveness. Evaluation of the algorithm
performances in comparison with other state-of-the-art methods indicates that the proposed design can
achieve competitive accuracy on both the verification and identification protocols.

INDEX TERMS Face recognition, video surveillance, attention model, generative adversarial network.

I. INTRODUCTION
During recent decades, video-based face recognition (FR)
has received considerable attention in both academia and
industry due to its wide range of various security systems
and law enforcement applications. One most significant
thing is the successful use of the face recognition technol-
ogy by public security systems to arrest escaping criminals
and search for missing person. How to quickly and accu-
rately identify the unique information of enormous faces in
videos is of great significance to the development of security
field. Although the compelling progress in deep learning
and computer vision, it is still a great challenge to match
surveillance face images in different modalities, especially
in open-set scenario [1]. There have been varieties of efforts
about video-based face recognition [2]–[4]. However, most of
them focus on learning an image-level face representation or
aggregating face representations through simple pooling from
favorable viewing angles. Due to the considerable discrep-
ancy between source and the target domains, one challenge
is that the face recognition model trained on unconstrained
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high-quality data often degrades significantly for surveillance
face recognition. Furthermore, public surveillance cameras
are installed far away from the recognition subjects, resulting
in a lower resolution of the human face. It is well known that
deep learning model is data-driven. Only when the training
sets and the test set have similar distribution, the model
can achieve satisfied results. The performance of the face
recognition system would be degraded if a same weight is
given to both the low-quality images and other high-quality
images. Therefore, a qualified network should be able to
reduce the impact of such distracting images and focus on
the informative ones. Although the unconstrained still-based
recognition models struggle to extract valuable information
from images. This type ofmethodsmay be limited in practical
usage. The experimental results [1] show that the results of
applying the still-based recognition method to video-based
recognition are very bad. Because the quality of the human
face image captured in the actual monitoring environment is
very different from the high-resolution human face image,
which means the data distribution is inconsistent.

It is not only difficult but also labor intensive to directly
label the data samples collected in the monitoring environ-
ment. As the number of surveillance cameras increasing,
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the captured videos will need to be processed automatically.
We all know that sufficient training data is critical to apply-
ing deep learning methods to new target areas. Many deep
face recognition models depend on millions-scale training
sets. There is not yet a huge database of surveillance video
faces. And tagging such a large data set is also a tedious
task. Therefore, part of the works [6], [7] fine-tuned their
pre-trained deep convolutional neural networks on a small
amount of target domain data through the method of transfer
learning. Although these models can obtain a high accuracy
on popular benchmark, they achieve unsatisfied results in
practical in video surveillance. That experiment, for example,
was a total failure when testing the VGGFace model [8] on
an unconstrained video dataset. If we compare every picture
in probe with the gallery, we may get a better result. How-
ever, calculating the eigenvector similarity of vectors in all
templates costs tremendous memory space and computation.

In this article, we will deal with unconstrained low-quality
face recognition based on surveillance video. That is more
compatible with the real-world venues, which is perhaps
the most interesting for forensic and surveillance systems
applications. As opposed to previous works, we inspired by
the attentional patterns of human visual mechanisms. There-
fore, we devise a flexible patch-attention modeling which
learns more discriminative representation yet keeps greater
efficiency. Specifically, we consider a practical protocol
in surveillance environment: surveillance-to-still, where the
query is a surveillance video and each subject have a single
frontal still image in the gallery. The main contributions of
this article can be summarized as follows:

� We propose an efficient Patch-Attention Generative
Adversarial Network (PA-DAN) which aggregates each
frame adaptively to a few representations for surveillance face
recognition. It significantly reduces computational cost and
wisely leverages the useful surveillance information.

� The proposed PA-GAN utilizes the unlabeled faces to
augment training sets and elaborately designs face loss func-
tions. This is beneficial for open-set recognition.

� Experimental results on two challenging surveillance
benchmarks IJB-A [5] and QMUL-SurvFace [1], demon-
strate that our framework improves the recognition accuracy
and accelerate the recognition speed simultaneously.

II. RELATED WORK
A. VIDEO FACE RECOGNITION
As the numerous surveillance data and video media pro-
ducing, video face recognition system has many practi-
cal applications. Video actually consists of many frames,
so video-based face recognition can be treated as set-based
recognition. This work was pioneered by Phillips [9] in 1996.
However, due to few benchmarks were available, the devel-
opment of video-based face recognition was slowed down.
Nowadays, there are numerous potential uses of the systems
with surveillance FR capability in real-world environments
and bringing it back into focus. Existing methods about video
FR are simply split into two computation stages:

1) IMAGE-AGGREGATION APPROACHES
In particular, image-aggregation methods consist of three
levels:(a) Image-level; (b) Representation-level; (c) Comp-
onent-wise. The common idea of these methods is to fuse the
feature vectors of multiple images into a single substitute at
different levels. In ref. [2], authors use two attention blocks
through supervised learning adaptively aggregate the face
features to one fixed-dimension convex hull feature. It results
that high-quality face made more contribution to the final
feature and favors the face images more discriminative. The
study [3] firstly provided a component-wise aggregation,
which controls the normalized quality of corresponding fea-
ture pooling multiple frames together. Some of the works
like ref. [10] and ref. [11] unlike the simple pooling strate-
gies [12], [13], such as max pooling and average pooling,
they presented a similar module to predict a quality score
for each feature vector and aggregates the vectors weighted
the assigned scores. Zhao et al. [4] employed a dense sub-
graph in place of handcrafting the face medias. Each dense
subgraph discovered a sub-set of face media that are with
small intra-set variance but discriminative from other sub-
ject faces. This provided a comprehensive and concise face
representations, reducing the impact of media inconsistencies
and greatly improving face recognition performance based
on unconstrained sets. In these methods, when a high per-
centage of low-quality images are present, it will cause their
performances falling off.

2) ROBUST FEATURE EXTRACTION
Indeed, ref. [14] provided a ScatterNet coding deep features
from much fewer labelled examples rapidly to tackle the
intricate work of age-invariant face recognition in real-world
videos. They also built a self-dataset, Celebrities Video
Aging (CVA), it promotes the development of innovative
age-invariant methods. Gong et al. [15] learned multiple
attentions from video context to solve low quality video face
recognition by embedding context-awareness combined with
recurrent neural network. In ref. [16], authors considered
finding the focus of videos as a Markov decision process
and leveraged a deep reinforcement network to make bet-
ter use of temporal information. Reference [17] proposed
a generic graphical algorithm, in which a contextual con-
necting formulate between high-quality and low-quality faces
is designed. In ref. [18], to relieve the deficiency of raw
surveillance faces, training data were processed by adding
artificially motion blur by tow kernel filters. It used an end-
to-end ensemble trunk-branch CNN to learn pose-invariant
and occlusion-robust representations for efficiently video
face recognition.

B. ATTENTION MACHINING
While the convolution has undoubtedly been effective as the
basic operator in modern image recognition, it is not without
drawbacks. Recent works have shown that self-attention may
constitute a viable alternative. The developments of effective
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self-attention architectures in computer vision hold the excit-
ing prospect of discoveringmodels with different and perhaps
complementary properties to convolutional networks. The
advantages of attentions over convolution are much elastic
mapping, which is an effectual way to make the connection
between any part of the input series stronger. There are a
number of methods [2], [16], [19], [20] for boosting the
accuracy of CNN classification models by employing the
attention mechanism. In ref. [20], the author used cascade
attention mechanism to guide the different layers of CNN and
concatenate them to gain discriminative representation as the
input of final linear classifier. In contrast to the aforemen-
tioned methods, we combine aggregation method and gen-
erative adversarial network together. We apply the attention
mechanism on each branch of the generative network for the
sake of the discriminative regions for classification.

III. APPROACH
A. MOTIVATION
Surveillance videos with multiple faces in a video clip can
be both beneficial and challenging. On the one hand, recog-
nizing each frame results in too much redundant of the same
face in video. It leads to wasting of computing resources and
excessive false positives. In a certain period of time, dozens
of consecutive frames of images have little change in face
attitude, which will generate a lot of redundant information;
on the other hand, in most frames of video, face pose is not
standard and motion blur makes it difficult to be recognized.
It is difficult to get accurate results for face detection and
recognition of these invalid frames. Therefore, a fundamental
issue in surveillance face recognition is to build an excellent
pose-invariant eigenvector instead of the original video clips,
such that the information across different frames can effec-
tively use to maintain beneficial features while dropping the
remaining multiple degenerating video frames.

Attention mechanism plays a critical role in human visual
experience. The human visual system can not only detect
and recognize objects, but also infer the deep structure of
the scene. Some recent works have demonstrated that atten-
tion mechanism can also play an important role in computer
vision and natural video prediction. The attention model
allows the algorithm to model parts of an image or fea-
ture that have a greater impact on the final result. These
remarkable results inspire us to employ one type of self-
attention, patch-attention, to devise a generative adversarial
network (PA-GAN) for efficient face representation extrac-
tion in surveillance video.

As evident from Figure 1, we yield a novel module, named
PA-GAN, which is composed of two pivotal components.
Above all, we exploit the residual patch-attention block and
shortcut connections to build a generator, which outputs a
more discriminative face instead of primal face templates.
Secondly, an auto-encoder functions as the discriminator,
which is precise to estimate whether the image is generated
or selected from the original video. Then, we transfer-learn a

FIGURE 1. Some samples from the IJB-A [5] dataset. This shows that
many factors affect image quality, such as pose, illumination, and
expression variation in images.

similar feature extract network presented in ref. [22], which
have a high discrimination power.

B. PATCH -ATTENTION GENERATOR
The advantage of patch attention over convolution opera-
tion is much flexible in allocating weights. Based on these
analyses, we introduce the patch-attention block to a modern
backbone networks ResNet [23] by shortcut connections as
the generator G. Patch-attention block is the first strategy to
increase the feature extraction ability of the face recognition
network. Compared with the standard convolution that each
filter operates on all input channels, the attention block [24]
is very sparse, and thus it is powerful to replace convolutions
entirely. Figure 3 illustrates the processing of the patch-
attention block. The self-attention mechanism allows inputs
to interact with each other and figures out what they should
be paid more attentions. Compared with the standard con-
volution that mainly concentrates on feature aggregation and
feature transformation, patch-attention uses a mapping mech-
anism to perform feature aggregation. Then feature transfor-
mation can be performed by perceptron layers that process
each feature vector separately. The input feature tensor is
passed through two processing streams. The left evaluates
the attention weights by computing function and subsequent
mapping. The right applies a linear transformation reduc-
ing the dimensionality for efficient processing. The outputs
of two streams are aggregated by Hadamard product and
expansion.

Skip-connections is the second strategy to increase robust-
ness of model. Our network can better fit the complex cor-
relations between channels and greatly reduce the number
of parameters. Contextual information from global and local
parts compensates each other and spontaneously benefits face
recognition. The hierarchical features within a skip-net are
multi-scale in nature owing to the increasing receptive field
sizes, which are combined together via skip connections.
Such a combined representation comprehensively preserves
the contextual information, which is useful for extracting
information about the structure of an individual face.
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FIGURE 2. Detailed architecture of the proposed pipeline. Top panel: the generator with patch-attention blocks. Bottom panel: a
standard discriminator with discriminative loss and adversarial loss.

FIGURE 3. The illustration of the patch-attention block. The left branch is
used for evaluating the output attention weight; The right branch
performs linear transformation on the input to reduce dimension for
more efficient processing. ϕ and φ are linear mapping trainable
transformations. δ is a relation function. γ is a map function. β is an
aggregate function.

For the surveillance face recognition, the original video
templates are denoted as Vi = {f

j
i , yi and the aggregated face

image is denoted as:

vi = G(Vi) (1)

where Vi is the ith individuals (i = 1, 2, . . . n),f ji denotes the
jth frame of Vi(j = 1, 2, . . .m), and yi means the ground truth
of Vi.

C. DISCRIMINATOR
The main function of the discriminative model is to con-
stantly improve its discriminant ability by learning from the

generative model. We also introduce a discriminator net-
work D, an auto-encoder, consisting of several convolution
blocks. The vital demand for discriminator is that the refining
face image vi like a real face image in appearance while
reducing the number of the images to be processed. We hope
our framework PA-GAN can aggregate video clips into sin-
gle image while obtain more discriminative ability. To this
end, we design a comprehensive loss function to ensure the
discriminator supervises generator to produce photorealistic
and identity-preserving face image:

L = λ1LDis + λ2LRec + LAdv (2)

where LDis is the discriminative loss for enhancing the dis-
criminative capacity to distinguish the identity of subjects,
LRec is the reconstruction loss for preserving the identity
information, and LAdv is the adversarial loss for adding real-
ism to the synthetic images and alleviating artifacts. λ1 and
λ2 are trade-off parameters.

D. LOSS FUNCTION
1) DISCRIMINATIVE LOSS
In practice, real-world surveillance FR is an open-set prob-
lem. Tens of thousands of labeled people in dataset are only
a tiny fraction of the billions of people on the earth. And
the trained model generalization ability may be insufficient.
There is not enough labeled surveillance person, which hin-
ders the improvement of the model performance to some
extent.

To solve the above problems, we first crawled a certain
number of unlabeled surveillance video faces from Internet,
and then modified Center Loss [25] to optimize the face
recognition model with these data. Our approach just needs
to ensure that these unlabeled people do not appear in the
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labeled data. The addition of unlabeled data can easily expand
the number of training samples whist substantially improving
the generalization ability. In the training process, each sample
feature needs to be close to the center of the corresponding
category. For unlabeled classes, they do not belong to any
class of the testing sets, so the model needs to reject them.
That is, the unlabeled features are far enough away from the
center of each classification layer. Each different unlabeled
class will get a confidence coefficient ρi(i = 1, 2, . . . , n)
denotes the classification result. Ideally, ρ1, ρ2 . . . ρn should
be lower than the threshold. Consequently, our goal is to:

minimize(ρ1, ρ2 . . . ρn)

s.t.
n∑
i=1

ρi = 1 (3)

And then, combining the Center Loss [25] with the dis-
criminative loss together can force the distribution of known
classes more sparsely. Detail of discriminative loss is formu-
lated as follows:

LDis = LSoft +
λ1

2

(
n∑
i=1

∥∥xi − cyi∥∥22 − n∑
i=1

log(pi)

)
(4)

where LSoft is normal SoftMax function. λ1 is the
hyper-parameters for adjusting the impact of discriminator,
cyi is the center of yi class of high-dimension feature, and pi
is the probability of xi belongs to ith class.

2) RECONSTRUCTION LOSS
To ensure that generating the target domain image and retain-
ing the semantic content of the input image, reconstruction
loss is included in the training generator. Each subject in the
video set contains multiple images. Compared with all the
images or any one face with the generated face byG, the train-
ing results are obviously not perfect. So, we first calculated
the confidence scores for each real face.

θi =
exp[τt ∗

(
aTi f

)
]∑

j exp[τt ∗
(
aTi f

)
]

(5)

where θi denotes the predicted confidence score, τt means the
selective attenuation item, and a and f are l2 normalized to
achieve boundary equilibrium.

Selective attenuation on the confidence scores of genuine
samples in turn increases the corresponding classification
losses, which narrows the decision boundary and controls the
intra-class affinity and inter-class distance. The reconstruc-
tion loss is defined as below:

LRec =
∥∥∥F (vi)−∑m

j=1
θi · F(f

j
i )
∥∥∥2 (6)

where F is the function of face feature extraction. In this way,
we would like to make the composite face feature is much
closer to the original video center.

3) ADVERSARIAL LOSS
In order to produce more realistic images, as same with the
previous GAN network, the generator makes completion with
discriminator through adversarial loss. The generator wants
to confuse the discriminator by generating outputs similar to
the real samples, and the discriminator wants to accurately
determinewhether the image is true or false. At the same time,
we use Wasserstein distance loss as a counter loss.

Ladv = βE
[
logD (A)

]
+ (1− β)E(log (1− D(vi)) (7)

where β denotes the identity ground truth, D(vi) means the
probability that synthetic face vi is directly chosen from the
raw video Vi. The primary superiority of this method is that
it is able to offer a robust aggregated keyframe represen-
tation that can accurately mitigate the original surveillance
clips with noisy information. In this way, we can efficiently
minimize the distance between aggregated face and the orig-
inal surveillance frames. Algorithm 1 describes the overall
training process.

Algorithm 1 Learning Algorithm in PA-GAN With
LDis + LRec + LAdv
Input: Training video samples{Vi|i = 1, 2, . . . , n, initialized
n class centers

{
cyi|i = 1, 2 . . . , n

}
, learning rate lr , hyperpa-

rameters λ1 and λ2, iterative number It .
Output: Generator Network G

1: Initialize G, D with pretrained model
2: Initialize feature extraction model F
3: for t < It do

1: Generate a same-identity face from a video
vi = G(Vi)

2: Extract the simulated face feature f̃i = F(vi)
3: Calculate the joint loss by

Lt= λ1LtDis + λ2LRecL
t
Rec + LtAdv

4: Calculate the backpropagation error ∂L
t

∂vti
for

each sample i by
∂Lt

∂vti
= = λ1

∂Lt
Dis

∂vti
+ λ2

∂Lt
Rec
∂vti
+

∂Lt
Adv
∂vti

5: Update cyi for each center and layer weights
6: t = t +1

end for
return Network G

E. FEATURE EXTRACTION NETWORK
With the continuous improvement of the performance of
static unrestricted face recognition methods, more discrim-
inative features can be extracted by the deep convolution
face networks trained on enormous data samples. In this
work, we build an analogical face feature extraction network
presented in [22]. The specific architecture is depicted in
the table 1. Each convolutional layer is followed by a ReLU
unit [43], except the last one. Additionally, we add two batch
normalization layers in the first convolution to mitigate the
effects of illumination variations. For handling few generated
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TABLE 1. The architecture of feature extractor.

face images from generator, we append average pooling to the
last convolution operation to aggregate the multiple images.

IV. EXPERIMENTAL RESULTS
A. BENCHMARK DATASETS AND PROTOCOLS
In watch-list identification task, most appeared faces are not
included of the interest list. Thus, it leads to the open-set
protocol. In order to better simulate the real surveillance
video recognition, we employ two widely used benchmark
datasets IJB-A [5] and QMUL-SurvFace [1] to evaluate the
robustness of our models.

1) IJB-A [5]
The primary purpose of IJB-A dataset is to accelerate the
frontiers of unconstrained face recognition. It includes not
only the still image of the person being photo-graphed, but
also video fragments of the person being photographed.
It contains 500 subjects approximately 11.4 pictures and
4.2 videos each person. The subjects sample deliberately
include a broader geographical distribution. This can effec-
tively increase the recognition rate of the model for differ-
ent races. Most of the subjects have huge changes in facial
expression, illumination and different resolutions. The sub-
jects are also from different countries, regions and races of the
world, with a wide range of regions. It is because the IJB-A
data set has realistic application features that the data set is
very suitable for practical application scenarios. Of course,
it also offers great challenges.

2) QMUL-SurvFace[1]
Compared to the previous face recognition benchmarks,
QMUL-SurvFace directly sampled from 17 person re-
identification datasets, that were collected in various
real-world surveillance venues across different sites and mul-
tiple countries. It just has 0.46M low-quality images from
15,573 unique subjects with severe blur. This dataset presents
the challenges of different training and testing environments,
uncontrolled illumination, low resolution, less gallery and
test data, head pose orientation and a large number of
classes. QMUL-SurvFace is exceptionally characterized by

very low-resolution faces typical in video surveillance. The
average resolution is 24× 20 pixel-wise.

In the verification process, we use two type evaluation
indexes: (1) the True Accept Rate (TAR) representing the
proportion of correct acceptance; and (2) the False Accept
Rate (FAR) meaning the proportion of false acceptance.
We use the paired TAR@FAR measure. We choose the stan-
dard measure as the open-set face identification performance
metrics: (1) the False Positive Identification Rate (FPIR),
which is the fraction of comparisons between probe templates
and non-mate gallery templates which corresponds to amatch
score exceeding the threshold; and (2) the Ture Positive Iden-
tification Rate (FNIR), which is the fraction of probe searches
that fail to match a mated gallery template above a score of
the threshold.

B. IMPLEMENTATION DETAILS
We detect face area and mark 5 points landmarks by a
recent method MTCNN [48], and then use the similarity
trans-formation to normalization. Considering the limitations
of the training data set, we initialize the input faces of gen-
erator less than 20 frames. During training and testing stage,
we resize all face images in the methods of bicubic interpola-
tion to the required size 128×128 pixel. Such rescaled images
are still of ‘‘low resolution’’ as the underlying resolution is
mostly unchanged. We use the stochastic gradient descent
with minibatch size 128. We set hyper-parameters, λ1 = 0.1,
λ2 = 0.2. Momentum of 0.9, and weight decay of 1e−4.
In our setting, the learning rate is initialized to 1e−2, and
during fine-tuning, the learning rate is initialized to 1e−3.
We utilize both ResNet26 and ResNet50 [23] as the baselines.

The experiment is implemented by Pytorch frame-
work [26] on amachine with four GeForce RTX2080Ti GPUs
and 11GB memory for neural network training.

C. RESULT AND ANALYSIS
1) ABLATION STUDY ON PA-GAN
In this section, to evaluate the efficiency of the PA-GAN, we
investigate different architectures and loss functions on IJB-A
dataset to verify the improvements of the aforementioned
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TABLE 2. The explanation of ResNet34 and patch-attention network.

TABLE 3. Improvement for each component of PA-GAN.

constituents.We begin from the baseline ResNet34 with basic
adversarial loss, then gradually add other losses of the model.
For fair comparison the effects of each network module,
we use semblable network architecture, PANet15, following
the same strategy. From Table 3 we observe that: 1) using
ResNet-34 as the baseline, a well discriminative ability is
achieved. 2) by adding discriminative loss and reconstruction
loss, the performance obviously improved, which indicates
that both losses can encourage model to have a high discrim-
ination power. As an illustration from the results, we find that
LDis is more powerful than LRec, increased by 1.25% and
1.10% respectively. 3) setting the PANet-15 as the backbone,
the recognition accuracy has been significantly improved
by 2%. Notably, due to the consecutive transition layers,
it reduces the parameter befittingly.

2) RESULTS ON IJB-A
To demonstrate the advantage of PA-GAN, we tested the
proposed methods on the IJB-A dataset [5]. The performance

comparison in terms of TAR@FAR, TPIR@FPIR and
Rank-N on IJB-A are reported in Table 2 and III. In gen-
eral, the CNN+MaxPool performs worst among the base-
line methods. Although most images of IJB-A collected
by unconstrained environments, the image quality keeps a
high standard. CNN+AvgPool method performs slightly bet-
ter @FAR = 0.1, but it drops a lot in the more rigorous
@FAR = imple 0.001.
Intuitively, our PA-GAN19 always achieves compelling

search results in TAR@FAR = 0.01 and Rank1, which well
proves it is robust to extract unconstrained face feature.
In the light of these results, model B achieves a consistently
superior accuracy (TAR and TPIR) than model A on both
1:1 face verification and 1: N face identification. PA-GAN
outperforms all its baselines by appreciable margins, espe-
cially on the low FAR cases. For example, in the verifica-
tion task, the TARs of our PA-GAN at FARs of 0.01 and
0.001 are respectively 0.968 and 0.923, improves the accu-
racy by 1.10% and 2.00% over the second best in verification
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TABLE 4. Comparative performance analysis on IJB-A benchmark for verification. Symbol ‘‘–’’ represents the result not available.

TABLE 5. Comparisons performance of PA-GAN with Baselines on IJB-A. The TPIR vs. FPIR and The Rank-N Accuracies Are Presented.

task (@FAR = 0.001) respectively. This demonstrates that
the synthesized faces by PA-GAN are photorealistic with
well-preserved identity information. These video-like faces
can be represented by the original video faces.

FIGURE 4. Visualization of original video feature and aggregated feature.
It is easy to see the aggregated features have more discriminative
characteristic in a compact space.

On the other hand, NAN [2] and TP [27] trained their
models on sufficient datasets over 2M face images getting
impressive performance. Nevertheless, tour models were just
trained on the original CASIA-WebFace [28] which com-
prises about 500K images. To illustrate the validity of our
PA-GAN, we further visualize the aggregated face and the
original face in two-dimensional space in Figure 4. This
shows that PA-GAN is able to store identity information well
while reducing computational costs. Generally, the PA-GAN
is better than most of the other methods.

3) RESULTS ON QMUL-SURVFACE
In addition, we apply our patch-attention block and elab-
orate face losses to a more intricate surveillance venue.
Notably, the images between CASIA-WebFace [28] and
QMUL-SurvFace datasets have large domain gap. We use the
domain transfer method of [29] to reconstruct the CASIA-
WebFace [28]. The transferred images not only well pre-
serve the distinctive information but also well fit the type
of the low-quality surveillance video. This method can com-
pensate the deficiency of training data. We firstly pre-train
the still face recognition model on transferred CASIA-
WebFace [28], then fine-tune on QMUL-SurvFace. For ver-
ification, PA-GAN gains a uniformly higher-performance
(TAR) by 3.00-5.6% for TAR@FAR = 0.001-0.1 than other
deep face models. Next, Model B shows higher accu-
racy than model A with improvement of 6.9 - 11.4%
TAR@FAR = 0.001-0.1.
Table 6 and Table 7 show the testing results of open-

set identification performance on QMUL-SurvFace. In ver-
ification task, even though existent best method Center-
Face [25] failed to fully meet expectations at TAR@FAR =
0.01, 0.001. Despite the low-quality testing images, our
models strive to enhance by 2.4% - 13.3%. In identifica-
tion task, the performance of the model trained only with
the QMUL-SurvFace dataset is worst. This again suggests
that using limited number of samples training deep face
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TABLE 6. Face verification accuracy on QMUL-SurvFace. The TAR vs. FAR are Reported.

TABLE 7. Comparisons performance of PA-GAN with baselines on IJB-A. The TPIR vs. FPIR and the Rank-N accuracies are presented.

FIGURE 5. Some feature mapping visualization examples of the
patch-attention blocks. We found that more attention was focused on the
facial organs.

recognition model cannot deal with the challenging problem
of unconstrained low-quality face recognition. We observe
that the PA-GAN acquire very competitive performance
compared with recent proposed methods, by the improve-
ment of 2.3%, 2.5% and 4.7% at TPIR@FPIR = 0.1-0.3,
respectively.

In such case, our experimental results confirmed PA-GAN
is more practical to extract robust feature, and its aggre-
gated feature representation is more favorable for the video
face recognition task. It illustrates that patch-attention can
enhance the discriminative ability by adaptively focusing on
the feature mapping. Moreover, we gain better results by
further augmenting training data. Indeed, the models trained
on the transferred CASIA-WebFace [28] show better per-
formance than the original results provided by [1], with
the improvement of 4.5% and 2.0%, respectively. But they
are still far from the practical demands of the intelligent
surveillance system.

V. CONCLUSION
In order to recognize face in surveillance efficiently, a novel
Patch-Attention based Generative Adversarial Network
(PA-GAN) is proposed in this article. PA-GAN combines
patch-attention learning model and unlabeled face training
to exactly discard the misleading frames and aggregates the
useful information of an input video. One promising potential
function of the PA-GAN is for shrinking intra-class distance
and enlarging inter-class distance in the feature space. Fur-
thermore, runtime is reduced as we only need to pass a
few output images through feature extraction network for
recognition. Experimental results on twowidely used datasets
demonstrate the effectiveness of our framework.
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