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ABSTRACT In automatic parking motion planning, multi-objective optimization including safety, comfort,
parking efficiency, and final parking performance should be considered. Most of the current research relies
on the parking data from expert drivers or prior knowledge of humans. However, it is challenging to obtain
a large amount of high-quality expert drivers’ data. Furthermore, expert drivers’ data or prior knowledge
of humans does not guarantee an optimal multi-objective parking performance. In this article, we propose
a model-based reinforcement learning method that learns parking policy of the data, by executing the data
generation, data evaluation, and training network, iteratively. The trained network is used to guide the data
generation cycle in the subsequent iteration. Based on this proposed method, we can get rid of human
experience largely and learn parking strategies autonomously and quickly. The learned strategies ensure
the multi-objective optimality of above requirements in the parking process. First, an environment model
that approximates the actual environment is established, and the learning efficiency is accelerated through
the simulated interaction between the agent and the environment model. To make the system independent of
expert data or prior knowledge, a data generation algorithm combiningMonte Carlo Tree Search (MCTS) and
longitudinal and lateral policies is proposed. Then, to meet the multi-objective optimal demands mentioned
above, a reward function is constructed to evaluate and filter the parking data. Finally, a neural network
is used to learn the parking strategy from the filtered data. From the real vehicle test benchmarked with a
mass-produced parking system, the proposed method is found to achieve better parking efficiency and lower
requirements for start parking posture, thereby verifying the algorithm’s superiority.

INDEX TERMS Automatic parking, motion planning, reinforcement learning, Monte Carlo tree search,
neural network.

I. INTRODUCTION
The growth of mobile travel demand and the shortage of
road capacity have caused severe traffic and environmental
problems due to the continuous increase of car ownership.
The application of connected automated vehicles can reduce
traffic congestion, gasoline consumption, and transportation
emissions significantly [1], [2]. Moreover, the demand for
the time-sharing electric vehicle is increasing, as it is eco-
friendly, intensive, and efficient. However, drivers still face
collision hazards and inefficient road traffic due to tight space
and unskilled operations when parking cars. At the same time,
the need for wireless charging after shared electric vehicle
parking increases the requirements concerning the vehicle’s
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final parking posture. Moreover, comfort is also required
during parking, and excessive acceleration and deceleration
of the vehicle and high-frequency jitter of a steering wheel
should be avoided. Therefore, comprehensive consideration
of safety, comfort, parking efficiency, and final parking pos-
ture to achieve parking motion planning is of great signifi-
cance for the future development of shared vehicles.

Generally, a typical automatic parking system, as shown
in Fig. 1, includes key technologies such as parking slot
detection, motion planning (or path planning and tracking),
ego-vehicle’s posture estimation, and chassis control. Among
them, motion planning is an intermediate module for envi-
ronment perception and chassis control, which plans vehicle
control commands based on real-time vehicle information
and parking space information. The motion planning mod-
ule transmits the information to the vehicle chassis control
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FIGURE 1. A typical automatic parking system includes the following
modules: slot detection, path planning, path tracking, ego-vehicle’s
posture estimation, and chassis control.

module for execution. Current research on parking motion
planning can be divided into several methods, such as expert
drivers’ parking data-based method, human prior knowledge-
based method, and reinforcement learning-based method.

A. RELATED WORK
1) EXPERT DRIVERS’ DATA-BASED METHOD
Typically, the expert drivers’ data-based methods use super-
vised learning systems, such as neural networks, that are
trained to replicate the expert drivers’ parking actions. The
inputs of the network are environmental perception informa-
tion, such as visual images, distance, and vehicle status, and
the output is the corresponding driver action [3], [4]. Due
to the limited generalization ability of the neural network,
a large amount of training data is required to cover target
working scenarios, as much as possible. Besides, the network
performance strongly depends on the quality of parking data.
Thus, the data must be of high-quality. However, expert data
sets are often expensive and require a lot of labor and time.
Moreover, the expert data will impose a ceiling on the perfor-
mance of systems trained in this manner [5]. Thus, the system
can only approach but cannot exceed the expert performance,
making it difficult to achieve optimal multi-objective parking
performance.

2) PRIOR KNOWLEDGE-BASED METHOD
Prior knowledge-based method refers to abstracting human
parking experience into prior knowledge and then using it
to guide the planning. It is divided into geometric, heuristic
search, and fuzzy logic control methods. The styles of the
curves, such as the Reeds-Shepp (RS) curve [6], [7], clothoid
curve [8], [9], Bezier curve [10], spline curve [11], and
polynomial curve [12] in the geometric method, the heuristic
function in search methods such as A∗ [13], and fuzzy rules
in fuzzy logical methods [14], [15] are all prior knowledge
abstracted from the human parking experience. The park-
ing experience itself has an obvious bias. Thus, it is more
challenging to achieve the optimal multi-objective parking
performance due to information loss by abstraction.

3) REINFORCEMENT LEARNING-BASED METHOD
As mentioned above, methods based on expert data and
prior knowledge mostly rely on the original or abstraction of
human experience, which requires considerable high-quality
parking data. Even when expert data sets are available, they
will impose a ceiling on the performance of the system.
By contrast, reinforcement learning systems are trained from
their own experience, in principle allowing them to exceed
human capabilities [5].

The reinforcement learning system learns strategies
through interaction between the agent and the environment.
According to a standard that considers whether it is nec-
essary to model the environment, reinforcement learning is
mainly divided into two categories: model-based methods
and model-free methods. In the model-based method, a state
transition probability matrix and reward function is obtained
first, and then a strategy to maximize the cumulative reward
is found. Whereas, the model-free method directly estimates
the value Q(s, a) of the action a taken in the state s, and then
selects the action with the highest estimated return value to
be executed in each state.

Regarding the parking planning problems, few studies have
been conducted using the reinforcement learning method.
Zhang et al. [16] used deep deterministic policy gradient
(DDPG) [17], a model-free reinforcement learning method,
to solve the perpendicular parking problem. They train an
agent in the simulation environment first and then transfer the
trained agent to the real vehicle to continue the training. The
work only focuses on the final parking section of two steps in
perpendicular parking, and the speed policy is also simplified
to a fixed command. For other scenarios of autonomous
driving, such as lane change decisions or lane-keeping assis-
tance (LKA), some scholars used the model-free reinforce-
ment learning methods to study, such as Q-learning [18],
deep Q-Network (DQN) [19], [20], Actor-Critic [21]–[23],
DDPG [24], [25], and so on.

The model-free method does not require modeling of the
environment. However, it can only be learned through the
actual interaction between agent and environment that is of
low learning efficiency. Kaiser et al. [26] compared the learn-
ing efficiency of their proposed model-based method with
state-of-the-art model-free methods: Rainbow [27] and prox-
imal policy optimization (PPO) [28], to play video games.
Results show that the proposed model-based method outper-
forms the model-free algorithms in terms of learning speed
on nearly all of the games, and in the case of a few games,
does so by over an order of magnitude.

At the same time, whether the above research is for the
last segment of perpendicular parking or high-speed scenario
decisions, such as the lane changes and LKA, the steering
wheel angle change range is small. This work presents paral-
lel parking, which is generally considered to be more difficult
than perpendicular parking. The steering wheel herein has a
wide range of input angles, so the search space is vast, and it
is facing an urgent need for rapid learning.
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In summary, the model-based method enables an agent
to understand how the problem works and predict which
actions will produce the desired results without requiring
real vehicles to interact with the environment, while improv-
ing learning efficiency and safety. MCTS is a representa-
tive model-based reinforcement learning method. In the field
of games, AlphaGo [29] and AlphaGo Zero [5] surpassed
humans in Go using the MCTS combined with neural net-
works. The success of AlphaGo and AlphaGo Zero demon-
strates the effectiveness of the MCTS in large search space
problems. Therefore, we believe that the MCTS is applicable
to the parking planning problem.

However, there are many differences between Go and auto-
matic parking. In Go, we can directly predict the situation
and the final result of the game according to the rules. For
parking, however, an environment model needs to be estab-
lished to estimate the vehicle state, and a reward function
needs to be constructed to evaluate the parking performance.
Moreover, Go is a two-player game, and parking planning can
be regarded as a single-agent task. Finally, the search space
for the parking actions is larger than that of Go, and real-time
requirements in parking are higher. This article focuses on the
new features and studies reinforcement learning to solve the
parking plan problem.

B. OBJECTIVES AND CONTRIBUTIONS
The objective of this article is to learn parking strategies
autonomously without relying on human experience or prior
knowledge and to plan the result meetings the multi-objective
optimization of safety, comfort, parking efficiency and final
parking posture. The main contributions are summarized as
follows:

1) A reinforcement learning method of parking strategy is
proposed. The method iteratively executes data generation,
data evaluation, and training the network using the selected
data. The network is used to guide the next iteration cycle of
generating data. In this way, the quality of the generated data
is continuously improved and the learned parking strategy is

continuously enhanced. Finally, it converges to an optimal
state.

2) To construct a vehicle model that approximates the real
vehicle for simulation, a method based on the transfer func-
tion combined with a kinematic vehicle model is proposed.

3) To generate parking data for training agents, a method
based on the longitudinal policy and lateral policy algorithm
is proposed. The P-MCTS plays an essential role in the lateral
policy, which is a variant of MCTS for parking.

4) Since the multi-objective optimization, including safety,
comfort, parking efficiency, and final parking performance
should be considered, a reward function to evaluate the per-
formance of parking data is researched and constructed.

C. PAPER OUTLINE
The rest of this article is organized as follows. In Section 2,
a reinforcement learning method for parking strategies is
proposed. In Section 3, an environment model for reinforce-
ment learning, including the slot model and vehicle model is
introduced. In Section 4, we propose a parking data gener-
ation method based on the established environment model.
A reward function to evaluate the quality of parking data is
built in Section 5 and the network is trained using filtered
parking data by the reward function. Section 6 demonstrates
and discusses the experimental results. Finally, Section 7 con-
cludes the paper.

II. ALGORITHM FRAMEWORK
The algorithm framework proposed in this article is shown
in Fig. 2. It is divided into three parts: data generation,
data evaluation, and update of the network with the best
data selected. Usually, the parallel parking can be split into
two steps: entering a parking slot first and then aligning
the vehicle with parked vehicles. The result of the first step
directly affects the number of shifts in the parking slot and
parking time. Also, it even determines whether the automatic
parking will be successful, which is more complicated and

FIGURE 2. The proposed algorithm framework comprising three parts: data generation, data evaluation, and training policy
network with the best data selected.
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essential. Therefore, this work applies the proposed method
to the entering parking slot stage.

A. DATA GENERATION
In this section, the agent in Fig. 2, i.e., the motion planning
algorithm, controls the vehicle model and performs simula-
tions under different working scenarios to generate a large
amount of parking data.

The motion planning algorithm is composed of longitudi-
nal vehicle speed policy, vehicle model, lateral policy net-
work, and MCTS. The inputs of the algorithm are parking
space size and vehicle’s real-time state, and the outputs are
commands of the steering wheel angle and vehicle speed. The
expected speed vd is directly obtained by the speed policy,
which helps to avoid the problem of slow convergence caused
by the lateral and longitudinal strategies entirely obtained
by the reinforcement learning. The expected steering
angle δd is obtained from a large number of simulations based
on the policy network, speed policy, vehicle model combined
withMCTS. The probability of different steering wheel angle
changes p(1δ|s) output by the policy network and the vehicle
speed policy v(s) are used as the default lateral and longitu-
dinal policies of the MCTS in the simulation phase. In this
way, it can help concentrate computing resources on those
branches with higher probability, thus improving algorithm
performance. The vehicle model estimates the state of the
vehicle after performing steering angle and speed actions.
The MCTS generates optimal control commands through
numerous simulations. The vehicle model executes the con-
trol commands and then generates the parking data.

B. DATA EVALUATION
A reward function is constructed comprehensively consider-
ing factors such as safety, comfort, parking efficiency, and
final parking posture. It is used to evaluate the quality of
parking data. Finally, the data with the best parking quality
of each parking scenario are selected.

C. NETWORK TRAINING
The network parameters are updated using the selected data
with the best quality. The inputs of the network are vehicle
status and slot information, and the vehicle status includes the
position and attitude relative to the slot and real-time steering
wheel angle. The output of the network is the probability
distribution of different steering wheel angles. Note that there
is no data at the beginning of the learning process. To prevent
the algorithm from being introduced to human experience,
a random strategy is used as the default policy of MCTS in
the simulation phase to generate initial data for training the
network.

This updated network is used in the process of generating
data in the next iteration, as a new default policy in theMCTS
simulation phase to provide a stronger search guide. In this
way, the quality of the generated parking data is improved
continuously, and the learned parking strategy is continu-
ously enhanced. Eventually, it converges to an optimal state.

The reinforcement learning agent with final learning conver-
gence in Fig. 2 is deployed on the real vehicle as the parking
motion planning controller. The above three stages will be
described in detail in the subsequent section.

III. ENVIRONMENT MODEL
The model-based reinforcement learning method uses an
environment model to predict the possible future states of
different actions and the expected reward value from these
states, so as to select the optimal action. For automatic park-
ing, the parking planning algorithm can be regarded as the
agent, and the ego-vehicle and the parking slot composed
of front and rear obstacles can be regarded as the environ-
ment. Therefore, this section introduces how to model the
environment.

A. PARKING SLOT MODEL
In this article, parallel parking on the right side is taken as
the research scenario, which is formed by two parked cars
in front and behind. As shown in Fig. 3, the front and rear
obstacles are abstracted into four rays and O and R at both
ends. The two rays describing the left and rear sides of the
front parked vehicle have a common end point O and the
two rays describing the left and front sides of the rear parked
vehicle have a common end point R. The left rear corner of
the front parked car is the coordinate origin. The direction
along the left side of the vehicle body toward the front of the
vehicle is the positive X-axis XP, and the parking coordinate
system of motion planning is established. The coordinate
of the intersection point R is (xR, yR). The angles between
these two rays and the coordinate axis are θ1 = −180◦

and θ2 = −90◦. The angle between the rays on the rear
side of the front parked vehicle and the coordinate axis is
θ3 = −90◦. Taking start parking posture as an example, the
ego-vehicle is represented by the midpoint S of its rear axle.
The coordinate is (xs, ys) and the heading angle is indicated
by θs. The motion planning is performed in the above parking
scenario and parking coordinate system.

FIGURE 3. Parallel parking coordinate system.

B. VEHICLE MODEL
1) VEHICLE STATE PREDICTION BASED ON KINEMATIC
VEHICLE MODEL
As the vehicle’s velocity is relatively low during parking, the
kinematic vehicle model shown in Fig. 4 is used in motion
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FIGURE 4. Kinematic vehicle model.

planning, as shown in (1),

ẋ = v cos(θ )

ẏ = v sin(θ )

θ̇ = vtan(φ)
/
L (1)

where (x, y, θ) represents the posture of the vehicle in parking
coordinate, φ denotes steering angle of the front wheel, v is
the velocity at the center of the rear axle. Based on the vehicle
kinematic model, the actual steering wheel of the front wheel
and actual vehicle speed can be used to predict the vehicle’s
posture.

2) VEHICLE LATERAL AND LONGITUDINAL CHASSIS
CONTROL MODEL BASED ON SYSTEM IDENTIFICATION
The vehicle chassis control process is shown in Fig. 5. Due
to the design error of the chassis control algorithm, there is a
certain error between the actual steering wheel angle and the
expected order. Therefore, it is necessary to model between
the expected order and the observation of the action per-
formed using the vehicle chassis control. It ensures that under
the same desired steering wheel angle, the steering wheel
angle output of the model is close to the actual steering wheel
angle. Thus, the vehicle posture estimated by the kinematic
vehicle model (Fig. 5b) and the actual posture (Fig. 5a) are
close to each other.

FIGURE 5. Vehicle chassis control process: (a) Real vehicle (b) Vehicle
model.

In this article, the transfer function is used to approximate
the relationship between the action command and the actual
observed action. First, the simulated parking command is
used to control the vehicle. The steering angle and vehicle
speed order values and corresponding actual observation val-
ues are collected. Then, the data are used to identify the lateral

and longitudinal transfer functions as follows:

δr = Gδ(s) · δd
vr = Gv(s) · vd (2)

where δd and vd are the command values of the steeringwheel
angle and vehicle speed, respectively, δr and vr are the actual
values of the steering wheel and vehicle speed, respectively.
TheGδ(s) andGv(s) are the identified lateral and longitudinal
transfer functions, respectively.

Next, we use the identified transfer functions combined
with the kinematic vehicle model as the constructed vehicle
model. We also obtain the final parking strategy using the
proposed reinforcement learning method based on the con-
structed vehicle model. Finally, simulations and real vehicle
experiments are performed to verify the accuracy of the con-
structed vehicle model. Further, we select three start postures
from each of the five parking slots in the training data, i.e., a
total of 15 working scenarios are verified. The coordinates of
the three start postures are uniformly distributed in the range
of training data. The mean absolute error of the final parking
posture between the generated data and the real vehicle data
is calculated. For all verification scenarios, the deviations
of the abscissa and ordinate are 7 and 8 cm, respectively,
and the deviation of the heading angle is 3◦. Furthermore,
for the standard test slot (i.e., the parking slot of 4.57 m),
the deviations of the abscissa and ordinate are 3 and 1 cm,
respectively, and the deviation of the heading angle is 1.25◦.
The above results demonstrate that the generated data is close
to actual vehicle data.

The lateral and longitudinal transfer functions are deter-
mined as follows:

Gδ(s) =
8.57s3 + 26.90s2 + 78.34s+ 248.60

s4 + 8.33s3 + 36.60s2 + 74.92s+ 248.2
(3)

Gv(s) =
25.75s+ 47.85

s4 + 4.03s3 + 27.09s2 + 46.48s+ 52.80
(4)

In summary, the vehicle kinematic model and the lateral
and longitudinal transfer functions are selected to realize the
construction of the vehicle model.

IV. PARKING DATA GENERATION
Based on the parking data generation architecture introduced
in Section 2, the longitudinal and lateral motion planning in
the automatic parking motion planning controller (the agent
in Fig. 2) is introduced in this section.

A. LONGITUDINAL MOTION PLANNING
The requirements of safety, comfort, and parking time are
taken into account in the vehicle speed policy. It is divided
into acceleration, stable, and deceleration phases. During
the acceleration phase, the acceleration simulates the actual
parking process, which increases first and then decreases,
as shown in Fig. 6. The vehicle speed is negative in the enter-
ing parking slot stage. To facilitate understanding, the accel-
eration in the following refers to its absolute value, which
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FIGURE 6. Acceleration profile of the parking acceleration section.

is actually a negative value. The acceleration of the vehi-
cle changes continuously during the acceleration phase. The
maximum acceleration amax is 0.3 m/s2, the acceleration
time 2ta is 5 s, and the initial order is v0 = −0.2m/s.
The speed of the parking acceleration section is as follows:

when 0 ≤ t < ta,

vacc(t) = v0 − 0.5amaxt2
/
ta, (5)

and when ta ≤ t < 2ta,

vacc(t) = v0 − 0.5amaxta
−0.5

(
amax +

(
amax−amax (t − ta)

/
ta
))
× (t − ta)

(6)

The final speed of the acceleration section is the speed of
the stable section.

vstable(t) = v0 − amaxta (7)

The speed of the deceleration section is controlled by
defining the shortest distance between the left rear cor-
ner G of the ego-vehicle and the rear parked vehicle,
as shown in Fig. 3. The vehicle speed observation is inac-
curate at low speed. For the vehicle used in the experiment,
when the absolute value of vehicle speed is lower than the
threshold vthreshold , the observed value is 0. To control the real
vehicle more accurately, we conducted the following experi-
ment. It demonstrates that the driving distance of the vehicle
on a horizontally structured road decelerating naturally from
the vthreshold to 0 is approximately 0.05 m. Accordingly,
the speed policy is designed as follows:

vdec(t) =

{
kd + b 0.25 ≤ d ≤ 1.50
0 d < 0.25

(8)

where d indicates the distance between the left rear corner
of the vehicle and the rear parked vehicle. According to
experience, when the vehicle is at a distance of 1.5 m, it decel-
erates from the stable speed. After decelerating to a distance
of 0.25 m, the vehicle speed decelerates to the vthreshold . Then
the expected vehicle speed is zero, and the vehicle naturally
decelerates for 0.05m and finally stops at a distance of 0.20m
before the rear parked vehicle. The 0.20 m is the safety
distance Dsafe for vehicle posture alignment in the parking
slot based on the characteristics of the ultrasonic sensor
equipped in the vehicle. The values k and b can be determined
by the above process.

B. LATERAL MOTION PLANNING
Amethod of combining P-MCTS (see Fig. 7) with neural net-
work and vehicle speed policy is proposed in this article. The
P-MCTS is a variant of MCTS for a single-agent decision-
making process, such as parking. It further takes into account
the prior probability of action during the selection process.
Besides, it tracks maximum simulation results at each node,
in addition to average results.

The neural network and vehicle speed policy are used
as the default lateral policy πδ and longitudinal policy πv,
respectively, in the simulation phase. So, the performance of
the strategy can be significantly improved, and computing
resources can be concentrated on a beam of high-probability
actions.

Each node of the search tree in the P-MCTS contains edges
for all possible actions (steering wheel angle) a ∈ A(s). A set
of statistics

{N (s, a),W (s, a),Q(s, a),P(s, a)} (9)

is stored in each edge, where N (s, a) is the visit count,
W (s, a) represents the total action value, Q(s, a) is the mean
action value, and P(s, a) depicts the prior probability. The
P-MCTS continues executing X iterations, starting at the root
node each time, until the search is completed. Each itera-
tion includes the following five steps: selection, expansion,
simulation, backup, and search chain storage and final action
selection. The steering wheel angle is selected depending on
the accumulated statistics in the tree. The vehicle executes
the action order to reach a new state and iterates as a new
root node. This is repeated until the vehicle reaches the target
parking area.

1) SELECTION
The selection step proceeds in the following way. A selec-
tion strategy is applied recursively, from the root node, until
the most urgent expandable node sE . An expandable node
suggests that it is a non-terminating node and has unvisited
child nodes. The selection strategy strikes a balance between
exploitation and exploration. On the one hand, the task tends
to select the action that achieves the highest reward so far
(exploitation). On the other hand, the less promising actions
still need to be tried, due to the limited search space so far
(exploration) [30]. Here, an action is selected based on the
statistics in the search tree

at = argmaxa(Q(st , a)+ u(st , a)) (10)

so as to maximize action value plus a bonus as follows:

u(s, a) = cP−MCTSP(s, a)

∑
b N (s, b)

1+ N (s, a)
(11)

where cP−MCTS is a parameter determining the level of explo-
ration. The search causes selection strategy initially prefers
actions with low visit count and high prior probability, but
asymptotically prefers actions with high action value [27].
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FIGURE 7. One iteration of P-MCTS.

2) EXPANSION
The child leaf node sL of the node sE is expanded, and each
edge (sL , a) is initialized to {N (sL , a) = 0,W (sL , a) = 0,
Q(sL , a) = 0,P(sL , a) = pa}. pa is determined by the neu-

ral network.

3) SIMULATION
Each time the simulation starts from the leaf node sL . The
steering wheel angle is sampled according to the neural net-
work at ∼ p(·|st ). Therefore, the greater the probability of the
candidate action, the easier it is to be selected. Meanwhile,
it also ensures that the actions with small probability are
randomized to play a role of exploration. The vehicle speed
is determined based on the vehicle speed policy designed in
the previous section. The new state of the vehicle is calculated
according to the vehicle model, after performing the sampling
actions. The simulation continues until the vehicle meets the
stop condition: the vehicle speed command is 0, or the vehi-
cle ordinate is smaller than the target ordinate. The reward
obtained is calculated using the reward function zt = r(sT ).
The design of the reward function is introduced in Section 5.

4) BACKUP
After the end of each simulation, the visit counts and action
values of all traversed edges are updated. The visit counts
increases as follows:

N (st , at ) = N (st , at )+ 1 (12)

and the action value is updated to the mean value as follows:

W (st , at ) = W (st , at )+ zt (13)

Q(st , at ) =
W (st , at )
N (st , at )

(14)

5) SEARCH CHAIN STORAGE AND FINAL ACTION SELECTION
The traditional MCTS is mainly used in the field of two-
player games, where both parties jointly decide the game
result. When making node selection, the algorithm needs to
simulate the strategies of both parties of the game. Due to
random sampling, a strong line of play would probably rely
on an unrealistic assumption that the opponent plays weak

moves. Therefore, the algorithm needs a lot of sampling to
choose a reliable action, so that it is not sensitive to these
outliers.

In the motion planning process, the parking controller is
the only agent that can change the vehicle state. The aver-
aging simulation results can hide a strong line of play if its
siblings are weak, instead of favoring regions where all lines
of play are of medium strength [31]. To counter this, the
P-MCTS adds a memory mechanism in the action selec-
tion and simulation phases. The algorithm tracks the action
sequence with a maximum reward after each iteration is
completed. Fig. 8 shows the pipeline of the P-MCTS.

FIGURE 8. P-MCTS running pipeline.

V. CONSTRUCTION OF REWARD FUNCTION FOR DATA
EVALUATION
In this section, we evaluate the generated parking data by
constructing a reward function to select the best performing
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data for subsequent network training. Safety, comfort, park-
ing efficiency, and final parking posture are considered in the
following reward function:

r = rsafe + rpos + rcom + reff (15)

where r is the total reward, rsafe, rpos, rcom, and reff represent
the reward of safety, final parking posture, comfort, and
parking efficiency, respectively.

A. SAFETY
Safety is a requirement that an automatic parking system
must meet. In this article, the collision method is used to
construct the safety terms in the reward function. As shown
in Fig. 9, in the parallel parking scenario, the ego-vehicle
easily collides with the left and rear sides of the front vehicle
and the left and front sides of the rear vehicle during the
parking process. It has been considered in the longitudinal
speed policy to avoid collision with the rear car. To avoid
collision with the vehicle in front, a danger zone is set. Within
dsafe from the left and rear sides of the front vehicle are
hazardous areas, as shown by the shaded area in Fig. 9. Once
the vehicle enters the above-mentioned area, it is considered
that a collision has occurred and a large penalty value is
assigned. Otherwise, the reward of safety is 0. Additionally,
the safety distance dsafe is set to 0.15 m.

rsafe =

{
−20000 if collision
0 else

(16)

FIGURE 9. Parking collision risk area.

B. FINAL PARKING POSTURE
The reward of final posture in the entering parking slot stage
is considered by the following:

rpos = h− k (s− star ) (17)

where s is the final vehicle posture in the entering parking slot
stage, star represents the target posture, k is the weight, and
h denotes the upper limit value of the reward.

1) THE METRIC OF THE FINAL VEHICLE POSTURE DURING
ENTERING PARKING SLOT STAGE
As shown in Fig. 10, F is a final posture during the entering
parking slot stage. The ordinate of the midpoint of the rear
axle is ytar , and the closet distance of the vehicle to the rear
is Dsafe according to the vehicle speed policy. The positional

FIGURE 10. Relationship between the abscissa and heading angle of the
final vehicle posture in the entering parking slot stage.

relationship between the left rear corner of the vehicle and the
midpoint of the rear axle is fixed. When the heading angle F
of is further determined, the abscissa of the midpoint of the
rear axle is also determined. Therefore, the reward function
only considers ordinate and heading angle.

2) DETERMINE THE TARGET VALUE OF POSTURE
If the vehicle eventually aligns with the adjacent parked vehi-
cle, the final target ordinate y = −0.5×Wvehicle = −0.78m,
where Wvehicle is the width of the vehicle. However, in the
case of a small parking space, a posture alignment process
within the parking slot is also required so that the vehicle
aligns with the parked vehicle. Fig. 11 shows a typical posture
alignment process within the slot. In this case, the vehicle
needs to shift twice in the parking space. The vehicle first
reverses to point B, then drives forward to point C, and finally
drives backward to point G. The posture of the vehicle at
point B is the final vehicle posture of the entering parking slot
stage, and the posture at point G represents the final parking
posture.

FIGURE 11. Posture alignment process in parallel parking spaces.

It can be seen from Fig. 11 that the ordinate of the midpoint
of the rear axle of the vehicle increases from point B to
point G. Therefore, it is necessary to determine the ascent
distance during the alignment process. Considering the user
experience of the automatic parking system and parking effi-
ciency, the goal of the motion planning module in this article
is to complete the parking process with no more than 6 shifts
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in the parking slot. When the vehicle aligns posture in the
parking slot, the minimum turning radius is adopted, and it
stops when the distance to the front and rear vehicle is Dsafe.
We conclude that for different number of shifts, the maximum
ascent distance is less than 0.07 m. Therefore, the target
ordinate ytar is set to−0.85 m. This ensures that the vehicle is
still fully parked in the slot after themaximum ascent distance
reached by the posture alignment.

The target heading angle θtar is set to 0◦. The algorithmwill
make the final heading angle during the entering parking slot
as small as possible while meeting safety and parking depth
(i.e., the absolute value of the ordinate of final parking pos-
ture) requirements. Thus, the number of shifts in the parking
slot will be reduced to improve parking efficiency.

In summary, the reward of final posture in the entering
parking slot stage is as follows:

rpos =
(
hy + ky |y− ytar |

)
+ (hθ + kθ |θ − θtar |) (18)

where hy and hθ are the upper limit reward of y and θ , ky and
kθ are reward weights in y and θ , ytar and θtar are target values
of y and θ .

C. COMFORT
During the parking process, the sudden acceleration and
deceleration of the vehicle and the high-frequency swing or
fast rotation of the steering wheel affect passenger comfort.
The vibration model of the human sitting posture is specified
in ISO 2631-1:1997 [32], including 12 axial vibrations from
3 input points. The vibration total value of weighted root
mean square (r.m.s.) acceleration, determined from vibration
in orthogonal coordinates is calculated as follows:

av =
√
k2x a2wx + k2y a2wy + k2z a2wz (19)

where awx , awy, awz are the weighted r.m.s. accelerations with
respect to the orthogonal axels x, y, z, respectively, kx , ky, kz
are multiplying factors. The use of the vibration total value,
av, is recommended for comfort. The values in Table 1 give
approximate indications of likely reactions to various magni-
tudes of overall vibration total values.

TABLE 1. Human reactions to overall vibration total values.

Considering that the parking experiment is basically per-
formed only on the x-y plane, it is considered that awz = 0.
The method used in this article is to learn parking strategies
through a lot of simulation and training. During the training
process, the reward function is frequently used to evaluate

the data. To speed up the efficiency of the algorithm, the cal-
culation method is simplified here. Parking comfort in x is
considered in the vehicle speed policy. Parking comfort in y
is calculated as follows:

rcom = kδ
n−1∑
1

|δk+1 − δk | (20)

where δk and δk+1 are the steering wheel angles for time
steps k and k + 1, respectively, kδ is the weight of comfort.
When the steering wheel changes smoothly without frequent
shaking, the cost of this item is small.

D. PARKING EFFICIENCY
Parking efficiency measures the time it takes to complete
parking meeting the requirements of safety and final parking
posture. It is indirectly considered in the posture and com-
fort items. The larger the reward value of the posture item,
the smaller the deviation between the final heading angle and
the target heading angle. Thus, the smaller the heading angle
that the vehicle needs to adjust in the subsequent posture
alignment stage, the higher the parking efficiency. For the
comfort item, the smaller the reward of the comfort item, the
smoother the steering wheel angle. Therefore, the vehicle’s
path will also avoid unnecessary swings and improve comfort
while reducing the parking time. Hence, it is not explicitly
considered.

In summary, the reward function is constructed as follows,

r =
(
hy + ky |y− ytar |

)
+ (hθ + kθ |θ − θtar |)

+kδ
n−1∑
1

|δk+1 − δk | + rsafe (21)

The requirements of the parking system for safety and final
posture during the entering parking slot stage are more impor-
tant than comfort. Therefore, the parameters in the reward
function are determined, as shown in Table 2.

TABLE 2. Parameter table in the reward function.

VI. TRAINING NEURAL NETWORK
A. NETWORK STRUCTURE
By learning data with high reward selected by the reward
function, a better parking performance can be achieved. Here
a neural network is trained to learn the selected parking data.

The input feature of the network is the representation
of the vehicle of different scenarios, i.e., the vehicle state
and environment observation information. The vehicle state
observation refers to the posture (x, y, θ) of the vehicle in the
parking coordinate system, and the environment observation
refers to the length L of the parking slot.

The output feature of the network is the probability dis-
tribution of different steering wheel angles. The range of
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steering wheel angle during parking is very large. To reduce
the number of network outputs, simplify the network struc-
ture, and improve the algorithm efficiency, the output of the
network becomes the probability of different change values
of steering wheel angle command at time step t+1 relative to
the actual steering wheel angle at time step t. Considering the
limitation of the electric power steering motor power during
the parking process, the upper limit change of the steering
wheel angle per unit step time (50 ms) is b = 20◦ (i.e.,
the maximum rotation speed of the steering wheel is 400◦/s).
Then the change range of the steering wheel angle per unit
time step is [−b,+b]. The angel of change in this range
is equally divided by 2◦, and the probability corresponding
to each angle change is [P−b, . . . ,P−2,P0,P+2, . . . ,P+b],∑b

i=−b Pi = 1. In summary, Table 3 shows the network input
and output features.

TABLE 3. Input and output features for neural network.

The feed-forward back propagation network shown
in Fig. 12 is used. The number of network inputs is 5. For
determining the network size, the learning ability, real-time
requirement of the algorithm, and prevention of over-fitting
must be considered. Owing to a large amount of training data,
a large-sized network should be used for training. However,
the algorithm could not run in real-time during the real vehi-
cle test. Therefore, the runtime of different network sizes
determined via node search was tested. While meeting real-
time requirements, we selected the largest network to achieve

FIGURE 12. Structure of the lateral policy network.

maximum improvement in the network’s learning ability. The
determined network has two hidden layers, l1 and l2, with
25 nodes each.

The activation function of both hidden layers is tansig.
Then, the number of nodes for probability corresponding to
different steering wheel angle changes is 21. The activation
function of the output layer is softmax. The probability of
different steering wheel angle command values at the cur-
rent moment can be determined based on network input and
output.

Cross-entropy is used as a performance function to mea-
sure the difference between two probability distributions,

H (p, q) = −
∑

p(x) log q(x) (22)

where p(x) is the true probability distribution, q(x) is the
predicted probability distribution of the trained model.
The network is trained on state-action pairs (s,1δ), using
scaled conjugate gradient propagation to minimize the cross-
entropy.

B. TRAINING SCENARIO SETTING
Due to the limited generalization ability of the neu-
ral network, a large amount of training data is required
to cover different parking scenarios. The test standard
ISO 16787:2017 [33] describes the performance require-
ments and test procedures of the parking system. The standard
mainly determines the size of the test parking slot, and perfor-
mance requirements during slot search mode and for the end
posture. From the performance requirements during the slot
search mode, we can deduce the range of the start posture.
Based on the performance test requirements and the vehicle
parameters, the training scenarios are determined, as shown
in Table 4.

TABLE 4. Training scenario settings and performance test requirements.

The standard test parking slot length corresponding to the
experimental vehicle is 4.57 m. However, we will encounter
different parking slot sizes. When the length of the parking
slot is 5.5 m, the vehicle can enter the parking slot with-
out shifts. Therefore, the range of parking slot length is
[4.57m, 5.5m]. The range of initial heading angles between
the ego-vehicle and the connecting line of parked vehicles
is [−5◦, 5◦]. To reduce the training data and improve the
convergence speed, the initial heading angle is set to 0◦. The
coordinate of training data is uniformly distributed at certain
intervals in the above range of start posture.
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VII. EXPERIMENT AND DISCUSSION
To verify the effectiveness of the proposed parking strategy
reinforcement learning method, this section first analyzes the
performance of the reinforcement learning process. Then,
the effectiveness of the motion planning controller obtained
by reinforcement learning is verified by real vehicle experi-
ments. Finally, a benchmark test with a mass-produced park-
ing system is performed.

A. VARIATION AND ANALYSIS OF PARKING
PERFORMANCE DURING REINFORCEMENT
LEARNING
The improvement of the training data reward during the
reinforcement learning, illustrates the improvement of the
parking strategy. Therefore, the mean sum reward change of
the training data of all training scenarios during the reinforce-
ment learning process, as shown in Fig. 13, is used to analyze
the performance change of the parking strategy during the
iteration.

FIGURE 13. Mean sum reward of training data in the reinforcement
learning process.

It can be seen from Fig. 13 that the mean sum reward
gradually increases, and stabilizes eventually. Therefore, it is
considered that the learned parking strategy tends to be opti-
mal, and the learning process is terminated. Throughout the
iteration process, the parking performance improved rapidly
in the first 50 generations, and then the speed of improvement
is reduced. This occurs because the parking strategy is very
poor at the beginning of the learning, so the data reward value
generated by the simulation is small. Once the simulation
produces better parking data, they are stored to update the
parameters of the network, making the action probability dis-
tribution provided by the neural network more reliable. The
MCTS is combined with the guidance of the neural network,
and at the same time, due to the exploration of the selection
action, the parking performance can be improved steadily.
When the training data reward is close to the ceiling of the
system, the probability of being able to explore better quality
data decreases. Therefore, the improved speed of parking

performance reduces. The above process illustrates the effec-
tiveness of the proposed reinforcement learning method.

The improvement of the training data reward for two con-
secutive generations in Fig. 13 shows that the data produced
by the neural network combined with the MCTS (k + 1th)
is superior to data previously used for training the network
(k th), as shown in Fig. 2. Due to network training errors, the
quality of training data can be regarded as the ceiling of
the parking performance of the trained network. Therefore,
the parking performance of the neural network combinedwith
MCTS is better than the neural network itself. This suggests
that the parking strategies based on the reinforcement learn-
ing methods are superior to expert data-based methods, such
as the neural network.

In the reinforcement learning process, the mean reward of
each item in the reward function of the training data is shown
in Fig. 14. According to the reward function constructed in
Section 5, the ceiling of the reward value is 40000. The final
mean sum reward of the training data, as shown in Fig. 13,
approaches 32000. It is because the target heading angle is set
to 0◦, but for a small size parking slot, the heading angle of
the vehicle at the end of entering the parking slot stage has the
deviation. As shown in Fig. 14(c), themean reward of heading
angle item eventually tends to 14000. Besides, the steering
wheel angle will not remain constant throughout the park-
ing process. Therefore, there must be some penalty for the
comfort item as shown in Fig. 14(d). Figs. 14(a) and 14(b)
illustrate that as the iteration goes on, the parking strategy
ensures the safety and parking depth.

It can also be seen from Fig. 14 that the performance of
the parking strategy in terms of safety and posture increases
rapidly, and then tends to become stable. In contrast, the per-
formance of comfort items improves more slowly. In the
constructed reward function, the reward value of safety and
pose items account for a large weight in the total reward
value. Therefore, in the learning process, the parking strategy
will first satisfy the item with a greater weight. This shows
the effectiveness of the constructed reward function. On the
one hand, the reward function ensures the performance of
the parking strategy on the requirements mentioned above.
On the other hand, by determining the weighs of different
indexes in the reward function, the parking strategy meets the
important indexes first.

B. REAL VEHICLE TEST
1) VEHICLE EXPERIMENT PLATFORM AND PROCESS
The experiment platform is refitted from the Roewe E50 elec-
tric vehicle (see Fig. 15). A 2D lidar is used for parking
slot detection during the slot searching. Six ultrasonic sen-
sors are used to detect the distance to the front and rear
parked vehicles during the posture alignment in the parking
space. The automatic parking system algorithms run in the
MicroAutoBox (dSPACE) controller, with a CPU clock speed
of 300MHz.

Fig. 16 shows the real vehicle test scenario and a park-
ing process when the slot length (4.57 m) is the standard
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FIGURE 14. Mean reward of each item in the reward function of training data in the reinforcement learning process. (a) Safety. (b) Y in the posture.
(c) θ in the posture. (d) Comfort.

FIGURE 15. Experimental platform.

FIGURE 16. Real vehicle parking process. (a) Slot detection. (b) The parking slot is detected, and the vehicle starts to reverse.
(c) The entering parking slot stage. (d) Finish the entering parking slot stage. (e)-(h) Adjusting the heading angle of the vehicle
in the parking slot.

test scenario corresponding to the experimental vehicle. The
parking slot is formed by front and rear obstacles shown
in Fig. 16. The automatic parking system uses a 2D lidar to
detect the parking slot first [34]. Then, the motion planning
module, based on the detected parking slot information and
the real-time vehicle posture estimated by the dead reckoning
module, plans the action command in real-time and sends

it to the chassis control module for execution. After the
vehicle enters into the parking slot, the system determines
whether the heading angle of the vehicle is smaller than
the threshold. If it is true, the parking is completed. Oth-
erwise, based on the distance to the front and rear parked
cars detected by the ultrasonic radar, a method similar to
the mass-produced parking system adjusting posture in the
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parallel parking slot [35] is used to align the ego-vehicle with
obstacles.

2) REAL VEHICLE EXPERIMENT
The real vehicle experiment is to verify the performance of
the algorithm’s generalization ability, real-time performance,
and parking performance on different parking scenarios,
where there are errors in the detected parking slot and the
established vehicle model. We choose three typical parking
scenarios with different lengths of 4.57, 5, and 5.5 m.

The length of the parking slot shown in Fig. 17(a) is
4.57 m, and the length detected by the parking slot module
is 4.45 m. The start posture in the parking coordinate system
is (1.75m, 1.92m,−0.65◦), and the final parking posture is
(−3.76m,−0.83m,−0.76◦). The green line in the figure is
the path of the midpoint of the rear axle of the vehicle during
the entire parking process. It can be seen from the path that the
vehicle completed the parking with six shifts after the enter-
ing parking slot stage, which meets the parking efficiency
requirements. The blue rectangles represent the area scanned
by the vehicle outline during the entering parking slot stage.
There is no collision with the obstacles during the parking
process, which meets the safety requirements. From the final
vehicle posture, it can be seen that the parking depth of the
vehicle is greater than 0.78 m, and the final heading angle
is −0.76◦, suggesting that the vehicle is completely parked

FIGURE 17. Experimental results of 4.57 m parking slot. (a) Parking path.
(b) Desired and actual steering wheel angle. (c) Desired and actual
vehicle speed.

in the slot and align with the obstacles, which satisfies the
final vehicle posture requirements.

Figs. 17(b) and 17(c) show desired and actual steering
wheel angle and vehicle speed during the entering parking
slot stage. The commands of steering angle and vehicle speed
are smooth. The weighted acceleration during the parking
is 0.40m/s2. The human reaction is a little uncomfortable
with this vibration total value. It can be seen from the fig-
ure that there is a deviation between the action command
and the actual value, further illustrating the necessity of
the vehicle model to consider the chassis control deviation.
The algorithm calculates the control command with a cycle
of 50 ms for one planning loop, which satisfies the real-time
requirements.

The experimental results of 5 and 5.5 m parking lengths are
shown in Figs. 18 and 19, respectively. The lengths detected
by the parking slot module are 4.99 and 5.44 m, respectively.

In Fig. 18, the vehicle’s start posture is (1.81m,
2.05m,−1.66◦), and the final parking posture is
(−4.18m,−0.79m,−0.8◦). It can be seen from the path
that the vehicle successfully completed the parking with
two shifts after the entering parking slot stage without
collision, which meets the requirements of parking effi-
ciency and safety. In Fig. 19, the vehicle’s start posture
is (1.70m, 2.28m, 0.92◦), and the final parking posture
is (−4.73m,−0.78m,−0.69◦).The vehicle completed the

FIGURE 18. Experimental results of 5 m parking slot. (a) Parking path.
(b) Desired and actual steering wheel angle. (c) Desired and actual
vehicle speed.
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FIGURE 19. Experimental results of 5.5 m parking slot. (a) Parking path.
(b) Desired and actual steering wheel angle. (c) Desired and actual
vehicle speed.

parking after reversing into the parking slot without collision,
which satisfies the requirements of parking efficiency and
safety. In both cases, the deviations of the vehicle’s final
heading angle are less than 1◦ and the parking depths are
greater than 0.78 m, suggesting that the vehicle is completely
parked in the slot and align with the obstacles, which meets
the final vehicle posture requirements.

The commands of steering angle and vehicle speed in both
cases are smooth. The weighted accelerations during the two
parking scenarios are 0.31m/s2 and 0.12m/s2. The human
reactions are not uncomfortable with the two vibration total
values. The algorithm calculates the control command with
a cycle of 50 ms for one planning loop, which meets the
real-time requirements.

3) BENCHMARK TEST WITH MASS-PRODUCED PARKING
SYSTEM
In this section a benchmark test with a mass-produced
parking system is performed. Among mass-produced park-
ing system suppliers, Bosch occupies a large market
share and is most technically representative. The park-
ing planning method it uses is the geometric method of
the prior knowledge-based method [36], which is also
the mainstream method of mass-produced parking system
suppliers [37], [38]. Therefore, we selected the latest genera-
tion of the parking assist system of Bosch for the benchmark.
The system is deployed on the Skoda Kodiaq. Then, due to

the difference in the size of the test vehicle, the size of the
corresponding test parking slot is determined based on the test
standard of the parking assist system ISO 16787:2017 and the
test vehicle parameters, as shown in Table 5.

TABLE 5. Test vehicle parameters and corresponding slot length.

Most of the mass-produced parking system is a parking
assist system. The steering wheel is automatically controlled
by the parking system, while the driver needs to control the
throttle, brake, and gear. To ensure the fairness of the test,
during the mass-produced system test, the driver does not
control the accelerator pedal at all. The car runs at idling
speed (i.e., 4km/h). When the vehicle approaches front and
rear obstacles, the driver controls the brake pedal to slow
down. At the same time, the driver pays attention to the
dashboard and immediately takes action as prompted.

The difference in configuration (start and end postures)
may affect the ease or complexity of searching the final
solution for nonholonomic systems.

The end posture depends on vehicle parameters. To ensure
fairness during the test, the requirements for the end pos-
ture of the two systems are based on the test standard
ISO 16787:2017, as shown in Table 4.

Due to the nonholonomic constraints, the vehicle cannot
move laterally or change the heading angle without moving.
Therefore, y and θ in the start posture have a consider-
able impact on the complexity of finding the solution. The
test standard specifies performance requirements during slot
search mode. According to the test standard, the supported
lateral clearing distance to parked vehicles shall be in the
range of [0.5m, 1.5m], and the angle between the ego-vehicle
and connecting line of the parked vehicles shall be in the
range of [−5◦, 5◦]. The above performance requirements
determine the range of y and θ in the start posture. Thus,
the requirements for y and θ in the start posture of the two
systems are also based on the test standard.

However, x in the start posture, is not specified in the test
standard. Thus, it is controlled and determined by the parking
systems. For the mass-produced parking system, as men-
tioned above, the driver diligently follows the system prompts
and does not actively intervene.

In summary, factors that significantly influence the non-
holonomic restraint system, such as y and θ in the start
posture, and the end posture, are determined based on the test
standard. For x in the start posture, as there is no regulation
provided in the test standard, it is controlled and determined
by the respective parking system. This ensures the fairness of
the benchmark test as much as possible without active human
intervention in the parking system.

The data recorded in the parking process are shown
in Tables 6(a) and 6(b), including the start parking posture,
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TABLE 6. Experimental results of benchmark tests. (a) Mass-produced parking system. (b) Reinforcement learning parking system.

final parking posture, total parking time (time from vehicle
reverse into the parking slot to the completion of parking),
and the number of shifts.

The results of the start posture demonstrate that the aver-
age lateral distance of the mass-produced parking system to
parked vehicles is d1 = 2.02 − 1.88

/
2 = 1.08m, whereas

the distance of our proposed system is d2 = 1.88−1.55
/
2 =

1.1m. d1 and d2 are basically equal and within the range of
[0.5m, 1.5m]. The start heading angles of the two parking
systems are also within the range of [−5◦, 5◦], as specified
by the test standard.

During the experiment, neither of the two parking systems
collided with the parked obstacle, which confirms the safety
of the parking systems.

For the final parking posture, the target final heading angle
is 0◦. The target final parking depth depends on the width
of the vehicle. It can be seen from the parking coordinate
system shown in Fig. 3 that when the parking depth is greater
than half the vehicle width, it indicates that the vehicle is
completely parked in the slot. From the vehicle parameters
shown in Table 5, the parking depth of the mass-produced
parking system and our parking system should be greater than
0.99 and 0.78 m, respectively. The average parking depths of
the two parking systems, as shown in Tables 6(a) and 6(b),
are 1.07 and 0.83 m, which meets the parking depth require-
ments mentioned above. For the heading angle of the final
parking posture, the mean deviation of our automatic parking
system (0.54◦) is basically equal to that of the mass-produced
parking system (0.44◦). However, the standard deviation of
the final heading angle of the mass-produced parking sys-
tem is smaller, which suggests that its performance is more
stable. The heading angle of the vehicle in the parking slot
is determined according to the distances returned by the
ultrasonic sensors to the front and rear obstacles. Due to the

low refresh rate (5Hz) of the ultrasonic sensor used in our
parking system, the vehicle cannot respond in time during the
posture alignment process in the parking slot, which affects
the stability of the final parking posture.

Regarding the number of shifts and parking time, our park-
ing system performs better than the mass-produced one. The
average number of shifts in our proposed system is 3.6 less,
and the average parking time is half of the mass produced
system. The standard deviation of the above two items of our
proposed system is also much smaller.

There are two main reasons for the short parking time
of our parking system through the analysis of the experi-
mental results. First, the mean start posture of our parking
system is closer to the parking slot. It can be seen from
Table 6(a) and Table 6(b) that the abscissas of our parking
system are much smaller than the mass-produced parking
system. Therefore, the parking path is also shorter, mak-
ing parking more efficient. After the mass-produced sys-
tem detects the parking slot, the driver will be prompted to
continue driving for a period before starting to park, which
makes the vehicle far away from the parking slot. This is
probably because the vehicle needs to reach a certain area
before parking, i.e., the start posture range where it can
park is limited. However, our parking system has large data
coverage during training. This allows the motion planning
module to adapt to a variety of parking scenarios, reducing the
start parking posture requirements, and thus reducing parking
space external to the parking slot. Second, the average num-
ber of shifts in our parking system is significantly smaller.
It can be seen from Tables 6(a) and 6(b) that the number of
shifts has a great influence on the parking time. At the same
time, the final vehicle posture of the entering parking slot
stage has a decisive influence on the number of shifts during
the subsequent posture alignment stage. Therefore, it can be
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concluded that our parking system has a better posture at the
end of entering the parking slot stage.

In summary, on the basis of ensuring safety and the final
parking posture performance, our system can effectively
reduce the number of shifts and parking time, improving
parking efficiency and driver experience significantly. Mean-
while, our system has a lower requirement for the start park-
ing posture. The results demonstrate the superiority of the
proposed reinforcement learning algorithm.

VIII. CONCLUSION
In this article, we innovatively propose a model-based rein-
forcement learning method for automatic parking motion
planning. The method removes human experience to a
great extent and learns parking quickly and autonomously.
The learned strategies ensure multi-objective optimization,
including safety, comfort, paring efficiency and final parking
performance. First, a framework of reinforcement learning
methods for the parking strategies is proposed, which itera-
tively executes data generation, data evaluation, and training
network to learn data knowledge. The updated network is
used for the subsequent iteration cycle of the data generation.
To achieve a fast learning, a vehicle model based on the
transfer function combined with a kinematic vehicle model is
constructed to simulate the interaction between vehicle and
environment. Then, based on the model, a large amount of
data is obtained using a data generation algorithm. Besides,
to select the parking data with the best performance, a reward
function is constructed, and the above performance require-
ments are considered comprehensively. Finally, a neural net-
work is trained to learn the knowledge of selected parking
data.

In future research, other influencing factors in the envi-
ronment, such as environmental perception and road environ-
ment can be considered during modeling, to further improve
the accuracy of the model, and thus improve the performance
of the parking system. Furthermore, the reinforcement learn-
ing algorithms can be extended to the longitudinal policy to
further reduce the introduction of human experience.
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