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ABSTRACT Chest X-ray (CXR) is a low-cost medical imaging technique. It is a common procedure for
the identification of many respiratory diseases compared to MRI, CT, and PET scans. This paper presents
the use of generative adversarial networks (GAN) to perform the task of lung segmentation on a given
CXR. GANSs are popular to generate realistic data by learning the mapping from one domain to another.
In our work, the generator of the GAN is trained to generate a segmented mask of a given input CXR.
The discriminator distinguishes between a ground truth and the generated mask, and updates the generator
through the adversarial loss measure. The objective is to generate masks for the input CXR, which are as
realistic as possible compared to the ground truth masks. The model is trained and evaluated using four
different discriminators referred to as D1, D2, D3, and D4, respectively. Experimental results on three
different CXR datasets reveal that the proposed model is able to achieve a dice-score of 0.9740, and IOU
score of 0.943, which are better than other reported state-of-the art results.

INDEX TERMS Deep learning, generative adversarial networks, lung segmentation, medical imaging.

I. INTRODUCTION

With ever increasing capabilities of modern technologies,
the role of computer-aided diagnosis (CAD) systems has
reached to a maximum significance than ever before [50].
Today, CAD systems provide aid to physicians and health
care professionals to better understand the clinical conditions
of a patient and help in diagnosis of various diseases. Med-
ical image procedures such as magnetic resonance imaging
(MRI), X-rays and ultrasound imaging carry useful infor-
mation, but require thorough study by an expert. Typically,
a radiologist would need to manually examine and extract
the useful information from an x-ray while adhering to time
constraints, for example in overly crowded hospitals (as most
common in developing countries), or in case of a pandemic
(as the recent surge in covid-19 cases proving the same).
Automatic CAD with machine learning helps in speeding up
the process and easing out the workload on health profes-
sionals. Typically, CAD systems are used in various areas of
medical diagnosis such as in mammography, for detection of
breast cancer, polyps detection in colon, diabetic retinopathy,
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lung cancer detection, coronary artery disease detection and
pathological brain detection. Computer programs have been
developed to help in the detection of various diseases [51].
CAD system can be divided into three categories. First is
classification, second is detection and the last one is seg-
mentation. In classification, the objective of the system is
to classify each image in any of the pre-defined categories,
such as an image with a tumor and an image with no tumor.
In detection, the system is programmed to detect a certain
localized region, such as detection of tumors in brain. The
resulting image typically contains a bounding box to high-
light the tumor. The segmentation goes one step further and
divides the image into different categories on a pixel level.
Each pixel represents its respective category, such as pixels of
tumor and pixels of the region with no tumor. Segmentation
lies at the heart of automatic CAD systems. Multiple imaging
techniques are used for creating medical images including
X-rays, MRI scans, ultrasound, CT (computed tomography)
scans and PET (positron emission tomography) scans. Chest
X-ray (CXR) procedure is often two to ten times more com-
mon than other medical imaging procedures such as MRI,
CT scans and PET scans [1]. Typically, several thousand
CXRs are generated in a large hospital, significantly raising
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FIGURE 1. X-ray images and corresponding segmented lung masks.

diagnostic workloads. Furthermore, detecting the lung region
in CXR images is an important component in a CAD of lung
health. Figure 1 shows example CXRs and the corresponding
segmented lung region.

One of the most important steps in automatic analysis
of CXRs is to detect the lung boundaries accurately. The
boundary extraction is the key to identify shape irregularity
and lung volume, and thus provides insight into identifi-
cation of cardiomegaly, pneumothorax, pneumoconiosis or
emphysema [2]. The strong edges appearing at the rib cage
and clavicle region, variations in heart anatomy, and non-
homogeneities in the imaging make the segmentation of lungs
challenging. These factors usually push the minimization
approach to end up at local minima [3].

Segmenting lungs also aids in reducing computational
complexity for other lung related disease identification algo-
rithms by performing computations only on lung regions.
Additionally, segmenting lungs is very critical in lung related
disease identification such as pneumonia [4] and Tuberculo-
sis [5], [6]. Many authors have demonstrated the importance
of lung segmentation prior to further processing e.g. authors
in [7] segmented the lung regions before applying further pro-
cessing for Covid19 detection. In another work, the authors
in [8] have used CT slices of lungs to detect Covid19 infec-
tion using a series of processing techniques [8]. Authors
in [9] proposed a technique for circular object detection in
CXR’s and demonstrated that lung segmentation increases the
overall performance. In [10] authors proposed a model for
detecting rotation in CXR’s and reported that when lungs in
CXR are poorly segmented, the accuracy of the model drops
rapidly. Authors in [11] proposed a technique for detection of
pulmonary abnormalities and showed that lung segmentation
is a crucial step before any further classification.

The segmentation of lungs from CXR images falls into
two general categories: (1) Conventional methods (2) Deep
learning based methods. Conventional methods can be cat-
egorized in to four categories: (i) Rule based methods [1],
(i1) Pixel classifier-based methods [12], [13], (iii) Deformable
models, and (iv) Hybrid approach [12], [14], [15]. In deep
learning based methods, there are two major categories:
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(i) Discriminative models e.g. U-net [16], and (ii) Gen-
erative models e.g. auto encoders, generative adversarial
networks [17]-[19].

First, discussion on conventional methods is presented.
Rule based models contain simple techniques such as thresh-
olding and morphological operations. In [20], the authors
used rule based anatomical information for lung region
extraction.

Pixel classification models work by classifying pixel as
either inside or outside the lung region. The authors in [12]
used a contrast difference between lung fields and borders to
orientate an active contour technique.

Deformable models are very popular and extensively stud-
ied. They are applied extensively in medical image segmen-
tation, [21]. Authors in [15] proposed an optimized ‘‘active
shape model” (ASM) for lung segmentation. They addressed
the problem of typical ASM, which was the need of sufficient
initialization close to the target. They reported significant
improvement in accuracy compared to a typical ASM.

Hybrid models are composed of multiple conventional
models. The authors in [22] proposed a robust hybrid method
for lung segmentation. They combined a rule-based method
with pixel classification approach. Using these two tech-
niques on a dataset of 230 images, an accuracy of 94% is
reported in [22].

Next, deep learning based methods are presented. In [24]
authors proposed a deep learning based method for the task
of semantic segmentation. They used existing AlexNet and
VGG-Net models for classification, customized them to be
fully convolutional networks, and then performed segmenta-
tion by using the output of these networks. In [16], the authors
proposed a network for the task of segmentation of neuronal
structures in electron microscopic stacks. They named their
network U-net which is a ladder like structure made up of
two parts, encoder and decoder. They also used skip con-
nections between encoder and decoder layers that helped in
improving the performance of overall segmentation. In [25],
the authors proposed a deep learning based lung segmentation
approach. They name their network as SegNet which is a fully
connected deep neural network. They used encoder-decoder
approach designed in such a way that low resolution features
are mapped to input resolution for pixel-wise classification,
producing features that aid in accurate boundary localiza-
tion. In [26], the authors proposed a modified U-Net net-
work using residual structure for segmentation of Covid-19
CT images. Use of residual structure improved the feature
selection process and thus improved the overall segmentation.
In [27], the authors proposed COVID-19 lung CT infection
segmentation network, named as Inf-Net that uses reverse
attention and explicit edge attention. The authors claimed
that their network achieved higher accuracy than the other
methods.

In [52], the authors proposed a patch based deep belief
networks for vertebrae segmentation in CT images. They
have shown that the patch-based model achieved superior
performance compared to the traditional techniques.
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Along with being popular for image generation, generative
adversarial networks make up another set of methods used
for segmentation [17], [26], [28]-[32]. In [53], the authors
proposed a variation of generative adversarial network named
as hybrid fusion network, for generating synthetic MR image
modalities. Due to patients’ dropouts and poor quality of
data, missing modalities is a huge challenge. The authors
have shown that their network has outperformed state of the
art synthesis networks by achieving higher accuracy [53].
In [23], the authors proposed an unsupervised adversarial
similarity network for image registration. They proved that
their network can train without the ground truth, and can
achieve state of the art results for image registration on brain
MRI images. The authors in [33] trained a GAN framework
to perform segmentation of liver images. In [34], the authors
trained a GAN to produce lung nodules and then using
the synthetic data, trained a progressive holistically nested
network (P-HNN), which is a segmentation network. The
generator was conditioned on volume of interest and thus,
it was able to generate realistic 3D lung nodules. Both the
robustness and accuracy of a P-HNN have been report-
edly improved. In [35], the authors proposed a framework
for the generation of vessel maps from the retinal images.
The authors also formulated the objective function of GAN
for the segmentation task. They achieved competitive dice
score on DRIVE and STARE datasets of retinal fundoscopic
images [35]. In MI-GAN [36], the authors proposed a frame-
work for the generation of synthetic medical images as well
as their segmented masks. The synthetic images and their
masks are further used for training of segmentation net-
work, and the authors reported state-of-the-art dice score
on DRIVE and STARE datasets [36]. In [37], the authors
showed that augmenting data via GANs can improve the
overall segmentation result, especially when there is limited
data for the training. They performed experiments on MR
and CT images of brain [37]. In [38], the authors proposed
a model for generating CT images from input MRI images.
They addressed the issue of a blurry CT when generated,
and thus proposed a loss function that deals with this issue
of generated CT images. In [39], the authors demonstrated
the generation of CXR and their segmented masks. They
showed that when the pair is generated, the quality of images
is reduced as compared to the case if only a CXR image is
generated [39].

Lung segmentation task can be considered as an image
translation problem, where segmented masks are produced at
output using CXR image as an input to the model, because
the domain of the input image is changed from a gray scale
X-ray image to a binary mask image, as reported in [41].
However, GANs have not been developed for lung image
segmentation.

In this work, GAN based model for segmentation of lungs
from Chest X-ray images is presented. Our model includes
a generator similar to U-net architecture, [36] and multiple
discriminators which are binary classifiers, which has not
been reported to the best of our knowledge.
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Our main contributions are:

o We present a GAN based approach for segmentation of
lungs in chest x-ray images.

o We train the generator in a way such that the genera-
tor learns the distribution Gy from very small training
dataset.

« We report the segmentation results on different types
of discriminator networks to identify the best possible
match and achieved better accuracy than the state of
the art. To the best of our knowledge, there has been
no work reported for lung segmentation with U-net like
generator and comparative analysis based on multiple
discriminators.

In this work, 97.4% mean dice score on lung segmentation
task has been achieved, which is better than the state-of-the-
art dice score.

The rest of the paper is organized as follows. In Section 11,
generative adversarial networks are discussed. Additionally,
the proposed architecture for segmentation is discussed in
the same section. In Section III, experimental setup and data
description are provided. Section IV presents the results and
discussion. Finally, the paper is concluded in Section V.

Il. METHODOLOGY

In this section, overall architecture for the GAN is discussed
and an explanation on the general working of GAN as well as
the specific GAN model and the underlying discriminators
used are presented.

A. GENERATIVE ADVERSARIAL NETWORKS

Goodfellow first proposed an adversarial process for genera-
tive models named as the GAN [17]. A GAN model consists
of Generator G and a discriminator D. The input to G is
random noise vector and G tries to generate data which fits
the real data distribution. The function of D is to authen-
ticate the data i.e., whether it is real or fake. Experiments
were performed on different datasets including MNIST and
Toronto face dataset (TFD). Different variants of GANs were
proposed after that, in which most of them tried to stabilize
GAN training [28]-[32].

In [40], the authors introduced deep convolutional GAN
(DCGAN), which proposed certain constraints on the archi-
tecture topology to make GANs stable. They demonstrated
high accuracy of discriminator for classification, and also
demonstrated the vector arithmetic properties of genera-
tors [40]. The work published in [41] proposed image to
image translation, a GAN framework in which the gener-
ator is conditioned, i.e., a sample distribution along with
the random noise is also input to the generator. The GAN
then learns the mapping from input image to output image,
thus generating images of certain desirable distribution [41].
Generative Adversarial Network (GAN) as first proposed by
Goodfellow [17], is a combination of two neural networks
trained in an adversarial fashion. A GAN consists of a gener-
ator G network and a discriminator D network. The purpose
of the generator is to generate data from random noise, and
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z —>Random noise G(z) —> Generated Sample

Y —>Real sample D(Y) — Prediction label

FIGURE 2. Block diagram of Generative Adversarial Network. ‘G’ is the
generator network which takes a random noise ‘z’ and output ‘G(z)". ‘D’
denotes the discriminator network that takes either ‘G(z)’ (generated
sample) or ‘Y’ (real sample), and outputs prediction ‘D(Y)"

the discriminator discriminates between real data and the data
generated by the generator.

The training of GAN can be considered as a dual player
min max game. During the training, the generator G tries to
generate realistic looking data such that the discriminator D
can be fooled. However, the discriminator tries to efficiently
classify the real and the fake data. Thus G tries to minimize
the possibility of being predicted as fake, and D tries to
maximize the probability of correct predictions. The general
structure of GAN is shown in Figure 2.

The objective function of original GAN as described
in [17] is given by minimization and maximation of V, as rep-
resented in Eq 1 (as in [17]):

mén mgx V(G, D)
= Ey[log D(y)] + E.[log(1 — D(G(z))] (1)

where, y represents the real data, z is the random noise
vector, D(y) is the discriminator’s prediction on y, G(z) is
the generated data from noise z, and D(G(z)) provides the
discriminator’s prediction on generated data.

Both the generator and discriminators play the min-max
game and adjust their parameters according to each other’s
actions. Over a certain number of training iterations, there is a
possibility that both the networks will have parameters which
may not be further optimized. At such a stage, the generator
generates very realistic looking synthetic data, such that the
discriminator is not able to differentiate between the real and
generated data.

In order to generate a specific domain data, certain con-
straints can be introduced on the generator as proposed in
conditional GAN (cGAN) model [41]. In cGAN, the training
is conditioned on an additional input variable x. The opti-
mization problem then becomes (as in [41]):

me mgx V(G, D) = E, y[log D(x, y)]
+E, ;[log(1 — D(x, G(x,2)] (2
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z —» Random noise G(x,z) => Generated Sampl¢

Y —>Real sample D(x,Y) = Prediction label

x = Condition variable

FIGURE 3. Block diagram of conditional GAN. ‘G’ denotes the generator
network that takes noise vector ‘z’ along with a condition variable ‘x’ and
generates a sample ‘G(x,z)’ which is passed to a discriminator network ‘D"
‘D’ predicts whether the given sample is real, i.e. ‘'Y’ or generated sample
by generator.

where, x is the conditioning variable. Structure of conditional
GAN is shown in Figure 3.

We use the cGAN model to perform lung segmentation.
In our model, the generator is conditioned on the CXR
image to produce segmented lungs as shown in Figure 4.
The optimization problem then relies on reducing the L1 loss
calculation as used by [34], [36]. Our optimization L1 loss is
given as:

Liiloss = ]Ex,y,z|y = G(x, 2)| 3)

L1 loss penalizes the distance between segmented images and
their ground truth masks. Optimization of L1 loss ensures that
the generated image by generator ‘G’ is not much deviated
from the segmentation mask provided, so our final objective
function becomes:

mén mgx GAN = V(G, D) 4+ aLp110ss (4)

where « is the trade-off constant with o > 0. Now, an explana-
tion on the proposed generator and discriminator architecture
is presented in detail.

B. GENERATOR ARCHITECTURE
Most works on the GANs have reported the use of an encoder-
decoder style structure for generator network. So, a similar
architecture for the generator is retained [36], [42]. This
allows us to use noise code in a natural manner. Encoder
extracts features of the input image, as it is a multiple layered
neural network. It extracts the local features in the first few
layers, and as it goes deeper it extracts the more global infor-
mation. The first few layers of the encoder down-samples
the input until a bottleneck, after which decoder up-sampling
takes place.

In the first four layers of our generator G, the input is down-
sampled and features are learned. Whereas the fifth layer is
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FIGURE 4. General Architecture of our GAN. ‘G shows the architecture of our generator which is a U-net like network that maps
a given X-ray image to its corresponding binary mask. Each block represents layers of network and an input image is down

sampled until the middle layer after which up sampling starts. Skip connections are used which helps preserve the morphology
and their detail is available in [16]. ‘D’ represents our discriminator network, which is a simple convolution neural network that
takes as an input either the ground truth image or the image generated by the generator and performs binary classification, i.e.

output will be either ‘0" or ‘1°.

512x 512

FIGURE 5. Structure of Generator. The input to generator is 512 x 512x 1 pixel’s image which is down sampled to 16 x 16x512 after which up
sampling starts. In each down sampling layer the number of filters increases with the number of layers, and the dimension of each filter
reduces until bottleneck layer. Dotted lines demonstrate the skip connections which helps in preserving the morphology. At the output a final

image is constructed which is of same size as input i.e.,, 512 x 512x1.

the bottleneck layer, after which up sampling starts and the
image is reconstructed as shown in Figure 5. As explained
in [41], our architecture does not need random noise because
it learns to ignore it, and hence does not improve results.

Another important part of the generator is skip connec-
tions, as used in U-Net [16]. Skip connections are used for
various purposes as explained in the section below.

1) SKIP CONNECTIONS

Skip connections of U-Net are used as this helps to preserve
the morphology and reduce the risk of vanishing gradient.
Skip connections were initially proposed in residual net-
works [43]. The skip connections allow better generalization
by facilitating the direct passing of error gradients between
decoder-encoder layers. Next, different types of discrimina-
tors used in this work are discussed.

C. DISCRIMINATOR
Discriminator is a deep convolution neural network that clas-
sifies its input image as real or fake. The network architecture

VOLUME 8, 2020

is of the form convolution — batch normalization — activation.
Input to the discriminator is either the lung mask (image)
generated by the generator network, or the lung mask from
the ground truth. The discriminator classifies each image
as either synthetic or real. Discriminator’s configurations as
either image discriminator or patch discriminator are uti-
lized [41]. The main difference between image discrimina-
tor and patch discriminator is that the image discriminator
maps the input image to a single scalar output and thus the
prediction is based on the entire image, whereas the patch
discriminator divides the input image to a set of patches and
maps each patch to a single scalar output.

Prediction is made on each patch of size NxN pixels. For
patch discriminators, there is no overlap between patches.
For final classification, individual result of each patch is
averaged. Patch discriminators effectively model input image
as Markov random field, assuming independency between
pixels and patches.

As reported by [41], the patch discriminator solves
the problem of blurry images caused by failures at high
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FIGURE 6. Structure of Discriminator D4. Input to discriminator is the concatenated image of mask
and corresponding Chest X-ray. Each layer extracts the features from low level features in the initial
layers to the high level features in the final layers. Output of the discriminator is the prediction
whether the input was real (mask from ground truth) or fake (mask generated by generator).

frequencies like edges. Another advantage of a patch dis-
criminator is that it has fewer parameters than the full
image discriminator. Thus, it reduces computational time
and can work better for arbitrary very large images. The
general structure of the discriminator is shown in Figure 6.
Details of different discriminators in our work are provided
below.

1) DISCRIMINATOR D1

This discriminator has the patch size of 1 x 1 pixels (Pixel-
GAN). The Discriminator consists of one input layer, three
hidden layers and a final output layer. For the final layer,
sigmoid activation function has been utilized, whereas for
the hidden layers, leaky ReLU is used. This discriminator
tests every single pixel and classifies it as ‘1’ or ‘0’. The
final prediction is made based upon the average result of each
individual pixel of the input image.

2) DISCRIMINATOR D2

For the second discriminator, the structure of patchGAN,
having a patch size 16 x 16, is used. The network is of the form
conv-batch norm-relu with five hidden layers. The difference
between patchGAN and the Pixel GAN is that rather than a
prediction on individual pixels, it predicts the patch of image
of size NxN where N#1. The final prediction is made based
upon the average prediction of all the patches in the input
image.

3) DISCRIMINATOR D3

For the third discriminator, the patch size is varied from
16 x 16 to 70 x 70 pixels. In literature, 70 x 70 patch
size has shown better results because 70 x 70 patch size is
big enough to accommodate global features, however, the
number of parameters are reduced because of lesser size than
the whole image [41]. The network has three hidden layers
and is of the form conv-batchnorm-relu.
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4) DISCRIMINATOR D4
For the fourth discriminator, we use the full image discrim-
inator. It gives the final prediction based upon the whole
image rather than patches. The network consists of one
input layer, five hidden layers of the form convolution-
batchnormaliztion-relu and a final output layer.

For all the discriminators, stride and kernel size are fixed
with values 2 and 3 x 3, respectively.

Ill. EXPERIMENTAL SETUP AND DATA DESCRIPTION

All the experiments were performed using a standard PC
with Intel core i7 CPU and GeForce GTX 1080 GPU with
8 GB memory. Python was used as programming language
because of its vast usage and built-in easy to use libraries. The
python implementation relies on the Keras and Tensorflow
libraries and the MI-GAN code base with necessary modifi-
cations. For optimization of networks, Adam optimizer was
used with a learning rate of 0.0002 and decay rate of 0.5,
because they have shown superior performance in our initial
experimentation.

For evaluating our networks, the three most commonly
used datasets of Chest X-rays were used. The first dataset is
the JSRT dataset, the second one is the Montgomery dataset,
and the third is the Shenzhen Chest X-ray dataset. Images in
these datasets differ in terms of the resolution and contrast.
All these datasets contain 2D chest x-ray grayscale images
recorded at various hospitals. The JSRT dataset was devel-
oped in 1998 in collaboration with the Japanese Radiologi-
cal Society (JRS) by the “Japanese Society of Radiological
Technology” (JSRT) [44]. The X-ray images in the Mont-
gomery dataset were collected by the “Department of Health
and Human Services of Montgomery County, MD, USA”,
as part of the Tuberculosis control program. The third dataset,
the Shenzhen was created as a result of a partnership between
“Shenzhen No. 3 People’s Hospital, Guangdong Medical
College’, China, the “National Library of Medicine, Mary-
land, USA” [45]. All three datasets were free from any noise,
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FIGURE 7. Test time comparison between different sizes of test images
and their execution time. Increasing the test image size correspondingly
increase the test time.
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FIGURE 8. X-ray images and segmented masks of Shenzhen dataset.

AVIVAYS

FIGURE 9. X-ray images and segmented masks of JSRT X-ray images and
segmented masks of Montgomery dataset.

so no preprocessing was used. Table 1 provides summary of
the x-ray images with their specifications. Sample images are
shown in Figure 8, 9 and 10.

IV. RESULTS AND DISCUSSION

For evaluating our segmentation network, two parameters
dice score and intersection over union (IOU) are calcu-
lated, as these are widely accepted evaluation parameters for
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FIGURE 10. X-ray images and segmented masks of JSRT dataset.

segmentation techniques. Dice score is defined as:

) . 2TP
Dice coefficient = ————
2TP 4+ FP+ FN
and IOU is calculated by:
TP
IoU=———
TP + FP+ FN

where, TP = True Positive, TN = True Negative,

FP = False Positive, FN = False Negative.

For the Shenzhen dataset, different numbers of training
and test images were utilized in the initial experiments, but
experimentation showed that performance of the algorithm
was almost similar if the training data was greater than or
equal to 200. So, the number of training images were set
to 200 while 40 images were used for validation and test
sets. For JSRT dataset, 200 images are used for training,
20 are used for cross validation, and 20 images were used for
testing. For the Montgomery dataset, 110 images for training,
10 images for cross validation and 18 images for testing were
used. For all the experiments, the same number of epochs
have been used, i.e., 350.

In Table 2, the performance of all the discriminators on
the Shenzhen and Montgomery chest X-ray dataset are com-
pared, while Figure 7 and 8 show sample segmented masks of
our technique on both these datasets, respectively. The Mont-
gomery dataset is very different from the Shenzen dataset in
terms of the contrast of images and their bit depths. For a
given dataset, the same number of training and test images for
all the different configurations of the network along with all
the sizes of images were used. The best result for each dataset
is shown in bold. Overall, D3 has given the best segmentation
result on the Shenzhen dataset, and D2 has given the best
segmentation result on the Montgomery dataset.

Another observation is that with the increasing size of the
images, the accuracy decreases slightly. The main reason for
this is because as the size of the image increases, there are
now more number of features to learn, and with the same
number of layers, the accuracy is compromised.

For JSRT, our network is evaluated with discriminators
D2 and D3, as they show good performance on the previous
two datasets. Figure 9 shows sample segmented masks of
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TABLE 1. Dataset specifications.

Dataset Name Number of images Image specifications
JSRT [44] 154 normal 93 TB Image format: PNG

Image size: 2048 x 2048 pixels
Montgomery [45] 80 normal 58 TB Image format: PNG

Image size: 4892 x 4020
Shenzhen [45] 326 normal 336 TB Image format: PNG

Size of the images varies for each X-ray.
The average size 3000 x 3000.

TABLE 2. Dice score comparison of D1, D2, D3 AND D4.

Data set Image Resolution Dice Score
D1 D2 D3 D4
Shenzen Chest X-ray 256x256 0.9698 0.9694 0.9688 0.9698
Database 400x400 0.9667 0.9667 0.9671 0.9649
512x400 0.9752 0.9747 0.9777 0.9737
1024x1024 0.9750 0.9738 0.9770 0.9735
Montgomery Chest X- 256%256 0.9684 0.9780 0.9700 0.9730
Ray database 400x400 0.9696 0.9775 0.9673 0.9671
512x400 0.9620 0.9628 0.9633 0.9671
1024x1024 0.9617 0.9622 0.9630 0.9670

TABLE 3. Dice score comparison between San, FCN, D2 and D3 on JSRT.

TABLE 4. loU score comparison of different techniques on JSRT.

Technique Name Dice Score Technique Name Pre Processing 10U (%)
FCN [46] 0.96 Human Observer [49] No 94.6
SCAN [46] 0.97 Registration [47] No 92.5
Discriminator D2 (Ours) 0.97 ShRAC (Shape No 90.7
Discriminator D3 (Ours) 0.974 Regularized Active
Contour) [48]
our technique on the JSRT dataset. Subsequently, comparison ﬁiﬁfﬁf‘g‘]’e Shape No 903
is done between our results with other techniques that were AAM (Active Appearance | No 84.7
implemented on the JSRT dataset. The same criteria were Model) [49]
used for dividing the dataset into train, validation and test Mean Shape [SO] No 71.3
. R . R FCN (Fully Convolutional | No 92.9
sets. For the sake of comparison with other techniques like Neural Network) [46]
[46]-[48], only the size of 400 x 400 pixels is used and the SCAN (Structure No 94.7
training is done over 350 epochs. The results in comparison Correcting Adversarial
with other reported techniques are reported in Table 3 and Network) [46]
p q p D3 (Ours) No 95

Table 4, which show our technique achieved the best results.
Table 4 compares the IOU score with previous techniques.
The discriminator ‘D3’ has achieved the best results by
achieving 94.98 % IOU score.

Figure 7 shows the test time comparison of our model
for various image sizes used. The maximum time was taken
by 1024 x 1024 pixels image which was 0.08 seconds.
It is clear from Figure 7 that the required time for the test
image increases if the test image size is increased, and the
rise in time has correspondence with the rise in the image
size.

A. OVER-SEGMENTATION AND UNDER-SEGMENTATION

Generally, there are two cases of anomalies in segmen-
tation tasks; Over-segmentation, and Under-segmentation.
Over-segmentation occurs if pixels of non-target objects are
classified as the objects of interest. For lung segmentation, the
over-segmentation is the scenario when some or all the pixels
of the non-lung region (object of non-interest) are classified
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as the lungs’ region (object of interest). Under-segmentation
refers to the scenario when some or all the pixels of the
lungs’ region are classified as background pixels. Typically,
in the case of over-segmentation, it might still be possible
to reconstruct the lungs’ region because no useful data is
lost. However, in the case of under-segmentation, key lungs’
region can be lost. Hence, the under-segmentation must be
avoided [54]. There can be multiple reasons for over and
under segmentation. For example, the same color or gradient
of the object and the background make it challenging to
generate a robust segmentation boundary.

In the case of lung CXR’s, the color or gradient of
lungs is very similar to that of the non-human background,
so the task of segmenting is considered very challenging.
Figure 11 shows the cases of over and under segmentation.
As can be seen in input images, the area surrounding the
lungs has a smooth intensity variation, and thus, results in
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FIGURE 11. Example cases for over-segmentation and
under-segmentation. First row shows the input images to the
generator, second row shows the output images generated by the
generator and third row shows their respected ground truth masks. (a),
(b), (c) show over-segmentation. (d) shows under-segmentation
attributed to the very low contrast in the lower lung region.

over-segmentation in (a), (b) and (c). A slight under-
segmentation is observed in (d) because of very low contrast
in the lower lungs’ region..

V. CONCLUSION

As computer aided diagnostic systems (CADs) are getting
popular among doctors and health care professionals, it is fun-
damentally important to have a reliable segmentation tech-
nique for CXRs so that the images are interpreted correctly
and can be used for potential diagnosis applications. In this
study, lung image segmentation is performed from chest x-
ray images using generative adversarial networks. Results are
reported for four different types of discriminators, and a com-
parison of the results with other state-of-the-art techniques
is presented. Experimental results are reported on three dif-
ferent datasets, namely; JSRT (247 images), Montgomery
dataset (138 images) and Shenzhen dataset (566 images).
Among the four discriminators, the discriminator D3, i.e.,
70 x 70 patch-GAN has outperformed other discriminator
networks in terms of dice score. Our method in this work
has achieved state-of-the-art results for lung segmentation
compared to other methods. Comparisons with other state-of-
the-art methods also show improvement for the discriminator
D3 in terms of IOU score. A limitation of the proposed
generative adversarial network is that it is resource expensive
and requires high computing power. Besides, the proposed
model has been trained and evaluated for three publicly
available CXR datasets. For new datasets, variations in the
image acquisition and imaging standards are not unexpected,
as different manufacturers may have slightly different image
outcome. For such newer datasets, a new study would be
required, and it is yet to be determined how well the proposed
model generalizes for newer datasets — similar to many deep
learning techniques.
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