IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 17, 2020, accepted August 5, 2020, date of publication August 19, 2020, date of current version September 9, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3017743

Hybrid Machine Learning Ensemble Techniques
for Modeling Dissolved Oxygen Concentration

SANI ISAH ABBA'!, NGUYEN THI THUY LINH2-3, JAZULI ABDULLAHI?,
SHABAN ISMAEL ALBRKA ALI*5, QUOC BAO PHAM “67, RABIU ALIYU ABDULKADIR""8,
ROMULUS COSTACHE %10, yAN THAI NAM'!, AND DUONG TRAN ANH"“!

! Department of Physical Planning Development, Yusuf Maitama Sule University, Kano 700221, Nigeria

2Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam

3Faculty of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Vietnam

“Department of Civil Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Cyprus
SSustainable Urban Transport Research Centre (SUTRA), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
SEnvironmental Quality, Atmospheric Science and Climate Change Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
7Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
8Department of Electrical Engineering, Kano University of Science and Technology, Wudil 713101, Nigeria
9Research Institute of the University of Bucharest, 050663 Bucharest, Romania

10National Institute of Hydrology and Water Management, 013686 Bucharest, Romania

"Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam

Corresponding author: Quoc Bao Pham (phambaoquoc @tdtu.edu.vn)

ABSTRACT The reliable prediction of dissolved oxygen concentration (DO) is significantly crucial
for protecting the health of the aquatic ecosystem. The current research employed four different single
Al-based models, namely long short-term memory neural network (LSTM), extreme learning machine
(ELM), Hammerstein-Weiner (HW) and general regression neural network (GRNN) for modeling the DO
concentration of Kinta River, Malaysia using available water quality (WQ) parameters. Afterwards, the first
scenario used four different ensemble techniques (ET). Two linear, i.e. simple averaging ensemble (SAE) and
weighted averaging ensemble (WAE) and two nonlinear namely; backpropagation neural network ensemble
(BPNN-E) and HW ensemble (HW-E). The second scenario employed a hybrid random forest (RF) ensemble
in order to enhance the prediction accuracy of the single models. The WQ parameters were subjected to a
different pre-analysis test to ascertain their stability. The four-model combinations are generated using the
nonlinear sensitivity input selection approach. The modeling performance was assessed using the statistical
measures of Nash-Sutcliffe coefficient efficiency (NSE), Willmott’s index of agreement (WI), root mean
square error (RMSE), mean absolute error (MAE) and mean square error (MSE) and correlation coefficient
(CQ). The results of the single Al-based models demonstrated that HW (M3) served as the best model for
predicting DO concentration. For ensemble results, BPNN-E (WI = 0.9764) was superior to the other three
ET with average decreased of more than 2% with regards to MAE. Investigation on the hybrid RF ensemble
demonstrated the reliable accuracy for all the hybrid models with better predictive skill shown by the HW-RF
(CC = 0.981) ensemble. The overall results verified the promising impact of HW-M3, ET and hybrid RF
ensemble for the prediction of the DO concentration in the Kinta River, Malaysia.

INDEX TERMS Dissolved oxygen, artificial intelligence, ensemble techniques, hybrid random forest

ensemble, Kinta River.

I. INTRODUCTION

The health of a river solely depends on the dynamic and
uncertain behaviour of water quality (WQ) parameters, which
can be described by their physico-chemical and biological
characteristics [1]-[3]. Determination of WQ is indispensable
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to protect the ecosystem and attain sustainable development.
The dynamic nature in terms of concentration and permissible
fluctuation of River WQ parameters may have complex
consequences throughout the aquatic environment [4]-[6].
Among the WQ variables, dissolved oxygen (DO) is widely
known as one of the most important parameters indicating
the health and the state of aquatic ecosystems, and therefore
its modeling is essential for River WQ, watersheds, wetland
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ponds, and other hydro-environmental analysis [7], [8].
DO also serves as a significant index for the evaluation of
pollution concentration; in terms of its effect, low or high
concentrations of DO threatens the aquatic life and endanger
the environmental balance of the entire aquatic environment.
As such, it is crucial to provide an enhanced approach
for modeling uncertain DO. Based on previous studies
on Artificial Intelligence (AI), different AI models have
been widely used to simulate and predict DO concentration
owing to their accuracy, fast learning speed and non-linear
nature [9].

Based on the developed literature on the prediction and
simulation of DO concentration, the classical linear regres-
sion tools have been widely established, which have generally
been reported as being associated with low prediction
accuracy. This necessitates the development of a strong,
accurate and non-linear hydro-environmental method known
as the AI approach. In parallel with this, different types
of AI based models have been explored for DO prediction
such as artificial neural network (ANN) [11]-[15], support
vector machine (SVM) [9], [16]-[20], adaptive neuro-fuzzy
inference system (ANFIS) [13], [15], [21]-[24], comple-
mentary wavelet-Al model, and hybrid evolutionary algo-
rithms [20], [25], [26], [29], [30] extreme learning machine
(ELM) [30], [31], deep learning neural network [32], [33] and
fuzzy logic models [34]-[36] for the modeling and prediction
of DO concentration.

Furthermore, Heddam [37] applied general regression
neural network (GRNN) for the modeling and simulation
of DO concentration, and the results were compared with
the traditional multi-linear regression analysis (MLR) model.
The predictive performance skill showed the superior-
ity of the GRNN model over the linear MLR model.
Emamgholizadeh et al. [22] developed the application of
multilayer perceptron (MLP), radial basic function neural
network (RBNN) and ANFIS models for the prediction of
DO, biological oxygen demand (BOD) and chemical oxygen
demand (COD) in the Karoon River, Iran. For this purpose,
nine input variables were used for the models. The results
showed that the performance accuracy of RBNN and ANFIS
were in close agreement; on the other hand, the MLP model
exhibited better performance accuracy over the RBNN and
ANFIS models. Nemati et al. [38] investigated the use of
MLR, ANN and ANFIS for the estimation of DO in the
Tai Po River, Hong Kong. The data measured from the
river included chloride (Cl), pH, electrical conductivity, tem-
perature (Temp), nitrate-nitrogen (NO,N), nitrate-nitrogen
(NO3-N), ammonia nitrogen (NH4-N) and total phosphorus
(T-P). The prediction accuracy of the models based on
different performance efficiencies indicated that the ANN
model had better accuracy than MLR and ANFIS models
in modeling the DO concentration Kisi ef al. [26] studied
the performance of three Al-based models, namely MLP,
ANFIS and genetic programming (GP), for the estimation
of DO concentration in the South Platte River at Englewood,
Colorado. For this purpose, various input combinations were
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used, and the results demonstrated the capability of GP over
the MLP and ANFIS models. Elkiran et al. [10] employed
three different data-driven models including FFNN, ANFIS
and MLR for multi-station prediction of the DO concentra-
tion in the Yamuna River, India. The results demonstrated
the capability of the Al- based models over the MLR model.
Comparison based on the performance accuracy revealed that
ANFIS was more effective than the FFNN model.

Besides the above studies, Yaseen et al. [9] employed
different data-intelligence algorithms including least square
support vector machines integrated with a bat algorithm
(LSSVM-BA), M5-Tree and multivariate adaptive regression
splines (MARS) models for the prediction of DO concen-
tration in a river using different input combinations. The
outcomes revealed that LSSVM-BA outperformed the other
models with considerable accuracy. The obtained results also
indicated that both the employed models were capable of
predicting DO concentration Alizadeh and Kavianpour [39]
applied ANN and WNN for the estimation of WQ parameters
(DO) in Hilo Bay, Pacific Ocean using various combinations
of WQ input parameters. The results depicted that the
performance of the WNN models was better than the ANN
models Zhu and Heddam [31] studied the application of the
ELM model for the estimation of DO concentration in four
different Rivers in China. The study invoves different set of
WQ paameters. The predictive results were compared with
the traditional MLP, and the outcomes showed that both ELM
and MLP were capable of modeling the DO concentration.
The performance of the models also indicated that MLP
slightly outperformed the ELM model Yalin et al. [34]
developed a study based on fuzzy neural network for the
prediction of DO concentration in a crab pond, and the
prediction results indicated the suitability of the fuzzy neural
network in DO prediction over a grey neural network.
Similarly, Zounemat-Kermani and Scholz [35] reported the
capability of the fuzzy model in modeling and predicting
DO concentration. Besides the application of MLP, SVM,
ANFIS, the deep learning (DL) neural network has also been
reported in some recent studies such as Ta and Wei [32]
who proposed the application of a convolutional neural
network (CNN) and compared it with the traditional BPNN
for modeling the DO concentration using data obtained
from Mingbo Experimental Base in Shandong Province.
The results indicated that the superiority of the CNN in
terms of performance accuracy over the traditional BPNN
Liu et al. [33] employed Long Short-term Memory (LSTM)
deep neural networks for the prediction of WQ parameters
using data measured from Guangzhou water source of the
Yangtze River in Yangzhou, Malaysia. The results showed the
feasibility of the LSTM model for estimating WQ parameters.

In fact, all the previous researches justified the reliability of
the black box models (e.g. MLP, ANFIS, SVM) for modeling
and predicting DO concentrations over different geographical
location around the globe. Despite the satisfactory records of
such Al-based models, it is evident that no single model has
been verified as the most effective for all kinds of data set,
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as certain issues with different models may lead to different
outcomes. The data characteristics, like size, linearity,
normality, size, and so on, have an effect on the model’s
predictive performance [40]. According to Sharghi et al. [40]
and Raj Kiran and Ravi [41], the combination of several mod-
els could enhance the forecasting performance. The overall
concept of combining the models (ensemble modeling) is
to take advantage of the unique features for the constituent
models to bring about different patterns presented in the
dataset. Khan and Chai [42] employed an ensemble of ANN
and ANFIS models for the prediction of water quality index
in the Hog Island Channel Monitoring Station. The obtained
results proved that the ensemble techniques produced better
results than the single model. Nourani et al. [43] proposed
and applied different types of ensemble approaches for the
prediction of a wastewater treatment plant in Nicosia, Cyprus,
using the output of FFNN, ANFIS, SVM, and MLR models.
The outcomes indicated that the ensemble model has better
prediction accuracy. This technique has been also applied
in various fields of hydro-environmental engineering, such
as precipitation [44], earth-fill dam seepage analysis [40],
evapotranspiration [45], and River WQ [46].

One of the factors affecting the accuracy of the models
is the model input determination, which depends on the
identification of the Al-based models, and others include
model configuration, prediction horizon, etc. According to
Hadi et al. [47] different approaches have been reported
for determining the most suitable input variables including
principle component analysis (PCA), autocorrelation func-
tion (ACF), partial autocorrelation function (PACF) and
Pearson correlation analysis. Conversely, those techniques
are associated to the input-output linear relationship [48].
To overcome this drawback as part of the current study,
nonlinear sensitivity analysis will be used to extract the
dominant input variables. However, the proposed techniques
serve as the first study depicting the application of enhanced
hybrid Al at Kinta River and up-to-date to the best knowledge
of the authors here is no conducted technical research
using this approach. The objectives of this study are:
(1) To develop a neuro-sensitivity approach using MLP to
determine the influence of each WQ parameter on DO
concentration; (ii) To develop and compare the potentials of
different data-intelligence models including ELM, LSTM,
HW, and GRNN models; (iii) To improve the prediction
accuracy using four different ensemble techniques including
two nonlinear models, i.e. backpropagation neural network
ensemble (BPNN-E) and HW ensemble (HW-E), and two
linear models, namely weighted averaging ensemble (WAE)
and simple averaging ensemble (SAE), for scenario 1 and a
hybrid random forest (RF) ensemble for the black box model
in scenario 2.

The main motivation of this study in the realm of
environmental research is the inspection of potential non-
linear sensitivity analysis for selecting the most dominant
attribute to the target value (DO). Some robust modeling
techniques are considered in this study, which is relatively
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new to the application of DO concentration. Moreover, for
complex and chaotic systems such as river dynamics, single
models often provide an unsatisfactory forecast. For this
purpose, the hybrid model is established to improve the
prediction performance of the single models. The use of
hybrid ensemble RF with the Al-based models (RF-LSTM,
RF-ELM, RF-HW, and RF-GRNN) for DO modeling has
not received much attention in the literature. With the afore-
mentioned references in the literature section, various studies
were explored using several compactional intelligent models
indicating the real environmental simulation. Yet, for utilizing
the appropriate decision making, emerging algorithms need
to be incorporated for hydro-metrological and environmental
modeling. Similarly, most Al-based models, are intricate and
thus their calibration involve high computing costs. Recently,
Al models such as ELM, HW and LSTM have gradually
become popular in various water management application,
owing to their simplicity, robustnesss and high computational
efficiency in handling large data compared to several other
Al methods [33], [48], [51]. It is evident with the above
reviews that the application of the relatively simple LSTM,
ELM, GRNN, SAE, WAE, BPNN-E, HW-E and hybrid RF
ensemble has not been evaluated before at Kinta River,
Malaysia.

Il. MATERIAL AND METHODS

A. LONG SHORT-TERM MEMORY (LSTM)

Long short-term memory neural network (LSTM) is a special
type of recurrent neural network (RNN) that can solve
the issues of gradient explosion and gradient disappearance
effectively during RNN training as well as increase the
accuracy of RNN [33]. This model was designed to minimise
the weakness of the classical RNN, which generally does not
have the ability to remember sequences with a length of 10 or
more. All RNNs take the form of chained repeating modules
of the neural network. LSTMs, which involves the usage of
special memory cells used in storing information, also have
this chain with an almost identical structure [33], [51], [52].

B. EXTREME LEARNING MACHINE (ELM)

Normally, the traditional ANN model requires that the
parameters of the hidden neuron are tuned. ELM has recently
been developed as a novel technique that map the internal
features without the requirement of a traditional ANN [53].
From several pre-assigned neurons in the ELM, weightings of
the input and hidden neurons are calculated at random. These
values do not have to pass through all the neurons. Also,
the ELM’s generalization capacity requires less computating
time [50]. The ELM was first suggested in [53] as a
new developed data-driven black-box model consisting of
a single hidden layer feed-forward network (SLFN). The
ELM somewhat distinct from the conventional feed-forward
NN (FFNN) by handling the issues of slow learning,
overfitting, and local minima [54]. In particular, the potentials
of the ELM may be ascribed to the generalization capacity
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and high learning speed. Hence, ELM has been widely
implemented in hydro-environmental studies [50], [55].

C. HAMMERSTEIN-WEINER MODEL (HW)

The Hammerstein-Weiner (HW) model is another form
of a black-box model, developed for nonlinear systems
identification [56]. In HW model a linear dynamic system
is sandwiched between two nonlinear blocks. In general, the
configuration of the HW model is contained three blocks: a
static input nonlinear block, followed by a linear dynamic
block, and then another static output nonlinear block [57].
The HW model converts a given nonlinear inputs into a
piecewise linear function blocks, and then transform it into
a nonlinear output function.

D. GENERAL REGRESSION NEURAL NETWORK (GRNN)
GRNN is a type of ANN that has an important and
attractive characteristic of self-learning ability and can
handle complex non-linear problems. The modeling using
GRNN can be performed accurately without employing large
data sets [16]. Also, GRNN has the capability to resolve
problems concerning smooth functions, approximation, and
can also generate consistent prediction accuracies [37]. Due
to this, the algorithm exhibits fast learning speed, which
demonstrates excellent results in the field of environmental
modeling.

E. PROPOSED SINGLE MODELING SCHEMA

Based on a review of the literature, it is apparent that
numerous studies using data-intelligence algorithms have
been conducted and have shown promising performance for
modeling complex systems. For the current study, the DL
neural network (LSTM), emerging self-adaptive predictive
model (ELM), non-linear system identification model (HW)
and recently developed traditional neural network (GRNN)
were proposed separately for modeling the DO concentration
of Kinta River, Malaysia. Afterward, two different scenarios
were applied using a novel ensemble approach and hybrid
random forest ensemble, as highlighted in section 1 above.
Although the AI models proved robust, the determination
of appropriate input variables is the major problem in
most of the techniques. According to Hadi e al. [47] and
Yaseen et al. [50], excessive inputs deteriorate the model
performance while too little inputs may not reveal all of
the hidden information in the time series. Therefore, in this
study, nonlinear sensitivity analysis was carried out using
MLP owing to its promising capability for modeling DO
concentration and other WQ parameters. Other feasible alter-
natives to sensitivity analysis and input variables selection
may also be used. After that, the first scenario used four
different ensemble techniques (ET) (two linear (i.e. simple
averaging ensemble (SAE) and weighted averaging ensemble
(WAE)) and two nonlinear techniques, i.e. BPNN-E and
HW ensemble (HW-E)) and the second scenario employed
a hybrid random forest (RF) ensemble in order to enhance
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the prediction accuracy of the single models. The general
proposed flowchart is presented in Fig. 1.

1) ENSEMBLE LEARNING TECHNIQUE (ELT)

The ability to combine models (ensemble technique) to
improve the final prediction has been successful in various
fields including classification, hydro-environmental, water
resources and traffic engineering [58]. ELT is a discipline
in the field of machine learning used to combine the
process of obtaining multiple predictors by single models
to enhance the final prediction performance. The main
target of the ensemble is to produce higher accuracy
and reliable estimates than could be achieved through a
single model [59]. As reported by Khan and Chai [42],
Elkiran et al. [46], there are two ensemble techniques: (1)
linear ensemble method, which includes linear ensembles by
simple averaging, weighted averaging and weighted median;
and (2) nonlinear ensemble method, which involve the use of
black-box model as nonlinear kernels to obtain an ensemble
output. Other researchers have categorized the ELT into two,
namely homogeneous and heterogeneous ensembles; when
ELT comprised of the same learning algorithm (e.g. neural
network), it is called homogeneous, but if it consists of
different learning algorithms, it defined as heterogeneous.
As suggested by [40], [43], the heterogeneous ensemble is
recommended for overcoming the model diversity and for
attaining prediction accuracy.

Therefore, two linear (i.e. simple averaging ensemble
(SAE) and weighted averaging ensemble (WAE)) and two
nonlinear techniques, namely BPNN-E and HW ensemble
(HW-E) were employed in this study to simulate the DO
concentration of the Kinta River.

a: LINEAR ENSEMBLE APPROACH
The proposed SAE approach is carried out by considering the

arithmetic average of the predicted model’s outputs (ELM,
LSTM, GRNN, and HW) as:

1 n
DOy = N Zi:l DOy, (H

Similarly, the WAE approach can be obtained by assigning
aunique weight to each of the individual outputs, and the final
predicted outcomes are obtained by averaging the models.
The WAE provides more reliable predictive skills than the
SAE owing to the nature of assigning weights, and it can be
expressed as:

N
DOy = wiDOw; )

where w; is the assigned weight on the output of the i model,
DO(t) is the output of the ensemble model (SAE or WAE),
DOy is the i single model output (here outputs of ELM,
LSTM, GRNN, and HW) and N is the total number of the
single models (here, N = 4). The term w; can be expressed as:

DC;
Wi = [—Z-N DCZ} 3
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FIGURE 1. General proposed methodology.

b: NONLINEAR LINEAR ENSEMBLE (NLE) APPROACH

The approach of NLE is similar to the traditional BPNN
model where the outputs of the single models, i.e. LSTM,
ELM, GRNN, and HW models are imposed and trained using
a new neural network (NN). The procedure follows the same
trend of the traditional NN in terms of best architecture
selection. Recently, the application of the NN ensemble has
received attention in different fields of hydro-environmental
engineering, including earth-fill dam seepage analysis [40],
vehicular traffic noise [60] etc, and all have reported the
superiority of the NLE over the single model. Moreover,
the above studies suggest the use of other nonlinear kernel
functions as an alternative for such nonlinear ensembling.
Hence, this study proposes an ensemble using the HW
model as the additional nonlinear kernel function due to
its advantages for single modeling prediction. Even though
the HW modelling technique has not been implemented for
DO prediction, the technique has demonstrated enormous
potentials in water resource researches [56]. Fig. 2 shows the
schematic of the proposed NLE techniques using the BPNN
model.

2) SCENARIO II: HYBRID RANDOM FOREST (RF) ENSEMBLE
The Traditional ANN was previously considered to have
the strong capability to handle complex nonlinear relation-
ships, but recent studies have reported various defects and
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difficulties in modeling WQ parameters with the traditional
ANN and other Al-based models. Consequently, researchers
are no longer solely reliant on single Al-based models to
capture the nonlinear nature of hydro-environmental systems.
Hence, hybrid models have been proposed to enhance the
evaluation accuracy [61]. In this section, the hybridization
of an RF ensemble with four data intelligence algorithms
(LSTM, ELM, HW and GRNN) was employed.

RF is one of the powerful ensemble machine learning
algorithms proposed by Breiman (2001) by adding an
additional randomness layer to the bagging method [62], [63].
RF performs its function by generating multiple decision
trees using a randomization process. These processes produce
a large ensemble of trees, and the overall predictions are
achieved from the averaged outcomes. The decisions are
generated using bootstrapping or a random selection of inputs
that are used to create the various base trees. Very recently,
there has been increasing interest in RF, and it has been
applied in different areas [64], [65]. This is of course, due
it’s an advantage of overcoming overfitting difficulties, which
are reported as one of the most severe problems of Decision
Trees (DT). For the implementation of RF, understanding the
values of the two parameters are essential, which are ntree and
mtry. The ntree stands for the number of trees in the forest and
is used for finding the optimal value, while mtry indicates the
number of parameters in the random subset at each node [66].
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FIGURE 2. Procedure of the developed method for BPNN-E modeling.

As an ensemble learning technique on its own, RF pre-
dictions offer a suitable relationship between dependent and
independent variables. Therefore, the proposed hybrid RF
with Al-based models employed in this study combines the
best fitted single models in the form of a regression tree
to each bootstrap sample taken from the original predicted
values. In RF, each of the different decision trees contributes
to the overall RF result, which serves as the weighted average
of all the results. Although several hybrid models have
been proposed using optimizations algorithms to improve
prediction and evaluation of accuracy, to the very best
knowledge of the author, the hybrid combining the ensemble
(i.e., RF) method with the Al-based models (RF-LSTM, RF-
ELM, RF-HW and RF-GRNN) has not been considered.

F. MODELS’ EVALUATION CRITERIA

For validating the performance efficiency of the models, var-
ious measures were considered as a multi-criteria approach
for the models evaluation. The predictive performance of the
models is evaluated using three statistical error viz; Root
Mean Square Error (RMSE), Mean Absolute Error (MAE)
and Mean Square Error (MSE) and three goodness-of-fit
measures, including Nash-Sutcliffe coefficient efficiency
(NSE), Willmott’s Index of agreement (WI), and Correlation
Coefficient (CC). MAE describe the actual error difference
by disregarding the influence of negative values. Low values
of MAE suggest that the accuracy of the prediction model
is high. MSE is the sum of the square of the differences
between the predicted and actual values, although residual
show proportionality effect at an individual level in MAE,
the consequence of square raise MSE always higher than
the MAE and the effect of outliers can easily get recognize.
NSE usually take values in the range of —oo and 1. The
match between the predicted and observed data is considered
to be perfect for NSE = 1. The closer the NSE is to 1,
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the more accurate the prediction is. However, with regards to
regression techniques, the NSE is the same as the coefficient
of determination (R*), hence ranging between 0 and 1.
Similarly, WI account for the degree of the forecast error
and ranges from O to 1. Where WI value of 1 signifies
a perfect match between the observed and predicted data,
whereas WI equal to O shows that there is no agreement
between the predicted and the observed data. However, W1 is
very sensitive to extreme values because of the squared
differences. For more information about performance criteria
referred to [56], [68]

NSE
-1 Zivzl (Daobsi - DOpred,-)2
=1- — 5>
25\721 (Doobs,' - DOobs)
—o0 < NSE <1 4)
Wi
2
—1— vazl (Doabsi - DOprdi)
Zi'v=1 (]DOpredi_D_Oobs|+(|D00bsi_D_00bs|))
O<WwWIl<l1 5)
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Y| (DOgps; — DOprg )
= N ©)
MAE
1 N
= ﬁ Zi:l |D00bsi - Dopredi| 7)
cC
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1
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FIGURE 3. Location of (a) Kinta district and (b) drainage Rive Basin, Malaysia.

where N, DO, DO yps; and DO,yq; are data number, observed
DO, average value of the observed DO and predicted DO
value, respectively.

IlIl. STUDY LOCATION AND DATA DESCRIPTION
The Kinta catchment area is found to lie along latitude N 040
07’ 102* and N 040 40’ 115°, longitude S1010 01° 284’ and
S 1010 09’ 400’. It covers an area of about 2,500 km? with a
length of almost 100km. Generally, it is utilized for industries,
residential areas and farming. For example, the River Kinta is
subdivided into three main divisions: downstream, upstream
and undulating. This is one of the largest rivers that cross
through Ipoh, where the other two Rivers are the River Pinji
and the River Pari. It also flows at about 200m above sea
level from Gunung to Perak River [68]. This river, together
with its tributaries, drains a basin that covers an area of
almost 2,500 km?. The river also flows via heterogeneous as
well mixed-use land where, besides extensive forest cover,
the main uses of the land in the basin are palm oil planting,
mining, rubber planting, logging and urban development. The
Kinta River is the primary source of water for irrigation and
drinking in Ipoh as well the main tributary of the River Perak,
which serves as the main source of water for drinking and
irrigation in Perak [69]. Currently, there is only one dam on
the Kinta River, in which was constructed in 2000 to increase
the water supply of Perak to 25%. This dam can provide
almost 650,000 m3 of water daily and satisfies the water
demands of the people. The location district and drainage map
of the study area are presented in Fig. 3a and b, respectively.
The WQ data s collected from Department of Environment
(DoE) (Malaysia), consisting of 301 instances for the period
of 12-year (2002-2013) with 301 instances. The dataset is
composed of six monitoring stations’ records which are
located at the Kinta River, Malaysia. The WQ parameters
includes DO, BOD, COD, temperature (Temp), ammonia
(NH3), total solids (TS), chlorides (Cl), calcium (Ca),
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PH and sodium (Na). The data were portioned into 75% for
calibration and 25% for verification of the model. However,
for any Al-based model, the primary target is to fit the
model to the given dataset with the aim of attaining a
reliable estimation on the unknown datasets. In this regard,
k-fold cross-validation method is employed for the dataset
validation. The k-folding method has the ability to optimize
the model by using separate dataset for the training and
validation phases. In this study similar to many other
hydro-enviromental studies, 10 k-folding cross-validation
procedure is used, however, other alternatives may also be
used. The descriptive statistical analysis of the datset under
the study is given Table 1, and normalization of the data was
done using Eq. 10.

y=0.05+ (0.95 <M>)
Xmax — Xmin

where y is the normalized data, x is the measured data,
Xmax and Xx,,;, are the maximum and minimum value of the
measured data, respectively.

(10)

IV. RESULTS AND DISCUSSION

As stated above, the current study has three main objectives,
namely to apply four different intelligence algorithms for
modeling DO, to enhance the prediction performance using
two linear and two nonlinear ensemble techniques and finally,
to propose a hybrid RF ensemble using the best outputs of
the single models. Hence, this section presents the obtained
results of the two scenarios (ensemble techniques and hybrid
RF ensemble).

A. PRELIMINARY AND RELIABILITY ANALYSIS

For any time-series data, pre-analysis of the individual data,
i.e. the individual inputs, is paramount because their accuracy
can significantly contribute to determining the efficiency of
the individual models. As such, reliability and stationary
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TABLE 1. Statistic of WQ parameters.

Parameters  Xmean Sk Cu Xonin Kimax
DO 4.82 2.12 0.29 0.28 9.93
BOD 4.09 4.7 6.97 1 54
COD 26.34 15.84 2.37 3 138
pH 6.99 0.42 -0.87 4.54 8.29
NH3 0.43 0.71 2.68 0.01 4.22
TEMP 27.94 1.99 0.05 23.06 35.49
TS 216.67 481.62 12.59 17 7613
Cl 6.38 7.19 4.55 0.5 77
Ca 12.48 9.81 3.13 0.05 105
Na 6.56 5.72 5.74 0.05 71

tests were conducted using the Cronbach’s alpha method and
unit root test (i.e. using Augmented Dickey-Fuller (ADF))
analysis to ascertain the stability of the data. According
to Hair e al. [70] variables of a dimension are internally
consistent if their Cronbach’s alpha values exceed the
threshold of 0.7. Dickey et al. [71] reported that the ADF test
is carried out to have more reliable and valid outcomes and
to ensure the stationarity of all the variables. The data used in
this study certified all the stationarity requirement with regard
to the unit root test.

Besides the pre-analysis, determination of the correlation
coefficient is also crucial for the development of data-driven
models since the directional sign (negative or positive)
indicates the relationship between the dimensions and also
shows the proportionality of the independent and dependent
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variables (see, Fig.4). The selection of 4 input combina-
tions is predominantly based on the nonlinear sensitivity
analysis. The advantage of using the nonlinear sensitivity
input variables selection approach to carefully determine
the most relevant factors has been reported in various
studies [47], [72], [73]. Therefore, a sensitivity analysis using
MLP between the observed WQ parameters was evaluated,
and the average values of RMSE and NSE were considered
and ranked in hierarchical order of the WQ variables as
presented in Table 2.

From Fig. 4, despite the linearity function of the Spearman
Pearson Correlation but still depicted good relationship
between the parameters. However, neither the direct nor
sign signifies the strength and weakness of the correlation
bonding. In any relationship matrix there exist a positive
and negative correlation in which the former indicates the
corresponding increases between the WQ paper and later
shows an inverse pattern [74].

Except for TS, all the WQ variables show excellent inverse
relationship with the DO. Even though studies such as [43],
[46], [47], [57], [75] have criticized the classical linear input
variable selection and recommended the use of nonlinear
approaches; they are applicable for input selection and the
determination of linear patterns between the variables.

The observed WQ parameters were analysed, and the
statistical overview of the data was obtained as presented
in Table 1. The terms Sk, and Cg, in the table represent
the standard deviation and skewness while Xpmin, Xmax
andXpean indicate the minimum, maximum, and mean
values respectively. According to Table 2, the minimum
and maximum values of the WQ parameters demonstrate
variability trend. The DO concentration varies from 0.28 to
9.93 mg/L.
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FIGURE 5. Time series graph for LSTM-M3, ELM-M1, GRNN-M4 and HW-M3 between the observed and predicted values.
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TABLE 2. Sensitivity analysis results.

Parameters ~ Units RMSE NSE Ranking
Ca (mg/L) 0.0098 0.3950 1
Na (mg/L) 0.0109 0.2441 2

TEMP °C 0.0110 0.2364 3
TS (mg/L) 0.0112 0.1995 4
Cl (mg/L) 0.0113 0.1872 5

NH3 (mg/L) 0.0121 0.0800 6

COD (mg/L) 0.0123 0.0507 7

BOD (mg/L) 0.0125 0.0073 8
pH - 0.0143 -0.2893 9

In recent years it was recorded that impurity related to WQ
and pollution in Kinta River are associated to the extreme
anthropogenic activities owing to the significant amount of
non-biodegradable. The WQ of Huaxi and Yipin River was
defined to be within the pollution level with range of DO:
2.9-10 and DO 5.2-10.5, respectively [31]. According to
Olyaie et al. [17], the predictive performance of the ANN
model may be substantially affected by too much skewness
of the parameters, while a low skewness is more suitable to
model. The pattern variation of the WQ parameters affirms
the complexity and non-linearity of the DO concentration
modelling.

B. RESULTS OF SINGLE DATA-INTELLIGENCE
ALGORITHMS

For modeling DO concentration, four different models
were derived based on the sensitivity analysis as M1, M2,
M3 and M4. These models were separately imposed into
four data-intelligence algorithms (LSTM, ELM, HW and
GRNN), and the performance results were evaluated using
NSE, MAE, WI and RMSE. A performance comparison of
the four data intelligence models was carried out, and the
obtained results are reported in Table 3. It should be noted
that the best hyperparameters structure were attained using
trial and error for all four models. Among the Al-based
models, HW (M3) served as the best model for predicting DO
concentration followed by the GRNN (M4), ELM (M1) and
LSTM (M3) models. Fig. 5 presents the time series variation
graph between the observed and predicted DO concentrations
by the single models. Further analysis of the time-series
results shows that HW-M3 and GRNN-M4 performed well,
while moderate accuracy was observed for both LSTM-
M3 and ELM-MI. The promising capability of the HW
model is certainly not surprising, because it is an evolving
non-linear system identification technique and has shown
better predictive ability in various studies. The quantitative
examination of HW-M3 with regard to NSE = 0.9702 and
MAE = 0.0013 indicates that the model outperformed the
other three models. Also, these comparisons revealed that
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TABLE 3. Performance results of different single models in modeling do
concentration.

Models NSE  MAE WI  RMSE
Léﬁ})M M1 0.5509 0.0136 0.7235 0.0077
M2 0.5869 0.0201 0.7424 0.0094

M3 0.599 0.0195 0.7519 0.0093
M4 0.5909 0.0199 0.758  0.0094

(b) ELM M1 0.644 0.0273 0.7602  0.011
M2 0.6407 0.0289 0.7602 0.0113
M3 0.6297 0.0343 0.7514 0.0123
g M4 0.6362 0.0311 0.7527 0.0117
% Hg\:/)M M1 0.6358 0.0313 0.7509 0.0118
M2 0.6362 0.0311 0.7459 0.0117
M3 0.9733 0.0013 0.9867 0.0024
M4 0.7228 0.0135 0.801  0.0077
Gl({(i\)IN M1 0.6014 0.0194 0.7573  0.0093
M2 0.5673 0.0211 0.7258 0.0097
M3 0.6505 0.017 0.7789  0.0087
M4 0.7656 0.0167 0.878  0.0086

Lg}[)M M1 0.524 0.0248 0.6201 0.1576

M2 0.5169 0.0351 0.6584 0.1873

M3 0.529 0.03 0.645 0.1731

- M4 0.519 0.0342 0.6595 0.185
'§ (b) ELM M1 0.6189 0.0313 0.7594 0.1751
'Lg M2 0.6133 0.0324 0.7617 0.1799
- M3 0.6167 0.0309 0.7634 0.1759
M4 0.6073 0.0307 0.7636 0.1753

Hg/)]\/[ Ml 0.6489 0.0216 0.7444 0.1469

M2 0.6341 0.0278 0.767 0.1668

M3 0.9702 0.0013 0.9851 0.0355

M4 0.7325 0.0113 0.8662 0.1063

Gl(g\)TN M1 0.6307 0.0293 0.6536 0.171

M2 0.6325 0.0285 0.6627 0.1688

M3 0.6411 0.0249 0.7056 0.1577

M4 0.7429 0.0241 0.8714 0.1553

even for the same input combinations, the effect of each
model on independent WQ parameters behaves differently,
for example, HW-M3 and LSTM3.

Another reason for the poor performance of the other
model combinations could be associated with the inverse
relations, which was identified by the negative correlation
between the observed DO concentration and the WQ
parameters except for the pH and TS values. This observation
was similar to the findings reported by Zhu and Heddam [31].
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TABLE 4. Results of four ensemble techniques.

Ensemble Techniques Calibration Verification

NSE MAE WI RMSE NSE MAE WI RMSE
SAE 0.9179  0.0025 0.9562  0.0033  0.8069 0.0643  0.9035  0.0794
WAE 0.9198  0.0024 0.9569 0.0033  0.8128  0.0611  0.9064  0.0782
BPNN-E 0.9714  0.0018 0.9877 0.0019  0.9670  0.0331 09764  0.0182
HW-E 0.9633  0.0019 0.9775 0.0029  0.9555 0.0341 09757 0.0176

The comparison evaluation for the best single models is
provided using two-dimensional Taylor diagram, as presented
in Fig. 6. The Taylor diagram highlights and summarizes
several statistical indices such as correlation (R), RMSE,
and standard deviation between the observed and computed
values [57], [76]. From Fig. 6, it can be observed that the
DO concentration achieved better goodness-of-fit using HW-
M3 with the value of R = 0.9849, LSTM (R = 0.7273), ELM
(R = 0.7867) and GRNN(R = 0.8619) in the verification
phase.

The results lead to the conclusion that for both calibration
and verification, HW-M3 is capable of capturing the complex
nonlinear patterns between the WQ variables. Furthermore,
among all the four models, M3 with eight inputs combination
(Ca, Na, Temp, TS, Cl, NH3, pH, COD) proved merit
and hence served as the most satisfactory and reliable
combination for the simulation of DO concentration. The
promising capability of this combination is not surprising
owing to the fact that it comprises important factors affecting
the performance of DO in a River (pH, Temp) as indicated in
the studies by [10], [16], [17], [27]. Generally, the average
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performance of the LSTM was recorded as unsatisfactory
in both calibration and verification phases. Despite the
predictive skills demonstrated by LSTM as one the state-of-
the-art and DL models, this was not revealed in our study.
This is also in line with the investigations of Vijai and
Bagavathi Sivakumar [77]. Also, Zhang et al. [52] employed
the LSTM with SVR and FFNN, and the obtained results
disclosed that LSTM slightly outperformed FFNN and SVR
with 0.7% and 0.17%, respectively, in terms of R2. It should
be noted that the Kinta River received unprocessed sewage
from various industries and agricultural activities which
heavily contributed to the deterioration of WQ.

C. RESULTS OF THE ENSEMBLE MODELING

As mentioned earlier, the ensemble techniques introduced
in this study are aimed at improving the accuracy of the
individual models (i.e. LSTM, ELM, HW and GRNN). For
this purpose, the advantages of single models are combined,
and the outputs are considered as the subsequent input
parameters. The two nonlinear ensemble models (BPNN-E
and HW-E) were modelled using a similar method to
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FIGURE 7. Scatter and time series graph for (A) SAE (B) WAE (C) BPNN-E (D) HW-E between the observed and predicted values.

that of the respective single models. For the two linear
ensembles (SAE and WAE), the modeling was carried out
using Equations (1) and (2). The performance results of the
ensemble techniques are presented in Table 4. According to
the results, it is evident that all four ensemble techniques
showed higher performance than the single models except
for HW-M3. This statement leads to the conclusion that
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for the prediction of DO concentration in Kinta River, the
ensemble approaches served as the most reliable method.
The factors that cause the superiority of HW-M3 over the
ensemble techniques could be assigned to the drawback of
other single models. In other words, the predictive skills
of the ensemble techniques depend on the efficiency and
accuracy of each of the single models. For example, in SAE,
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FIGURE 8. The comparison box-plot for the four ensemble models during calibration and verification phase.

averaging of all the single models is generated, while for
WAE, the weights are assigned based on relative importance
to enhance the prediction accuracy. These phenomena could
behave as the weakness for improving the prediction accuracy
of the ensemble method.

According to [74] few cases have shown that a single model
can outperform the ensemble techniques. From Table 4,
the direct comparison results reveal a slight increase of
WAE over SAE with regard to the accuracy and BPNN-E
over HW-E. It can be clearly seen that BPNN-E was more
effective than other three ensembles in both calibration and
verification. This robustness of the neural network ensemble
was proved in different studies [40]. The visual investigation,
scatter, and time series plots of the four different ensemble
techniques are depicted in Fig. 7(A-D). The best predictive
model emerged as BPNN-E in which the prediction pattern
was closer to being in agreement with the observed DO
concentration. With regard to the numerical comparison
between the best single model (HW-M3), the outcomes
indicated that HW-M3 yielded a high-performance accuracy
up to 8% over SAE, WAE and 0.9% over HW-E, BPNN-E in
terms of WI criteria in the verification phase.

Similarly, both the calibration and verification results
showed negligible increases among the performance criteria
of the models. However, in general, the model that gives high
NSE, WI and low RMSE, MAE values should be considered
as the best. With regard to the quantitative assessment of
the four ensemble techniques, the predictive accuracy in
terms of MAE indicates that BPNN-E decreases by 3%, 3%,
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and 1% compared with SAE, WAE and HW-E, respectively,
in the verification phase. The exploratory analysis for the
ensemble models is better visualized through the boxplots
in Fig. 8. Boxplots are powerful graphical representation
of data that gives an overview and a numerical summary
of a data set. According to Fig. 8, the closest of all the
models to the observed values is selected to be the best
model based on the mean value, the plot contained (box
and whisker median, mean and staples). The extent of the
spread values between the observed and predicted models
indicates that BPNN-E ranked as the best model among all the
models.

D. RESULT OF HYBRID RF ENSEMBLE

In this article, a hybrid of the RF ensemble (ELM-RF, LSTM-
RF, GRNN-RF and HW-RF) was developed to compare the
ensemble techniques discussed in section 2.6. The predictive
performance of the models was evaluated using NSE, RMSE,
MSE and CC. The calibration and verification results of
the hybrid RF ensemble are presented in Table 5. As seen
from Table 5, the HW-RF has the highest values of NSE
= 0.9566 and CC = 0.981 and the lowest values of RMSE
= 0.0428 and MSE = 0.018 in the verification phase.
By considering the other performance criteria, the results
proved the superiority of all the hybrid models in spite of
the better predictive skill shown by HW-RF. Fig 9. shows the
scatter plots between the observed and predicted values of
the four-hybrid ensemble. According to Fig. 9, it is clear that
the closeness agreement between the observed and predicted
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values were attained in the following order: HW-RF>GRNN-
RF>LSTM>ELM. Furthermore, the CC value of all the
models were found to be greater than 0.7, which conforms

to the conclusion reached by [31] that CC values higher than
0.70 are considered acceptable; thus the results of all four
models are acceptable (see, Table 5).
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TABLE 5. Results of hybrid RF ensemble models.

Hybrid
Models NSE RMSE MSE CC
= ELM-RF 0.8787 0.0051  0.0059 0.9374
"é LSTM-RF 0.9104 0.0044 0.0043 0.9541
§ GRNN-RF 0.9269 0.0040  0.0035 0.9627
HW-RF 0.9931 0.0012 0.0003 0.9966
g ELM-RF 0.6233  0.0205 0.0420 0.7895
,§ LSTM-RF 0.8201 0.0184  0.0338 0.9056
% GRNN-RF 0.8390 0.0161 0.0258 0.9160
g HW-RF 0.9566 0.0428 0.0018 0.9781

Generally, the comparison of the predictive performance
between the two ensemble approaches (i.e. sections 2.6 and
2.7) demonstrated that the best model of hybrid RF ensemble
(i.e. HW-RF) outperformed all the four-ensemble techniques
(SAE, WAE, BPNN-E and HW-E). This is due to the
robust nature of the ensemble RF on its own besides
integrating it with highly promising nonlinear robust models
(LSTM, ELM, GRNN and HW). Another factor is that
RF performs a significant ensemble function by generating
multiple decision trees using the randomization process;
these processes produced a large ensemble of trees, and
the general predictions are accomplished from the averaged
results. In the same way, the comparison results showed
that BPNN-E and HW-E are superior to other three hybrid
RFs (i.e. LSTM-RF, ELM-RF and GRNN-RF). A closer

VOLUME 8, 2020

examination of the observed DO concentration and predicted
values using both the single, ensemble techniques and hybrid
RF ensemble indicated the importance of employing both the
ensemble techniques and hybrid RF ensemble in improving
the prediction accuracy of the individual models. It is evident
in Fig.10 that the distribution, scatter plot and CC and
1:1 lines of the correspondence with predicted hybrid RF
were very close to the observed DO concentration. More
reliable and accurate prediction of the DO concentration
in a river can enable better management of the aquatic
environment; as such, the ensemble techniques and hybrid
RF used in this study are suitable for implementation
in management practice and the other decision-making
processes. However, considering the single model’s results
and the discrepancy in the model’s performance, it should
be recommended that more studies are needed using both
conventional and Al integrated with optimization algorithms
to bridge the variations between the measured and computed
WQ variables.

Despite Al models has massive potential advantages
but still suffered from certain limitations ranges from
various degrees of inaccuracy and insufficiency, mostly when
an extremely non-stationary hydroenvironmental process
involved. Hence, the Al models may not meet the desired
outcomes if there is no prior preprocessing of input-output
data. On the other hands, ensemble and hybrid learning
techniques is proposed in computational festimation to
improve forecasting skill with their performance efficiency
of capturing highly nonlinear patterns of the data.

157233



IEEE Access

S. 1. Abba et al.: Hybrid Machine Learning ETs for Modeling DO Concentration

V. CONCLUSION

The present study proposed the application of four different
Al-based models, namely the LSTM, ELM, GRNN and
HW models for the prediction of DO concentration in the
Kinta River, Malaysia. To enhance the prediction accuracy
of the single models, four different ensemble techniques
were subsequently employed including two linear (SAE and
WAE) and two nonlinear ensembles (BPNN-E and HW-E)
and hybrid random forest (RF) ensemble were separately
used for the same prediction purpose. The performance
efficiency of the models was evaluated using various
efficiency criteria (NSE, WI, RMSE, MAE, CC and MSE).
For the pre-analysis of the data, reliability and stationary
test were conducted using the Cronbach’s alpha method and
unit root test (i.e. using Augmented Dickey-Fuller (ADF))
to ascertain the stability of the data. Sensitivity analysis was
conducted between the WQ variables using nonlinear input
variables selection approaches and four different models were
considered as M1, M2, M3 and M4.

The results of the single Al-based models demonstrated
that HW (M3) served as the best model for predicting DO
concentration followed by the GRNN (M4), ELM (M1) and
LSTM (M3) models Furthermore, according to the numerical
comparison between the best single model (HW-M3), the
outcomes indicated that HW-M3 yielded high-performance
accuracy up to 8% over SAE, WAE and 0.9% over HW-
E, BPNN-E in terms of WI criteria. For the four ensemble
results, BPNN-E proved superior to the other three ensembles
in both calibration and verification. With regard to the
quantitative assessment of the four ensemble techniques,
the predictive accuracy in terms of MAE indicated that
BPNN-E decreases by 3%, 3%, and 1% compared with
SAE, WAE and HW-E, respectively in the verification phase.
The hybrid results were better for all the hybrid models
(LSTM-RF, ELM-RF, GRNN-RF and HW-RF) with the best
predictive skill shown by the HW-RF ensemble.

The overall outcomes of the current study demonstrated the
promising impact of the ensemble techniques and hybrid RF
ensemble for the prediction of DO concentration in the Kinta
River, Malaysia. Hence, the study also suggests the applica-
tion of other possible alternatives of emerging optimization
algorithms, deep learning models and other black box models
coupled with the promising ensemble approaches to enhance
the prediction accuracy. However, other hydro-environmental
phenomena could also be modelled using the proposed hybrid
ensemble techniques.
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