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ABSTRACT Steering angle prediction is critical in the control of Autonomous Vehicles (AVs) and has
attracted the attention of researchers, manufacturers, and insurance companies in the automotive industry.
Different Deep Learning (DL) architectures have been applied to predict the steering angle of AVs in
various scenarios. A survey on steering angle prediction based on deep learning algorithms can help expert
researchers identify those areas that require development. Also, novice researchers can use the survey as
a starting point. In this article, we present a broad study on the recent advances made in DL architectures
that covers the steering angle prediction of AVs. A new comprehensive taxonomy of the application of DL
in steering angle prediction of AVs is created. The survey presents a concise research summary synthesis,
and analysis. It is found that most researchers depend on Convolutional Neural Network (CNN) over other
DL architectures in predicting the steering angle of autonomous driving vehicles. Also identified are open
research problems. The prominent challenge facing DL-based steering angle prediction of AVs is lack of
sufficient real-world datasets, which means that researchers largely depend on data generated from simulated
environments. Lastly, alternative viewpoints to solve the identified open research challenges are proposed,
pointing towards promising future research directions.

INDEX TERMS Convolutional neural network, deep learning, deep neural network, steering angle predic-
tion, autonomous vehicles.

I. INTRODUCTION
Human errors account for more than 90% of car accidents.
In comparison, mechanical failures are responsible for only
2% [1]. These statistics prompted the idea of proposing
Autonomous Vehicles (AVs) to eliminate human errors. AVs
are now becoming an innocuous substitute for human drivers,
which saves the lives of thousands of people every year.
Among the most remarkable of the ongoing research efforts
to manage diversified challenges facing AVs are recognition
of humans, traffic, road and lanes, steering controls, and path
planning. A large amount of different sensor data is gathered
and processed to address these challenges [2].

Currently, there are more than 1,400 autonomous cars,
trucks, and other vehicles in the testing phase initiated by
more than 80 companies across 36 states in the United States
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of America. California is listed among those states that have
deployed AVs on public roads. AV control has made some
headway in recent years, andmany auto vendors have pledged
commercial production on a large scale within a period of
two to three years [3]. AVs currently have a massive impact
on the automotive industry [1]. In AV steering control, lateral
and longitudinal motions constitute the major components of
vehicle motion control. Steering of the vehicle, control of the
lateral motion of AVs that aim at controlling the position of
the vehicle in the lane, and other lateral actions like changing
of pathway and avoidance of collision while manipulating
pedals of the vehicle are aspects of longitudinal motion [4].
AVs possess a wide scope paired with the tendency to commit
fewer errors than human drivers [5].

Deep Learning (DL) has made a positive impact on the
control of AVs, particularly in terms of the steering angle pre-
diction due to its ability to effectively process unlabeled raw
data. DL understands the world through analyzing the context
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of a scene, while focusing on essential objects and observing
them at hierarchical levels – from small objects with higher
resolution to large objects with lower resolution. Therefore,
when analyzing a scene, DL is reasonably insensitive to
variations of environmental conditions, yet requires a large
amount of high-quality data to achieve high accuracy [6].
Neural networks can learn complex interactions between fea-
tures, which is beneficial for autonomous driving in dynamic
environments [7]. Steering a car through traffic constitutes a
complex task that is very hard to cast into algorithms. Thus,
researchers turn to train Artificial Neural Networks (ANN)
with a stream of data generated by front-facing cameras
yielding associated steering angles [8].

The benefits of steering angle prediction using the DL
approach are that it has tolerance for mistakes, the ability
to quickly identify errors and better capability in managing
unpredictable situations [9]. Different studies have applied
various algorithms to achieve these goals. For instance, in the
literature [10]–[12], the authors propose a Genetic Algo-
rithm (GA) for steering control. Linhui and Lie [13] worked
on control of unmanned vehicles using fuzzy logic via GA.
Layne and Passino [14] worked on fuzzy logic model-based
control learning for cargo ship steering. Cao et al. [15]
worked on a system for controlling brake pressure based on
fuzzy logic using steering angle and yaw speed. Lee [16] pro-
posed a steering autopilot control algorithm for four-wheel-
steering passenger vehicles. A major setback of fuzzy logic is
that the use of fuzzy logic-based controllers for rear-end colli-
sion avoidance depends on the number of fuzzy rules, and an
extreme amount of such has direct bias on its efficiency [17].

Many studies have applied DL in predicting the steering
angle of AVs [2], [7], [18]–[20]. Kuutti et al. [4] and Oussama
and Mohamed [21] surveyed DL applications in AV control.
Our survey differs from the previous survey papers as it
includes the following: a detailed taxonomy on the use of
DL in steering angle prediction of AVs; the classification
of projects based on DL architecture; synthesis and analysis
based on publication trend, frequency of DL architecture in
predicting the steering angle of AVs, and per-year analysis of
the DL architectures; different DL frameworks and libraries
for implementing the prediction of steering angle using DL
and the merits and demerits of each; the limitation associ-
ated with each project; prominence of simulators and driving
scenarios; and lastly, different challenges encountered in the
previous surveys and future research directions based on the
identified challenges.

In this article, we attempt to provide a broad and in-depth
review, synthesis, and analysis of the recent advances on the
steering angle prediction of AVs using DL approaches. This
study will benefit novice researchers and developers who are
interested in this research area and can use our literature
survey as initial reading material. Also, it will help expert
readers who can use the study to propose novel approaches for
steering angle prediction by adopting DL architecture. Thus,
interested readers can use this survey to compare various
applications of DL in steering angle prediction of AVs.

The scope of this survey is limited to steering angle pre-
diction approaches of AVs that are developed based on DL
architectures. In summary, the contributions of our survey
paper include:

• a new taxonomy that integrates the architectures, plat-
forms, libraries, simulators, and optimizers of DL-based
steering angle prediction in AVs;

• analysis and synthesis of the literature on DL architec-
tures for steering angle prediction in AVs;

• Current challenges of DL application to steering angle
prediction in AVs;

• A new perspective to DL approaches for steering angle
prediction in AVs with prospects for future research
development.

The remaining parts of the paper are organized as follows:
Section II presents the taxonomy of DL architectures for
steering angle prediction in AVs; Sections III, IV, V, and
VI present the concepts of DL architectures, steering angle
prediction of AV, applications of DL architectures to steering
angle prediction, and driving scenarios in AVs and simulated
environment, respectively; Section VII discusses DL frame-
works and libraries; Section VIII highlights optimizers used
in various projects; Section IX, presents a general analysis
of the applications of DL to steering angle prediction in AVs;
Section X discusses challenges and future research prospects,
while the conclusions are drawn in section XI.

II. TAXONOMY OF DEEP LEARNING ARCHITECTURES FOR
STEERING ANGLE PREDICTION OF
AUTONOMOUS VEHICLES
Taxonomy enables researchers to identify classifications used
in a specific research area based on the most accurate infor-
mation [22]. It organizes the body of knowledge in the field of
research to identify the respective researchers in the various
fields [23]. The taxonomy also determines a number of open
problems that share vital characteristics that can be addressed
through similar approaches [24]. The proposed taxonomy
allows readers to gain a quick understanding of the existing
issues and pave the way to developing solutions that have yet
to be investigated. As the taxonomy identifies open problems,
it also helps in opening new areas of research [25]. DL for
steering angle prediction of AVs can be classified into the
following four major categories: DL architectures, DL frame-
work, AVs simulators, and optimizer which is derived from
the literature that applies DL in steering angle prediction of
AVs, as shown in Figure 1.

III. DEEP LEARNING ARCHITECTURES
DL is part of the broad field of artificial intelligence that
refers to the science and engineering of building machines
with the intelligence and ability to achieve goals like humans,
as stated by John McCarthy who coined this term in the
1950s [26]. DL led to several practical applications and
innovations in various domains. The automotive industry and
development of AVs constitutes the domain where DL has
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FIGURE 1. Taxonomy of steering angle prediction of AVs.

made a considerable impact. DL, as a branch of Machine
Learning (ML), proffers solutions to AV [27]. It is consid-
ered as a means of automating the process of predictive
analytics [28]. Different DL architectures that are applied in
steering angle prediction of AVs are discussed in this section
so that the readers can become acquainted with DL archi-
tectures operations and understand how these DL algorithms
operate to achieve their goal. These DL architectures will be
discussed as follows:

A. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural network (CNN) is a DL architecture
that comprises multiple layers [2], [20]. CNN is the most
attractive DL architecture in use due to its efficiency in
solving image processing problems [29]. Mathematically,
convolution defines a procedure by which one real-valued
function works on another real-valued feature to yield a new
real-valued role. Let one real-valued function be f (t) and
other be g (t) , where t signifies consistent time. Let the
convolution of the two be signified as s(t). The convolution

process is commonly indicated as ∗ [29]:

f (t) ∗ g(t) = (f ∗ g) (t) =
∫
∞

−∞

f (τ ) g (t − τ) dτ (1)

Similarly, convolution is a commutative operation that
implies, (f ∗ g) which is same as (g ∗ f), [29]:

(f ∗ g) (t) = (g ∗ f) (t) =
∫
∞

−∞

g (t) f (t − τ )dτ (2)

Similar equations can likewise be expressed for discrete pro-
cesses that are ordinarily worked within ML applications.
The distinct partners of the two equations can be represented
as f (k) and g(k), where k signifies a discrete example of
time [29]:

f (k) ∗ g (k) = (f ∗ g) (k) =
∑∞

δ=−∞
f (δ) g (k − δ) (3)

and [29]:

(f ∗ g) (k) = (g ∗ k) (k) =
∑∞

δ=−∞
g (δ) f (k − δ) (4)

These definitions are fundamentally the same as the def-
inition of connection that exists between two functions.
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FIGURE 2. Architecture of convolutional neural network.

In any case, the critical distinction here is the indication of δ in
the case of discrete convolution, and τ in the case of ceaseless
convolution is an inverse among f and g.
However, in the case where the sign is flipped, similar

equations denote a correlation operation. The inversion sign
allows one of the functions to be replaced in time before it is
increased in a point-wise manner by another function. Here,
a reversal has the effect of expansion, and after convolution,
the effect is not equal to the consequences of the connec-
tion. The convolution possesses intriguing features from the
point of Fourier transform in the frequency area, and they
are intensely utilized in signal handling applications. The
architecture of CNN is shown in Figure 2. The CNN building
block consists of the following three layers: the convolution
layer, the ReLu, and the pooling layer. The convolution lay-
ers comprise a sequence of kernels, whereby each kernel is
applied to the real figure. ReLu Unit, as its name implies,
rectifies the output of the convolutional layer and converts all
values that are negative to 0, thus the function [29]:

f (x) = max (0, x) (5)

In the pooling layer, the maximum value of the block replaces
the entire block as it performs downsampling through swap-
ping the larger-sized blocks. Those blocks with a single value
aim at drastically reducing the dimension of the data that
flows into the network while retaining important information
that has been captured as a result of the convolution oper-
ations. Max-pooling is a commonly used pooling method.
The three layers make up the essential CNN building block.
Numerous kinds of blocks can be used in a particular CNN.
The earlier presented layers are aimed at a specific spatial
part of the input and are transformed with the convolutional
kernels.

The max-pooling operation is expressed as [30]:

P4k = MaxPool
(
C3k

)
P4ki,j

= max

(
C3k

(2i,2j)′ C3k(2i,+1,2j)
C3k

(2i,2j+1)′ C3
k
(2i,+1,2j+1)

)
, (6)

where (i, j) are indices of kth feature map of the output, and
k is the feature map index, while layer 5 C5 is the third
convolution layer that produces 120, output feature maps and

is expressed as [30]:

C5ki,j = σ
(∑15

d=0

∑4

m=0

∑4

n=0
wk,dm,n ∗ P4

d
i+m,j+n + b

k
)
(7)

where C5k denotes the 120 output feature maps of convo-
lution layers C5 of size 1 × 1, k is the index of the feature
map’s output, (m × n) are the filter weight indices, while d
is the number of channel in input and (i, j) are the output’s
indices. As it is 1× 1, the index (i, j) remains (0, 0) for every
filter. Equation 13 can be abridged, as the filter size is equal
to the size of the input, in order to avoid the occurrence of
convolution stride [30].

C5k = σ
(∑15

d=0

∑4

m=0

∑4

n=0
wk,dm,n ∗ P4

d
m,n + b

k
)

(8)

At the sixth layer (layer 6) we have the fully connected layer
which comprises of 10 neurons for ten classes, which is
mathematically expressed as [30]:

F6k =
∑120

i=1
wki ∗ C5

i (9)

([31] & [32])

8(υ) = max {υ, 0} (Rectfied Linear Unit [ReLU]) (10)

8(υ) = max{min[υ, 1],−1} (hard tanh) (11)

The ReLU and hard tanh activation functions have replaced
the sigmoid and soft tanh activation functions in new neural
networks due to the ease in training multilayered neural net-
works with these activation keys [32].

[2] TCNN is a type of DL network that performs dimension
reduction of higher dimensional input via convolution. CNN
yields excellent performance, especially on larger data sets.
When utilized in an autonomous driving vehicle, it learns all
the essential images of the road features without the need of a
guide for optimization. CNN serves as (the controller) maps
frames from car camera to steering angle to control the AV.
CNNs has performed brilliantly on other applications such as
classification of images, detection of objects, steering angle
prediction (Rausch et al. [2], Pan et al. [18] & Do et al. [20])
speech recognition [2], object recognition [20], natural lan-
guage processing (Wani et al. [30] & Do et al. [20]), and text
processing [30].
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B. DEEP REINFORCEMENT LEARNING
Deep Reinforcement Learning (DRL) is a combination of DL
and Reinforcement Learning (RL) and deals with sequences
of decision making. It has been used to solve a variety of
complex decision making tasks that were previously out of
reach of the ML (François-Lavet et al. [33]. DRL constitutes
a reward-driven process involving trial and error whereby
the system learns to interact with a complex environment to
accomplish a rewarding outcome referred to as RL. The trial
and error process stems from the need to maximize expected
rewards over time in RL. It can serve as a pursuit gateway
for creating rightly intelligent agents like autonomous cars,
game-playing algorithms, and smart robots that interact with
the environment [31]. Figure 3 illustrates a DRL parameter
taking action upon studying the environment: the agent inter-
acts with the environment, makes an observation, and takes
intelligent action.

FIGURE 3. The architecture of the deep reinforcement learning
environment.

FIGURE 4. Agent-environment interaction in RL [33].

Definition: A discrete-time stochastic control process is
Markovian if it possesses the Markov property [33]:

P
(
ωt+1

∣∣ωt , at) = P
(
ωt+1

∣∣ωt , at,...,., ω0, a0
)
, and

P
(
rt
∣∣ωt , at) = P

(
rt
∣∣ωt , at,...,., ω0, a0

)
.

The Markov property refers to the future process that exclu-
sively depends on the current observation, whereby the agent
is not interested in looking at the complete history.

In the expected return, the case of the RL agent whose goal
is to find a policy π (s, a) ∈ 5 is considered to optimize an
expected return Vπ (S) : S → R which is also referred to as
V−value function such that [33]:

Vπ (s) = E
[∑∞

k=0
rkrt+kSt = S, π

]
, (12)

where: E
• rt =a∼π(st.) s (st.a,st+1),
• P

(
st+1

∣∣st , at) = T (st , at , st+ 1)with at ∼ π (st, .),
From the definition of the expected return, the expected
optimal return is conveyed as [33]:

V∗ (s) = max
π∈

Vπ(s) . (13)

In addition to the V-value function, several other functions of
interest can be introduced as the Q-value function Qπ (s, a) :
S × A→ R is defined as [33]:

Qπ (s, a) = E
[∑∞

k=0
rkrt+kSt = S, at = a, π

]
, (14)

Equation 14 may be rewritten recursively in the case of
Markov decision process using Bellman’s equation [33]:

Qπ (s, a) =
∑

S ′∈S
T
(
s, a, s′

)
+ rQπ (s, a = π

(
s′
)
) (15)

Likewise,, the optimal Q−value function Q ∗ (s, a) can also
be defined as [33]:

Q∗ (s, a) = max
π∈5

Qπ(s,a) . (16)

The accuracy of the Q−value function as related to the
V−value function is that the optimal policy can be derived
right from Q∗ (s, a) [33]:

π∗ (s) = argmax
a∈A

Q∗(s,a). (17)

The optimal V -value function V ∗(s) is the probable cut-rated
return in a given state s while following the policy π ∗ later.
Function V ∗ (s) is the expected discount reward when in a
given state s while developing the policy π ∗ subsequently.
It is also likely to define the critical function [33]:

Aπ (s, a) = Qπ (s, a) ,−Vπ (s) . (18)

The quantity describes how worthy action a is when equated
with the probable yield while following direct policy π [34].
DRL is obtained from deep neural networks to represent
the state or observation and approximate any of the compo-
nents of reinforcement learning like value function v (s; θ)
or ∧q (s, a; θ) , policy π (a|s; θ) , and the model, which
is the state transition function and reward function. Here,
the parameters θ are the weights in the deep neural net-
works [35]. DRL algorithms achieve excellent replay based
on experience in various challenging domains, utilize much
memory and computation per real interaction, and also
require off-policy learning algorithms, which can be updated
using data generated by an old policy.

IV. STEERING CONTROL OF AUTONOMOUS VEHICLES
An autonomous car is equipped with a camera that visual-
izes the road ahead and outputs the angle of the steering
wheel [36]. The front steering angle is controlled using the
steering indirectly. The mechanism extending from the steer-
ing wheel to the front wheel is referred to as the steering
system. The motion equations are generated for the steering
systems, which are used when examining the characteristics
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of the steering system due to the vehicle motion. In the
usual driving condition of the vehicle, the steering wheel
control is done by the driver’s hand [37]. [38] reported that
the rotation of the steering wheel is transferrable through
the shaft steering wheel. Various models as described in
(Smolyakov et al. [39], Woo et al. [40], Wang et al. [41],
Sharma et al. [42] & Simmons et al. [43]) predict continuous
steering commands from raw input pixels applying various
approaches; some achieve this through an end-to-endmethod.
Even though these models offer a high level of accuracy,
what happens on the various layers of the network remains
unknown, which makes it a prerequisite for the car manu-
facturing companies and their first-tier suppliers to appre-
hend and lawfully verify that these approaches yield the
correct output before they can be adopted for commercialized
AVs [44]. Picturing what the model perceives on various lay-
ers is crucial in order to develop improved networks and avoid
a trial and error approach. Recently, various methods have
been proposed to visualize the activation layer and highlight
vital regions of an input image using occlusion techniques
(Zeiler and Fergus [45] & Zeiler et al. [46]).
Predicting the steering angle of an autonomous vehicle

is also carried out through reinforcement learning. Steer-
ing angles can be predicted using inverse turning radius
ût = r−1t , where rt is the turning radius at each time step
t instead of using steering angle commands. This depends
on the steering geometry of the vehicle and can result in
numerical instability when predicting steering angle com-
mands at near zero. The relationship between the inverse
turning radius ut and the command of steering angle θt can
be estimated by Ackerman’s steering geometry [47] & [48]
as:

θt = fsteers (ut) = utdwKs
(
1+ K slipv t2

)
(19)

where θt is in degrees and vt in (m/s) is a steering angle
and velocity at time t respectively, and Ks, Kslip and dw are
vehicle-definite parameters. Ks is the steering ratio between
the wheel’s turn, Kslip denotes the relative motion that is
between the surface of the road and the wheel, while dw
denotes the length between the rear wheels and the front.
Each raw input image is down-sampled and resized to 80 ×
160 × 3 with the nearest neighbor algorithm, 80 represent-
ing the dimension along the road section, 160 representing
the dimension perpendicular to a road segment and 3 the
layers of colors. This is done to minimize computational
cost [48].

In place of images that have various aspect ratios, their
heights are cropped to match the rate before performing down
sampling. The mean RGB value is subtracted when compared
with the training set from each pixel [49] & [50], achieving
zero-centered inputs that are initially in different scales. The
driving dataset does not show different levels as the camera
gains in advance or automatically as it is usually calibrated
to capture images with higher quality in a specific dynamic
environment [48].

Given a smoothing factor of 0 ≤ αs ≤ 1, the simple
exponential smoothing method is specified as [48]:(

θ̂t

ût

)
= αs

(
θt

ut

)
+ (1− αs)

(
θ̂t−1

ût−1

)
(20)

where θ̂t and v̂t are the level time series that describe the
past load, which are realizations of some unknown stochastic
processes of θt and vt , respectively. Note that the parameters
are the same as the real-time series when αs = 1, while the
values of αs closer to zero have a more significant smoothing
effect and are less in response to recent changes.

FIGURE 5. Block diagram from the unmanned surface vehicle path
following system [40].

Figure 5 shows a schematic diagram of the Unmanned
Surface Vehicle (USV) path-following system for training.
As shown, a dynamic system should be implemented to
describe the behavior of the vehicle’s dynamic, while a guid-
ance block is utilized to determine the desired course angle.
R (η) is a rotation matrix from a body fixed-frame to an

inheritance frame [40]:

η̇ = R(η)v (21)

[40]: v = (u, v, r)T (22)

[40]: η = (xi, yi, ψ)T (23)

[40] R (η) =

 cos(ψ) −sin(ψ) 0
sin (ψ) cos(ψ) 0

0 0 1

 (24)

The 3DOF horizontal planar dynamic model of the USV can
be described as follows [40]:

M v̇+ C (v) v+ D (v) v = f , (25)

where M is the mass matrix, C (v) is the Coriolis and cen-
tripetal and centripetal matrix, D (v) is the damping matrix,
and f is the control forces and moment. Since the target USV
is a differential thruster type, the control forces and moment
f can be expressed as [40]:

f =

 τXτY
τN

 =
 Tport + Tstbd

o(
Tport + Tstbd

)
.
B
2

 (26)

In equation (26), Tport and Tstbd represent the thrust force
of the port side and the starboard side thruster, respectively,
and B refers to the beam of the target USV. An actuator is
implemented based on the model in [40]; thus, the thrust
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force can be directly calculated from the thruster’s RPM δn
as utilized in Equation (27) [40]:

T = 3.54× 10−5δn2 + 0.084δn− 3.798, (27)

where the RPM δn of whatever port or the starboard side
is determined by the steering command δnd and the speed
command δnm, which are inversely calculated from (28)
and (29), respectively. In (30), the steering command δnd is
defined as the difference of RPM,which is between δnport and
δnstbd and normalized by the maximum RPM value δnmax .
Similarly, the speed command is defined as a mean value of
RPMs that has been normalized as used in Equation (31) [40]:

δnd = (δnport − δnstbd )/(2δnmax) (28)

[40]: δnm = (δnport + δnstbd )/(2δnmax) (29)

[40] In the view of the actuator dynamics that have been
presented in the absolute value of the RPM, δṅ are saturated
as δnmax and δṅmax , respectively.

Amid the various dynamicmodels suggested as amodel for
simulation, dynamics was adopted as the model for the sim-
ulation. Due to the simplicity of the selected model, the time
for the calculation is sufficient for running millions of steps
of simulation from the repetitive training process while main-
taining an appropriate level of dynamics prediction accuracy.
For the linearized maneuvering dynamics, the speed dynamic
model is illustrated as in Equation (32), and the steering
dynamics can be expressed as in Equation (33) [40]:

u̇ = auu + buuτX + bubias (30)

[40]
[
v̇
ṙ

]
= A

[
u
r

]
+ BτN + Bbias′ (31)

where thematrixA is a 2-by-2 systemmatrix, the matrixB is a
2-by-1 control matrix, and Bbias′ is a 2-by-1 matrix for inclu-
sion of the bias term. According to the system identification
result in the unknown parameters in (34) and (35), it can be
described as in (36) and (37) [40]:

u̇ = −1.3191u + 0.0028uτX + 0.6836 (32)

[40]:[
v̇
ṙ

]
=

[
0.0161 −0.0052
8.2861 −0.9860

][
v
r

]
+

[
0.0002
0.0307

]
τN+

[
0.0068
1.3276

]
(33)

[32] defines a vector field for a linear path as in (34). Accord-
ing to the equation, the maximum deviation of the course
angle from the angle’s path is restricted to χ∞ [32]:

χd = χ∞.tan−1(key) + xpath (34)

A target path for USV can be represented in various
forms, such as polynomial spline (usually used with the
Serret-Frenet frame) or a set of waypoints. According to
this approach, the target path is represented through uti-
lizing a line of sight (LOS) from the previous waypoint
Wk−1 (xk−1, yk−1) towards the current waypointWk (xk , yk) .
When d is defined as a Euclidean distance between Wk−1

and Wk , and the difference between the d and along-track
error ex has become smaller than the particular threshold
distance value dth, as d − ex < dth, the target waypoint is
changed to the next waypoint. First, the direction of the path
(Xpath), the direction fromW(k−1) to the USV(dW k−1) and the
distance from the previous waypoint to USV (dW k−1) can be
calculated as follows [40]:

Xpath = atan
(
yk − yk−1
xk − xk−1

)
Xwk−1 = atan

(
yusu − yk−1
xusu − xk−1

)
dwk−1 =

√
(yusu − yk−1)2+ (xusu − xk−1)2 (35)

Using the geometric relationship, we can now calculate
along-track error ex and the cross-track error ey by utiliz-
ing (36) [40]:

ex = cos (Xpath − Xwk−1).dwk−1
ex = sin (Xpath − Xwk−1).dwk−1 (36)

When the error variables are identified, the desired course
angle can be calculated by utilizing (37). In an RL prob-
lem, the goal is to find an optimal policy π∗ that maxi-
mizes the accumulated discounted reward Rt as in (35) [51].
In equation 37, γ is known as a discount factor, which
weights the future error and has a value between 0 and 1.

Rt = rt + γ r t+1 + γ
2rt+2..... =

∑∞

k=1
γ k t+k+1 (37)

A policy π can be evaluated by utilizing two value functions.
A (state) value function V π (s) is defined as the expectation
of the accumulated discounted reward (st , at ) while maintain-
ing the policy. Likewise, an action-value function is defined
as a value function for the particular state and action pair
(st , at) [40]:

V π (st) = Eπ
[
Rt
∣∣st]

= Eπ
[∑∞

k=1
γ
krt+k+1

∣∣st] (38)

[40] Qπ (st , at) = Eπ
[
Rt
∣∣st , at]

= Eπ
[∑∞

k=1
γ
krt+k+1

∣∣st ,at] (39)

According to the definition of the value functions and the
optimal policy π∗, the optimal policy π∗ always satisfies the
following conditions [40]:

π∗ = argmax
π

V π (st)

= argmax
π

Qπ (st, at) (40)

To solve the RL problem, researchers usually use a neural
network as an approximator of the value functions. However,
the learning process completed through updating the tempo-
ral difference update of the RL algorithm and the training
of the neural network approximator for the value function
approximation usually interfere with each other, thus hinder-
ing the learning process from being settled. This phenomenon

VOLUME 8, 2020 163803



U. M. Gidado et al.: Survey on DL for Steering Angle Prediction in AVs

is referred to as the inference problem [52] and is considered
as the major obstacle to applying RL to a real world problem.
In RL dealing with action-value function Qπ (st , at), updat-
ing theQ−value is done by utilizing the Belman equation 45.
If it is an assumption that the target policy is deterministic,
the inner expectation can be eliminated, as shown in Equa-
tion (45). Given that the expectation is dependent on the
environment, the policy Qµ can be learned off-policy, which
means that the exploration can be separated from the learning
process [53] as:

Qπ (st , at )=Est,st+1 ∼ E
[
r(st ,at )γ

Eat+1∼π
[
Qπ (st+1, at+1)

]]
(41)

[53]:

Qµ(st , at ) = Ert,st+1 ∼ E
[
r(st ,at ) + γQ

µ(st+1,mu(st+1))
]
(42)

When a neural network-based function approximator is
parameterized by θQ, the approximator can be optimized by
minimizing the loss function L(θQ) in (48) [53]:

L(θQ) = Es
t∼p

β,at∼β,rt∼ E

[(
Q
(
st,at

∣∣θQ)− yt)2] , (43)

where yt is known as the temporal difference target and is
defined as [53]:

yt = r (st , at)+ γQ(st+1, µ(st+1)
∣∣θQ) (44)

By adopting the newly developed techniques in DRL such as
experience replay, separate target network, and batch normal-
ization, the deep deterministic policy gradient algorithm [54]
can treat large-scale neural network approximators. To update
the networks, the critic network is updated using the gradient
of the loss function L(θQ) in (43), while the actor network
utilizes a deterministic policy gradient [53]. This can be
obtained through using Equation (45) [40]:

∇
θµ

J ≈ Est ∼ pβ
[
∇
θµ

Q

∣∣s = st , a = µ(st
∣∣θµ)]

= Est ∼ pβ
[
∇aQ

(
s, a

∣∣θQ) ∣∣s = st ,

a = µ(st )∇θµµ
(
s
∣∣θµ) ∣∣s = st ,

]
(45)

According to the state space, s ∈ s is defined as (46) [40]:

s =
{
X̃ , ˙̃X , ey, ėy, δnd

}
, (46)

where χ̃ is the difference between the course angle of the
USV and the desired course angle calculated from the vector
field guidance method as χ̃ = χ̃d, ey is the cross-track error,
and δnd is a steering command of the USV. Since χ̃ only
gives angular positional error information to the controller,
the variable ey is added to consider the relative positional
error information in generating the control input. Also, δnd is
integrated into the state space to provide the current steering
command information to avert the chattering phenomenon.
Since the RL based controller is designed as a steering con-
troller, the action space a ∈ A expressed as (47) [40]:

A = {δnd } , (47)

where δnd is a steering control command that defines the
RPM commands of the main thrusters as in (44). Since
the goal of the path-following problem is to minimize
the cross-track error and the course angle error without
producing chattering, partial reward functions are defined
as (46)-(48) [40]:

rX̃ =


e
−k1.

∣∣∣X̃ ∣∣∣ if |χ̃ | < 90o

−e−k1.(X̃−180 if χ̃ ≥ 90◦

−e−k1.(X̃−180 if χ̃ ≤ −90◦
(48)

[40]: rey = e−k1.|ey| (49)

[40]: rσδ = e−k3.σ δ , (50)

where χ , ey, and σδ are the course angle error., cross track
error, and standard deviation of the recent 20 steering com-
mands history values. The partial selected reward function is
0.1, 0.2 and 0.3 for k1, k2, and k3, respectively [40]:

r = wxerxe + weyrey + wσδ rσδ (51)

Autonomous LandVehicle in aNeural Network (ALVINN)
is a 3-layer back propagation network designed to move on
the road as proposed in [55]. It constitutes a connectionist
approach to the navigational task of road following, which is
themain success of the training using simulated images. ANN
displays promising performance and flexibility in various
domains that are characterized by high degrees of noise and
variability, such as handwriting character recognition ([56]
& [57]) and speech recognition [58]. Specifically, ALVINN
was designed to control the NAVLAB, the Carnegie Mel-
lon autonomous navigation test vehicle. ALVINN’s network
training is performed using artificial road ‘‘snapshots’’ and
the Warp back propagation simulator as described in [59].
The Radio Detection and Ranging System (RADAR) is

equipped with short-range and long-range sensors. Since its
invention in the early 1930s, radar technology has inspired a
considerable amount of inventions of every day impact [60].
Light Detection and Ranging (LIDAR) is an on-board sen-
sor used in obtaining information about the environment to
ensure that the autonomous vehicle’s dynamical safety is
translated to avoid single tire lift-off [61].
AVs primarily rely on on-board sensors for decision mak-

ing and utilize safety information and guidance from the
surrounding environment [62]. Autonomous vehicles used to
require several onboard sensing and monitoring devices in
order to obtain data of the surrounding environment [63].
Also, they sense the world through different mounted sensors
mounted, and the information is processed in a perception
block, which involves processing sensor data to meaningful
information [64].
In a related work, [65] applies deep sensor fusion for

developing AVs control. In [66] LIDAR and stereo vision
sensor data are applied for developing the control of AVs.
Similarly, [67] applies multiple sensor fusion in controlling
autonomous vehicle. In [68] multi-sensor fusion system is
applied for the development of autonomous vehicle control.
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In [69], cameras mounted on AVs play the role of the
sensors and also detect the white lines on the road and pedes-
trians and help control the vehicle directly. Today researchers
like [8] achieve steering angle prediction without synchroniz-
ing the steering wheel sensor with the camera sensor, as the
information of the steering wheel angle is communicated
through the vehicle controller area network.
Traditional and End-to-End Learning Approaches: The

traditional approach comprises several tasks such as image
capturing from the vehicle camera [69], lane detection
([70] & [71]), path planning ([72] & [73]), control logic
([74] & [75]), and steering angle prediction [76]. The lane
markings are usually detected using image processing tech-
niques such as color enhancement, edge detection, etc. Path
planning and control logic are performed based on detecting
lane markings in the preliminary stage. The performance
depends on feature extraction and image data interpretation.
However, the manually defined rules and features are not
optimal. Errors can also accrue from previous stages of
processing, leading to inaccurate final results. At the same
time, an end-to-end learning approach of AVs has proved
surprisingly powerful and resolves the problems related to
lane marking detection, path planning, and control by simul-
taneously optimizing all the processing steps [76].

V. APPLICATIONS OF DEEP LEARNING ARCHITECTURES
IN AUTONOMOUS VEHICLE STEERING CONTROL
In this section, the applications of the DL architecture are
discussed as follows:

A. CONVOLUTIONAL NEURAL NETWORK IN
AUTONOMOUS VEHICLE STEERING
ANGLE PREDICTION
In this section we describe the applications of CNN in the
steering control of AVs to demonstrate the importance of
CNN in AVs. For example, [77] proposed utilizing CNN to
map raw pixels from a single camera to directly steer a car in
an end-to-end manner. The CNNwas able to learn significant
features of the road from a very sparse training signal. How-
ever, robustness and visualization of internal processing steps
of the network was poor. Reference [78] applied CNN for
steering angles prediction from images captured ahead of the
road in an end-to-end manner. The result showed that CNN
was able to identify objects and learned other features like
lane markings, road edges, other cars on the road, bush lining,
and typical vehicles that are additional features which would
be difficult to anticipate and programmed by engineers. How-
ever, less training data were used that may not have covered
various driving scenarios sufficiently.

Reference [2] proposed CNN for end-to-end steering con-
trol of AVs where it served as the controller. Its performance
was compared with the human driver’s steering behavior. The
result showed that the CNN’s steering angles were superior
to the human driver’s steering angles. The limitations of the
study include a smaller training dataset and less stability
of the end-to-end system. Reference [19] proposed CNN to

resolve autonomous lateral control. CNN generated a proper
steering angle that enabled the vehicle to complete laps with
no human intervention. The performance of CNN in con-
trolling the steering was evaluated on unknown tracks. For
single lane unknown tracks, the model steered the vehicle
effectively for 89.02% of the time. However, the amount
of training data was small and did not cover many scenar-
ios. Reference [20] proposed CNN for steering angles of an
autonomous vehicle. CNN was trained using data collected
from the vehicle platform that was built with 1/10 scale RC
car, Raspberry Pi 3 model B computer. The frames were
collected from the front camera to generate steering com-
mands. Manual and automated driving was compared. The
trial results demonstrated effectiveness and robustness of the
automated driving when completing the lane keeping task.
However, it had slow camera latency performance, that is
about 300-350 milliseconds.

Reference [42] proposed CNN to implement the longi-
tudinal and lateral control of vehicles through training two
separate models to predict the speed and steering angle.
CNN used 5∗5 kernel and 2∗2 max-pooling for each con-
volution. The model with dual action performed better: it
attained autonomy of up to 100% on the e-road track and
accomplished complete laps without crossing over the lane
markings. However, too much thread consumed much of
the available memory space, and less data was used for the
training. Gathering additional data from various tracks and
environments to train CNNmay produce better results. Refer-
ence [79] proposed CNN based closed-loop feedback DAVE-
2SKY to predict steering wheel angles for lateral control of
AVs. The proposed CNN, DAVE-2SKY was compared with
traditional CNN-based approaches. It performed well as it
was able to control the steering wheel angle for lateral control
of the autonomous vehicle and it accomplished robust control
of the steering even in partially observable situations. This
shows the prospect of fully intelligent autonomous driving
vehicles controlled by CNN through an end-to-end steering
controller. However, the simulation results revealed that it
was unable to perform proper lateral control in the lane
keeping task.

Reference [39] proposedCNN to predict the steering angle.
The CNN design was carried out with the intention of min-
imizing the training parameters. It consisted of a sequence
of convolutional layers and fully connected layers where the
output of the last layer was used as a prediction value of
the steering angle. CNN was able to reduce a large number
of parameters, avoid overfitting, and predict steering angles
with 78.5% accuracy. However, there was high dispersion due
to the use of the small size of the dataset. Reference [76]
proposed CNN for end-to-end learning approaches to solve
the lane-keeping problem through producing the most suit-
able steering angles. CNN was applied to predict the steering
angles, and its performance was compared to the performance
of a human driver referred to as the ground truth. The CNN
model produced accurate steering angles of the vehicle. How-
ever, a small size driving dataset was used that contained
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fewer driving scenarios, which did not include night driving
scenarios.

Reference [48] proposed CNN to predict steering angle
commands. The CNN utilized a visual attention model that
was augmented with an added layer of causal filtering. The
CNN was tested using three real large-scale datasets for
driving that contained more than 16 hours of video frames.
The CNN performance was compared to the performance of
a human driver. The result showed that the attention model
was able to highlight image regions that influenced the out-
put of the network. However, the method suffered from low
spatial resolution deconvolution, which divides the attention
map from capturing objects like cars and lane markings.
Reference [80] proposed CNN to develop DeepPicar called
Raspberry pi3 (B), which involved the replication of real
autonomous vehicles to predict steering angles. The CNN
Raspberry pi3 (B) on NVIDIA performance was compared
with Intel UP and NVIDIA Jeston TX2. The result showed
that the new CNN Raspberry pi3 outperformed other mod-
els in terms of speed and also had the lowest cost. How-
ever, overfitting issues, CPU thermal throttling degraded the
performance in the case of processing multiple DNN mod-
els in the network simultaneously, and it had high energy
consumption. Reference [44] proposed CNN with a generic
visualization model that utilized attention heatmaps (AHs) by
stressing image regions that were most relevant for steering
control. This was to predict longitudinal and lateral control
that involved steering, acceleration, and braking. CNN pre-
dicted output (inverse occlusion) was compared with a fully
occluded image instead of the original image. The method
remains an unusual visualizationmethod used to better under-
stand and improve the learning process of end-to-end con-
trol signals, i.e. lateral and longitudinal control. However,
thework failed to extend the temporal analysis and investigate
the generic metric that describes the robustness of the model.

Reference [81] proposed CNN to produce end-to-end lat-
eral control using a single short-range fisheye camera to
solve lateral control of the AV. The CNN performance was
compared with average multiple trained algorithms referred
to as bagging. The result showed that the trained end-to-end
CNN was capable of controlling vehicles autonomously with
more than 99% accuracy on urban roads and was validated
on a real car, in both open road and challenging scenarios like
sharp turns and working zone areas of the test track. However,
longitudinal control was not included, and better performance
can be attained through improving the neural network archi-
tecture. Reference [41] used CNN to propose a novel naviga-
tion command that utilizes the current position of the vehicle
to calculate the subgoal angle for an end-to-end drivingmodel
to increase the quality of the steering angle prediction. The
subgoal angle significantly boosted the performance of the
driving model through the increasing quality of the steering
angle prediction. The result also yielded a stable performance
of complex tasks from the developed angle branched architec-
ture. However, only RGB image was used as input, and the
vehicle still failed along the way. Reference [18] proposed

CNN for steering control using an end-to-end system with
sub-networks to solve continuous steering and throttle com-
mands. The method depended on the experiment to validate
current imitation learning theory, and the approach did not
require state estimation or on-the-fly planning to steer the
vehicle. CNN yielded generalized features that were more
robust to covariate shift. It performed fast off-road navigation
autonomously; however, it was limited to off-road navigation.
The summary of the CNN applications in steering angle
prediction is presented in Table.

B. THE APPLICATIONS OF DEEP REINFORCEMENT
LEARNING IN AUTONOMOUS VEHICLE
STEERING CONTROL
The application of DRL in steering control is highly limited
in the literature. Reference [40] proposed a DRL-based con-
troller for path following of an unmanned surface vehicle
to predict the steering angle. The DRL uses a deep deter-
ministic policy gradient (DDPG) algorithm that functions as
an actor-critic based RL algorithm for the controller. The
DRL is used to self-develop the vehicle’s path-following
capability and to develop a steering angle controller. Four
DDPG (A, B, C, & D) were compared with the benchmark
controllers PID and DQN. DDPGD performed better, and
the unmanned surface vehicle was able to have self-learning
ability. This capability can be applied to solve problems
dealing with uncertain environmental conditions. However,
unmolded dynamic terms or environmental disturbances were
not covered, and the vehicle did not properly follow its target
path. Table 2 presents a summary of the study.

C. APPLICATIONS OF HYBRID METHODS IN
AUTONOMOUS VEHICLE STEERING CONTROL
In AVs steering control hybrid DL algorithms were applied
for steering control. Hybrid algorithms typically solve each
other’s limitations to produce a more powerful and robust
structure of the DL algorithm. For example, [83] hybridized
CNN and long-short term memory (LSTM)/recurrent neu-
ral network (RNN) to predict the steering angle. Three
DNN-based steering angle prediction algorithms were inde-
pendently designed by Chauffeur [84], Autumn [84], and
Rambo [85]. The Chauffeur model included one CNN for
extracting features from image and LSTM/RNN model for
steering angle prediction; the Autumn model had five (5)
CNNs layers connected together and an LSTM/RNN layer,
and the Rambo model had three (3) CNNs layers whose
output was combined at the final layer. The Chauffeur
model resisted snowy images; the Rambo model fought
with foggy images, and only the Autumn model performed
well across different scenarios. The CNN model extracted
features from captured image, with one LSTM predicting
the steering angles. The proposed CNN and LSTM/RNN
solved asymmetry, weighted model fusion and steering
angles prediction. However, it was affected by failure rates.
Reference [41] hybridized CNN and state-transitive LSTM
(CNN-LSTM) with multi-auxiliary task to improve speed
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TABLE 1. Summary of CNN application in autonomous vehicle steering control.

TABLE 2. Summary of the application of DRL in autonomous vehicle steering control.

and steering angles prediction. CNN and LSTM were com-
bined through sharing the CNN’s feature layer parameters
with an end-to-end autonomous master model. CNN was
used for image classification, and LSTM addressed the time

sequence problem and predicted the steering angles. The end-
to-end autonomous model utilized the auxiliary task to simul-
taneously predict the steering angle and speed. The result
indicated that the performance of the proposed CNN-LSTM
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TABLE 3. Steering control methods using hybrid deep learning algorithm.

TABLE 4. Driving simulators and descriptions.

was better than CNN and state-transitive LSTM. However,
the study only covered limited driving scenarios. In another
study, [43] combined DNN and CNN (DNN-CNN) to address
steering control and speed command problems. CNN used
four hidden layers, while in the DNN Dropout and ReLu
activation were used at each hidden layer. DNN-CNN was
applied to control the steering. The results showed that
DNN-CNN performed better than DNN. The proposed finite
state machine yielded less autonomous behaviors. The sum-
mary of the studies that used the hybrid DL algorithm for
steering control is presented in Table 3.

VI. DRIVING SCENARIOS FOR AUTONOMOUS VEHICLES
IN SIMULATED ENVIRONMENT
Driving simulators are application software that places the
driver in an imitated environment that resembles a real driving
environment. Unlike aircraft simulators, driving simulators
bolster considerably higher than driver training. Researchers
and engineers now utilize driving simulators with advanced
features in the design of vehicles, smart highway design,
and studies of human factors like behaviors of the human
driver under the influence of alcohol and drugs, and severe
weather conditions. It ensures a safer environment for testing
that can be controlled under repeated measurements and is

also cost-effective. Engineers and researchers acknowledge
that the estimations acquired can assist them to predict equal
estimates in the real world that lead to a superior compre-
hension of the mind-boggling driver-vehicle-roadway coop-
eration in dangerous driving circumstances. In consequence,
these studies help reduce traffic-related injuries and deaths on
the highways [39].

Driving simulators are possibly the best state-of-the-art
software of computer-aided kinematic and dynamic simu-
lation and can be regarded as one of the biggest triumphs
in the field, as considered by Jia et al. [86]. Although var-
ious driving simulators have been developed, in this article
we consider only the driving simulators used in the project
we have reviewed; for example, the Car Simulator (CAR-
SIM) [2], the Open Racing Car Simulator (TORCS) [19],
[42] Prescan [79], CarND Udacity [39], Gazebo [18],
Udacity [83], and Grand Theft Auto V (GTAV) [41]. How-
ever, other researchers did not provide information on the
driving simulators used in the project. The summary of
the simulators with the corresponding description is pre-
sented in Table 4. It is found in the literature that dif-
ferent projects used different scenarios depending on the
objective of the project. Table 5 shows different scenar-
ios from various projects depicted in the AV-simulated
environment.
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TABLE 5. Driving scenarios from different projects.

TABLE 6. Deep learning framework and library.

VII. DEEP LEARNING FRAMEWORK AND LIBRARY
Numerous ML frameworks and libraries offer the possibility
of utilizing GPU accelerators to speed up the learning pro-
cess with supported interfaces; some allow the use of opti-
mized libraries like CUDA (cuDNN) and OpenCL to improve
performance. The primary feature of multiple-core accel-
erators is the extreme parallel architecture, which enables
GPUs to speed up computations that involve matrix-based
operations. Software development in the ML community is
vastly dynamic and has different layers of abstraction [27].
Also, advanced DL platforms are now becoming fashionable,
most of all open source. Giant companies such as Google,
Microsoft, Apple, and NVIDIA are investing in DL technolo-
gies to aid software and hardware innovations that will further
advance DL performance that can be used for the next gener-
ation of smart-world products [88]. Table 6 presents different
DL frameworks and descriptions that have been utilized to
implement various projects of steering angle prediction using
DL, focusing on those projects that make the DL framework
information available.

A. KERAS
Keras is a high-level neural networks API written in phyton
and capable of running on top of Tensorflow, CNTK or
Theano. It has been developed with the focus of enabling

fast experiments–. being able to move from the idea to
the result with the least possible delay is the key to doing
proper research [89]. Keras utilized a DL library that
allows for easy and fast prototyping (Hatcher and Yu [90];
Nguyen et al. [27]) through user friendliness, modularity
and extensibility (Nguyen et al. [27]; Hatcher and Yu [90]).
It also supports both CNN and RNN as well as combinations
of the two. Keras also runs flawlessly on CPU and GPU
(Nguyen et al. [27]; Hatcher and Yu [90]). However, keras
is not a DL framework on its own and requires the use of
Tensorflow, Keras with its high-level API integrates with Ten-
sorflow, Theano, and CNTK and is friendly to developers and
can incorporate other common ML packages like scikit-learn
in Python (7). It has been widely embraced by researchers
and industries over the last years. The latest keras version is
2.2.5 and implements the 2.2. ∗ API [89].
Merits [90]:

• It is an open-source and fast-evolving tool and possesses
backend tools from influential companies like Microsoft
and Google.

• It is an accessible API for DL with good documentation.
• It offers a convenient way to rapidly define DL models
on top of backend, for example, Tensorflow, CNTK,
Theano. It wraps backend libraries, thereby abstracting
their capabilities and hiding their complexity.
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Demerits [27]:
• Modularity and simplicity come at the prize of being
less flexible, which is not optimal for research in new
architectures.

• Multi-GPU does not work 100% in terms of efficiency
and user-friendliness, as pointed out by several bench-
marks that used it with a Tensorflow backend.

B. CAFFE
Caffe is a DL framework prepared with expression, modu-
larity and speed in mind. Caffe was developed by Yangqing
Jia Berkeley Artificial Intelligence Research (BAIR) [90]
by community [86] and the BVLC (Berkeley Vision and
Learning Center) at UC Berkeley to offer expressive archi-
tecture and GPU support and primarily image classification
in 2014 [36]. In Caffe DNNs are defined layer by layer.
Accepted data sources for Caffe includes LevelDB or LMDB
and Hierarchical Data Format (HDF5)–efficient databases
with common image formats like JPEG, GIF, TIFF, PNG,
PDF. Common and normalization layers provide numerous
data vector processing and normalization operations. New
layers have to be written in C++ CUDA [90]; [27]. Custom
layers are also braced in Python but are less efficient [27].
Caffe can also be run in command line, MatLab and Python
interfaces. It also runs on mobile platforms and bare CUDA
devices, in addition to its extended use in the Apache Hadoop
ecosystem using Spark, among others. As part of Facebook
Open Source and Research, Caffe2 was built from the earlier
Caffe project that implemented more Python API which sup-
ports Windows, Mac OS X, Linux Android, iOS, and other
platforms [90].
Merits [27]:
• It is easy to code with MatLab and Phyton’s API/CLI.
• Its interface is suitable in image processing using CNN.
• Caffe Model Zoo contains pre-trained networks for
fine-tuning.

Demerits [27]:
• Its custom layers have to be written in C++.
• No further active developments; the latest available ver-
sion of Caffe is 1.0 (April 2017) and later merged to
become Pytorch.

• Definition of the static model graph does not fit numer-
ous RNNs applications that require variable sized inputs.

• Caffe prototxt files for model definition are overly
cumbersome for modular DNN models and very deep
in comparison with other frameworks like ResNet or
GoogLeNet.

C. TENSORFLOW
Tensorflow is an open-source software used in numerical
computation that involves data flow graphs ([27] & [90]).
It constitutes an end-to-end platform that has a compre-
hensive, flexible ecosystem of tools, libraries, and com-
munity resources that allow researchers and developers to
meet up with the state-of-the-art deployment of powered

ML applications. Reference [91] Tensorflow was developed
and maintained by the Google Brain team that is within
Google’s Machine Intelligence research organization for
DL and ML [27], [90]. It is currently released under the
Apache 2.0 open source license although released by Google
in 2015; version 1.0.0 was released in 2017 [90]. Tensor-
flow is intended for extensive-scale distributed training and
inference and is meant for research, production system and
development.
Merits [27]:

• It provides a basis for DL research and development
through its numerical library for data flow programming.

• It outperforms other DL tools; it is a fast evolving, open
source supported by Google.

• It is efficient in multi-GPU settings, allows GPU/CPU
computing, mobile computing, and higher scalability of
computation through machines and substantial data sets.

• Comfortable building and deployment in the cloud,
browser, or on the device, no matter the language used
and the model’s training using intuitive APIs like Keras
with smooth execution, allowing for fast model iteration
and easy debugging [91].

• Simple and flexible architecture that takes new ideas
from concept to code to develop state-of-the-art
models [91].

• Its API can be distributed across multiple GPUs, mul-
tiple machines, or TPUs. For training models, the API
can also enable the distribution of existing models and
training code with minimal code changes 91].

Demerits:

• All computational flow must be developed as a static
graph, even though the Tensorflow Fold package in
Google-AI-blog 2017 tried to lessen the problem [92].

• Remains lower-level API that is difficult to utilize
directly in creating DL models [27].

VIII. OPTIMIZER
In this section, we present the solvers used for optimizing DL
architectures during the training of different projects for steer-
ing angle prediction of AVs. Among them the Adam solver
is most popular, as clearly shown in the literature survey.
Numerous solvers are available for updating weights and bias
after each iteration. Different researchers compare different
solvers and analyze how they influence the training process.
Each model is trained multiple times with different solvers
to find the best optimizer for use in the final DL model.
The typical solvers used by researchers include the Adam
solver derived from adaptive moment estimation, stochastic
gradient descent (SGD) solver, and Nesterov’s accelerated
gradient (NAG) solver. The Adam solver computes adaptive
learning rates for each parameter and is a gradient-based
optimization method. Reference [93] Optimizers help in cal-
culating adaptive learning rates of neural networks [94]. Also,
the solver selection is said to be an important factor in training
neural nets [2]. [87] Adam is a technique for efficient stochas-
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tic optimization, which only requires first-order gradients
with minor memory requirements.

As shown in Table 7, ‘Y’ indicates the use of a par-
ticular solver otherwise indicates non-usage of the solver.
As shown, only one research discussed all the three solvers
used at the preliminary experiment stage for comparison.
Other researchers discussed only the best solver used in the
study.

TABLE 7. The summary of the solvers used in different projects.

IX. ANALYSIS AND DISCUSSION
This survey presents recent advances in applying DL algo-
rithms to improve the accuracy of steering angle prediction of
AVs (as shown in Tables 1, 2, 3 and 4). Driving simulators and
corresponding descriptions (see Table 5), driving scenarios
from different projects (Table 6), DL framework and libraries
(Table 7) and solvers used in different projects (Table 8) are
discussed in the survey. The CNN, DRL and hybrid algo-
rithms are the main DL algorithms that received remarkable
attention from the research community. It has been found
that the DL algorithms can considerably improve the steering
angle prediction of autonomous vehicles.

These DL algorithms work very well in new and unknown
scenarios when the dataset is very large, i.e. have been trained
on many hours of driving in different scenarios. There has
been a breakthrough in the improvement of DL in AVs as
many manufacturers, insurance companies and researchers
are actively involved, and the field is gaining increased atten-
tion as a leading future technology.

Most researchers used an artificial dataset, which is the
dataset that is collected from driving simulators. Only one
single project applied a real dataset to experiment on the
application of DL on steering angle prediction. Real dataset
refers to data collected from actual driving experiments in
the real word and is typically difficult to collect and pro-
cess. On the other hand, some researchers used benchmark
data. Benchmark dataset refers to real data that are collected
and stored in a public repository for researchers to use for
research purposes–either freely available or subscription-
based. As shown in Figure 6, only those projects that reveal
the type of data have been extracted and presented. Although,
real dataset is currently not readily available, researchers are

FIGURE 6. Datasets from different projects.

working with companies and regularly provide benchmark
datasets for continued research in the field. The top ten
datasets are Astyx dataset Hires 2019, Barkeley DeepDrive,
Landmarks, Landmark-v2, Level5, nuscenes Dataset, Open
Images v5, Oxford Radar Robot Car Dataset, Pandaset and
Waymo Open Dataset. The percentage spread of the datasets
is shown in Figure 7, indicating which artificial dataset has
the highest percentage.

FIGURE 7. The percentage of the dataset used by researchers.

Figure 8 depicts the publication trend starting from 2016 up
to 2019, with 2018 recording the highest number of publica-
tions in the domain. The number of publications increased
until 2018 and declined thereafter.

Figure 9 presents the frequency of the DL architectures
used in the steering angle prediction of AVs and clearly illus-
trates their popularity. CNN is a highly popular architecture,
signifying its importance in steering angle prediction of AVs.
The likely reason for CNN receiving such unprecedented
attention from researchers lies in its ability to work effectively
on images, which it does better than other DL architectures;
it manages a high amount of images captured by the cameras
in the AVs. The network takes in images as the input, trains
and predicts the steering angle. On the other hand, hybrid DL
architecture is also gaining momentum due to its advantages
over single algorithms as two or more hybrid algorithms
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FIGURE 8. Publication trend.

FIGURE 9. Deep learning architectures.

FIGURE 10. Deep learning architectures popularity.

can complement each other to improve effectiveness and
efficiency. This is achieved by eliminating the limitation of
the individual algorithms. In terms of percentage, the CNN
takes 79% as shown in Figure 10 of the total adoption in AVs
steering angle prediction.

Figure 11 shows the different architectures of the DL used
in each year. For example, only CNNwas applied in the steer-
ing angle prediction of AVs in 2016; however, in 2018 other
types of DL architectures such as DRL andHybrid algorithms
were used as well. CNN has appeared since 2016while hybrid
has started to gain more attention in 2018. Kuutti, Bowden [4]

FIGURE 11. The frequency of different deep learning architecture per year.

Argued that the application of DL in autonomous vehicle con-
trol is becoming increasingly popular as DL algorithms have
shown promising results in solving complex and non-linear
control problems, in addition to their ability to apply learnt
rules in new scenarios.

X. CHALLENGES AND FUTURE RESEARCH PROSPECTS
Despite the successes recorded in the steering control of
AVs, there are still challenges lingering in the literature that
require further study. In this section, we outline the chal-
lenges revealed in the literature survey and suggest possible
approaches in solving the identified problems in the future.
The challenges and the possible methods for addressing them
are discussed as follows:

A. SYNTHETIC DATASET
From the survey conducted, Table 8 revealed that researchers
in this domain heavily rely on artificial datasets to experiment
with the application of DL in steering control of AVs. This
is in agreement with the argument presented in [40] that
most researchers in the domain used artificial datasets. The
use of artificial datasets has challenges in conducting exper-
iment with the aim of deploying the results in a real-world
environment. Despite the fact that the simulated environment
models the real-world environment, the scenario may differ
from the simulated environment due to the peculiarities of the
unexpected events likely to occur in the real world that are not
captured in the artificial dataset generated from the simulated
environment. Therefore, the experiment conducted in a sim-
ulated environment using an artificial dataset may not nec-
essarily work in the real-world environment as the artificial
dataset is not generated from a real-world event. We suggest
researchers to collaborate with autonomous vehicle manufac-
turers like Mercedes Benz, Baidu, Volkswagen, Waymo, etc.,
to build a public repository of real-world datasets on steering
control of AVs.

B. SLOW IN UNKNOWN ENVIRONMENT
It is found that CNN driving at higher speed remains a
challenge. Researchers argue that CNN takes time to recover
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from bad mistakes, and it is found to be slow in responding to
unknown scenarios [41]. Therefore, we propose a hybrid of
CNN and another DL algorithm to overcome its shortcoming
in steering control at high speed.

C. HIGH COMPUTATIONAL COST AND MEMORY
CONSUMPTION
In respect to the DL structure, CNN requires high compu-
tational cost and consumes a lot of memory space. This
constitutes a challenge to steering control of the AVs as it
has negative implications on both the hardware and software,
which in turn makes the vehicle more expensive. Researchers
should investigate different approaches for reducing high
computational cost and memory consumption of the DL
structure applied in controlling the steering of AVs [91].

D. YET TO ATTAIN OPTIMUM STEERING PERFORMANCE
The optimum performance of steering control via DL has not
yet been achieved, and there is still room for improvement to
attain the optimum performance. Better performance of steer-
ing control can be attained through improving the neural net-
work architecture, specifically through batch normalization
and skip connections. In addition, it can be extended to take
care of obstacle avoidance through investigating mediated
perception techniques using conditional networks or through
adding a temporal aspect to the steering angle prediction [81].

E. THE DNN HIGH FAILURE RATE
The DNN is found to be vulnerable to a relatively high rate
of failures in controlling the steering of AVs [83]. Its optimal
structure can significantly reduce steering control failure,
which remains an unresolved problem. Reference [83] sug-
gested the extensive investigation of diversifying the DNN
structure to solve its failure rate problem in steering control.

F. INSUFFICIENT TRAINING DATASET
It could be observed from the literature that using a sufficient
dataset for training the DL algorithm to control the steering
angle of the AVs has remained a challenge. However, the DL
algorithms highly require a very large dataset for better per-
formance. The performance of the DL algorithms increases
as the data size increases. Therefore, a limited dataset limits
the performance of the DL algorithms, thereby also limiting
the efficiency, effectiveness and robustness of the steering
angle prediction of the AVs. As such, we suggest build-
ing a large-scale dataset repository that is freely available
or subscription-based to provide researchers access to large
scale dataset on AVs steering control.

G. EGO-VEHICLE FAILS
The prediction of the steering angle of AVs can still be
improved: the ego-vehicle still fails although it recovers from
mistakes; it is not robust. The network cannot use RGB image
as sole input and cannot directly extract with both semantic
and depth information [41]. We suggest that researchers pro-
pose a new DL model for steering control of AVs with the

capability to handle ego-vehicle failure and interact directly
with semantic and depth information.

H. LIMITED COMBINATION OF DEEP LEARNING WITH
CONTROL THEORIES
From the survey it can be observed that the studies mainly
depend on the DL algorithms for steering control of the
AVs, thus neglecting the classical control theories. That has
deprived the DL-based controllers from the benefits of the
classical control theories. Therefore, [2] suggested the com-
bination of the classical control theory with DL algorithm to
produce a new generation of controllers with an improved
performance.

I. LONGITUDINAL CONTROL ISSUE
There is the challenge of lateral and longitudinal control in
autonomous vehicle steering control. Adding autonomous
longitudinal control remains an unresolved problem [19].
Therefore, researchers should improve the system by gather-
ing more data from various tracks containing various driving
scenarios (road conditions) to achieve successful control [42].

J. NIGHT DRIVING
TheAVs are expected to drive during day and night timewhen
deployed as commercial vehicles on public roads. However,
only few works such as [77] and [41] include night driving in
their respective studies, while most researchers have ignored
night driving in their scenario, as reported in [76]. If AVs
only rely on daytime driving, their scope of activities remains.
We therefore suggest that researchers include both driving
scenarios in future studies.

K. LACK OF TRANSPARENCY AND BLACK-BOX NATURE
OF DEEP LEARNING
The DL has a ‘‘black box’’ nature ([95]–[97]) and lacks
transparency–a feature for which it has been criticized since
it was proposed. This lack of transparency is partly due to its
reliance on multiple nonlinear transformations. As such, non-
linearities can be challenging when tracing the consecutive
layers of weights back to the input data to identify the fea-
tures that provide the most significant decision or contribu-
tion [98]. As a result, it is difficult to ascertain that the driving
prediction features are scientifically relevant to the data, such
as gray images. Also, a model with brilliant performance may
still have limited experimental utility. The issue of enhancing
the interpretability of DL has in recent years become an
uprising and expanding area of research, with several studies
attempting to extract information on the essential features
of driving prediction using various approaches ([99]–[102]).
However, the existing works only provide a mere overview of
the problem [103].

Furthermore, ([104]–[106]) highlighted unanswered ques-
tions and issues like explaining what happens in the black
box, how it works, and how comprehensive a model it is.
Black boxes can be dangerous, and therefore delegating deci-
sions to it without the possibility of interpretation may be
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risky as it can give rise to discrimination and trust issues.
We suggest that future researchers apply explainable artificial
intelligence to mitigate the issue of lack of interpretability
in DL for steering angle prediction of AVs, in addition to
answering open research questions.

XI. CONCLUSION
This article presents a review of the steering control of AVs
via DL architectures. Taxonomy, synthesis and analysis of
the approaches that applied DL for the control of AVs are
presented. The literature review has covered the following
DL architectures in steering control: deep neural network,
convolutional neural network, hybrid DL and deep reinforce-
ment learning. It was found in the review that the meth-
ods used by the researchers mainly aim at providing proper
predictions of steering angle. The review indicated that the
convolutional neural network is very important in the domain
and more heavily relied on by researchers than any other DL
architecture. Research challenges and possible approaches
for solving the outlined challenges were pointed out. Our
review can serve as a starting point for new researchers who
are interested in steering control of AVs via DL as well as
expert researchers in AV steering control who can use it as a
benchmark for proposing new steering control algorithms.
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