
Received August 6, 2020, accepted August 14, 2020, date of publication August 19, 2020, date of current version August 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3018026

Reinforcement Learning for Position
Control Problem of a Mobile Robot
GONZALO FARIAS 1, GONZALO GARCIA 2, GUELIS MONTENEGRO1,
ERNESTO FABREGAS 3, SEBASTIÁN DORMIDO-CANTO 3,
AND SEBASTIÁN DORMIDO 3, (Member, IEEE)
1Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
2Department of Ocean and Mechanical Engineering, Florida Atlantic University (FAU), Boca Raton, FL 33431, USA
3Departamento de Informática y Automática, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain

Corresponding author: Gonzalo Farias (gonzalo.farias@pucv.cl)

This work was supported in part by the Chilean National Research and Development Agency (ANID) through the
Project Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) under Grant 1191188, in part by the
Dirección de Investigación (DI)-Pontificia Universidad Católica de Valparaíso
under Grant 039.437, in part by the Spanish Ministry of Economy and Competitiveness through the Projects
under Grant RTI2018-094665-B-I00 and Grant ENE2015-64914-C3-3-R, and in part by the Spanish Ministry
of Science and Innovation through the Project under Grant PID2019-108377RB-C32.

ABSTRACT Due to the increase in complexity in autonomous vehicles, most of the existing control systems
are proving to be inadequate. Reinforcement Learning is gaining traction as it is posed to overcome these
difficulties in a natural way. This approach allows an agent that interacts with the environment to get rewards
for appropriate actions, learning to improve its performance continuously. The article describes the design
and development of an algorithm to control the position of a wheeled mobile robot using Reinforcement
Learning. One main advantage of this approach concerning traditional control algorithms is that the learning
process is carried out automatically with a recursive procedure forward in time. Moreover, given the fidelity
of the model for the particular implementation described in this work, the whole learning process can be
carried out in simulation. This fact avoids damages to the actual robot during the learning stage. It shows
that the position control of the robot (or similar specific tasks) can be done without the need to know the
dynamic model of the system explicitly. Its main drawback is that the learning stage can take a long time to
finish and that it depends on the complexity of the task and the availability of adequate hardware resources.
This work provides a comparison between the proposed approach and traditional existing control laws in
simulation and real environments. The article also discusses the main effects of using different controlled
variables in the performance of the developed control law.

INDEX TERMS Mobile robot, position control, reinforcement learning.

I. INTRODUCTION
Robotics has been very popular over the last few years. Today
it is very common to find robots performing different tasks in
many areas of our daily lives including social environments,
agriculture [1], logistics [2], manufacturing [3], medicine [4],
and education [5], just to mention a few of them.

In this context, mobile robots deserve a special mention
because of their importance in performing useful tasks.
In these kinds of applications, the robot has to navigate in
different environments by controlling its own position [6].
This experiment is known as point stabilization or position
control of a nonholonomic mobile robot. It deals with the

The associate editor coordinating the review of this manuscript and

approving it for publication was Sotirios Goudos .

problem of carrying a robot from its current position to a
known destination point [7]. It has been addressed in many
ways by using different traditional control techniques, such
as nonlinear model predictive control [8], back-stepping con-
trol with asymptotic stability [9], continuous time-varying
adaptive controllers [10], PID controllers [11], etc.

Currently, many efforts are dedicated to improving the
existing algorithms by optimizing the trajectories described
by the robot when it goes from a starting point to a destination
point. With the traditional control approaches in general,
a controller is designed by using the model of the system and
obtaining its parameters. These parameters can be adjusted
using different current techniques. The result is an algorithm,
often called control law, that takes the inputs and calculates
the action to make the control most efficiently.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 152941

https://orcid.org/0000-0003-2186-4126
https://orcid.org/0000-0001-9968-960X
https://orcid.org/0000-0003-4478-6626
https://orcid.org/0000-0001-7652-5338
https://orcid.org/0000-0002-2405-8771
https://orcid.org/0000-0001-5981-5683

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

On the other hand, Machine Learning (ML) methods in
general, obtain a control law from data, or an agent learns how
to solve a specific problem adjusting the internal parameters
automatically.Most of these algorithms need a learning stage,
where the agent learns to solve the problem. Recently, these
new paradigms have been applied instead of traditional ones.
UsingML technique, this problem can be solved in a different
way, and the results can be interesting. See, for example,
the application of genetic algorithms [12], neural networks
[13], and fuzzy logic [14], among others.

Recently, the authors have published [15], which is an
improvement of an existing control law [16] using traditional
techniques. Themotivation of the present article is to improve
the results of the previous work by using artificial intelligence
methods, such as Reinforcement Learning (RL) [17]. RL is
an area of ML where an agent interacts with the environment
to get some rewards for its actions. From this interaction,
the agent must learn how to make a specific task finding
a balance between the new information obtained from the
environment and its current accumulated knowledge [18].

Some works can be found in the literature that apply RL
to mobile robots with different applications. For example,
in [19], the authors present the control of a two-wheeled
mobile robot when its dynamical model is not available.
The algorithm builds a performance evaluation function by
using its own artificial neural networks to learn online.
The simulation results demonstrate that it can successfully
achieve self-learning balance control of two-wheeled robot
system in a short time. Moreover, in [20], the authors propose
an algorithm based on a reinforcement learning agent, for
self-adapting multiple low-level PID controllers in mobile
robots. For the formulation of the artificial expert agent, they
developed an incremental model-free algorithm version of the
double Q-Learning algorithm for fast on-line adaptation of
multiple low-level PID controllers.

Furthermore, in [21], the authors propose an approach
using deep reinforcement learning for the navigation of
mobile robots in an unknown environment. With this algo-
rithm, the robot can learn from the environment gradually,
and it can navigate to the target destination autonomously
using an RGB-D camera. The simulation results show that
the mobile robot can reach the desired targets without col-
liding with any obstacles. Also, in [22] the authors present an
approach based on a learning system to control the navigation
of a nonholonomic mobile robot in an unknown environment.
In this algorithm, the robot learns how to navigate and build
a map of the environment. The results are shown with virtual
and real experiments.

In [23] the authors provide several approaches to develop
trajectory tracking based on ML for a wheeled mobile robot
in simulation. In particular, they apply some techniques from
RL together with the use of dynamic inversion for the can-
cellation of nonlinearities, and neural networks as universal
approximators for the estimation of the vehicle’s dynamics.
Stability of the closed loop system was achieved by the use
of an additional supervisory line in the control law. Finally,

in [24], the authors present the application of deep reinforce-
ment learning algorithms for mobile robots and formation
path planning with a specific focus on reliable obstacle avoid-
ance in constrained maritime environments. The designed RL
path planning algorithm is able to solve other complex issues
such as the compliance with vehicle motion constraints.

In our case, the robot must implement the point
stabilization problem with RL by learning how to reach a
target point from its current position. This method is divided
into two phases: 1) the learning stage, and 2) operational
stage. During the first stage, the robot is trained in simula-
tion to obtain the learning matrix. During the second stage,
the robot uses this matrix to carry out the control of its posi-
tion. The main advantage of this approach with respect to the
traditional control algorithms is that the learning process is
carried out automatically in a recursive process in a computer.
This process is carried out by trial and error, but learning
has shown that the system converges to increasingly better
behaviour, if the reward function is adequate. The case of
using RL is taking a step further and aiming for optimal con-
trol, which does not depend on anymodel. It learns an optimal
control law for the plant itself and the current environment.
The downside is the time needed for the learning stage, but
eventually, it delivers the best possible controller.

The result is a controller that can make a specific task,
and no dynamic model of the system is needed. As the
learning is carried out online in simulation, the implemented
control law allows its continuous improvement even in the
real environment. If the model of the robot in simulation is
well-adjusted, the controller is directly implemented in the
real robot for operation with excellent results. In this way,
the damages to the robot can be avoided during the learning
stage. Its main drawback is that the learning stage can take a
long time to finish, depending on the complexity of the task
to solve, and the hardware resources of the computer used to
train and obtain the model.

The main goal of this paper is the design, development,
and implementation of an algorithm to control the position of
a wheeled mobile robot using an RL approach. A summarised
list of contributions from this work is as follows: 1) the design
and implementation of a control law for point stabilization
of a mobile robot based on RL, 2) the implementation of
the proposed algorithm in simulation and real environments,
including obstacles, 3) the comparison of the results of the
new approach with traditional existing control laws, 4) the
evaluation of the performance of the proposed control law
using performance indexes, and 5) the evaluation of the effect
of different controlled variables in the performance of the
developed control law.

The remainder of the paper is organized as follows:
Section II presents some theoretical aspects about the
Reinforcement Learning approach; Section III describes its
application to mobile robot position control; Section IV
shows and discusses some simulation and experimental
results of this research, and Section V presents the main
conclusions and future works.

152942 VOLUME 8, 2020

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

FIGURE 1. Interaction between agent and environment.

II. REINFORCEMENT LEARNING
Due to the increase in complexity in autonomous vehicles,
most of the existing control systems are proving to
be inadequate. Reinforcement Learning is gaining traction as
it is posed to overcome these difficulties natively. As part
of machine learning, RL allows the agent to learn an opti-
mal policy by interacting directly with the environment. The
policy has the ability to learn how this particular robot deals
with the surroundings, by memorizing combinations of states
and actions that deliver higher rewards, defined by a reward
function, providing a controller that upon convergence it is an
optimal one. In the present work, the robot has two inputs and
two outputs, imposing a challenge for the multivariable inter-
actions. This condition limits the performance that classical
controllers can achieve.The interaction between the learning
algorithm and the system and the flow of the signals involved
is depicted in Figure 1.

In this interaction, the Agent that encompasses the learning
algorithm, generates the action delivered to the Environment,
generally based on a combination between purely random
values, and values that reflect the learning degree. The sys-
tem, which is part of the Environment together with the
external world, changes its states upon reception of the action.
This new state is sent back to the Agent where it is fed into
the learning algorithm, and processed using the associated
reward, who is an essential part of the algorithm ([17], [18],
and [25]).

Based on the principles of Dynamic Programming (MDP),
RL assumes that the system can be modeled as a Markov
Decision Process, characterized by the relation xk+1 =
f (xk , uk), and the reward rk+1 = ρ(xk , uk), where xk is the
state of the system, and uk = l(xk) is the control law to be
determined in a recursive way. In the present case, both rela-
tions, the MDP and the reward function are known or given
by the designer. An infinite-horizon return is defined by:

∞∑
k=0

γ krk+1 =
∞∑
k=0

γ kρ(xk , l(xk)), (1)

with 0 < γ < 1 a discount factor that seeks to penal-
ize future rewards. This relation represents the accumulated
discounted rewards into the future starting from the current
state x0 and after the application of the policy l. From this,
a function called action-value is defined:

Q(x0, u0) = ρ(x0, u0)+
∞∑
k=1

γ kρ(xk , l(xk))

= ρ(x0, u0)+ γ
∞∑
k=0

γ kρ(xk+1, l(xk+1)), (2)

This function captures the degree of goodness for the
system to perform the action (u0) from the state x0,
and then following the policy l. The optimal results is
obtained by the maximization of the future reward with
l∗(x) = γ max

v
Q(x, v), giving an optimal action-value

function Q∗(x, u). Written recursively, gives:

Q∗(xk , uk) = ρ(xk , uk)+ γ max
v
Q∗(xk+1, uk)

= ρ(xk , uk)+ γ max
v
Q∗(f (xk , uk), v), (3)

These relations capture theOptimally Principle by showing
that future optimal control values are not defined by past
optimal control values, but only by the current state. As in
Dynamic Programming, this equation solves the optimal
problem by conducting recursive computations backward in
time. The optimal action u while in state x corresponds
to the summation of an immediate reward, and the opti-
mal value obtained by the best action in the state reached
by using u previously, under the discount factor. A major
breakthrough in these calculations allowed the inversion of
the backward-in-time marching to a forward-in-time iterative
algorithm, called Q-learning, that asymptotically converges
toQ∗, as time k goes to infinity, replacing any system’s model
by the model itself [27] and [28].

As this process is developed in time during the operation
of the system, the action-value function is constantly being
updated without the need for any backward computation,
or the requirement of a mathematical model function f to
predict the behavior of the system. This is done by the system
itself while it is interacting with the surroundings. Using uk ,
and the transition from xk to xk+1, the action-value function
is updated as following, with 0 < α < 1 a learning rate:

Qi+1(xk , uk) = Qi(xk , uk)+ α(ρ(xk+1, uk)

+γ max
v
Qi(xk+1, v)− Qi(xk , uk)) (4)

The Q-learning recursive equation has a familiar interpre-
tation, representing a discrete filter, computing a weighted
average between the accumulated knowledge Qi(xk , uk) and
the new data, encapsulated into the temporal-difference
t iD(xk , uk) by:

Qi+1(xk , uk) = αt iD(x + k, uk)+ (1− α)Qi(xk , uk) (5)

with t iD(xk , uk) = ρ(xk+1, uk) + γ max
v
Qi(xk+1, v) −

Qi(xk , uk). The initial condition of Q is either set to zero,
i.e. Q0

= 0 reflecting no prior knowledge, or to the reward
function.

VOLUME 8, 2020 152943

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

FIGURE 2. Position control of a differential robot.

III. MOBILE ROBOT POSITION CONTROL WITH RL
A. KINEMATIC MODEL OF THE ROBOT
A differential wheeled robot is a mobile robot who bases its
movement on two separately driven wheels placed on each
side of its body. The two drive velocities (vL , vR) are perpen-
dicular vectors to the wheels axis. Furthermore, the wheels
are assumed to roll without slipping. These conditions impose
some restrictions known as nonholonomic constraints [29].
The robot can change its direction by varying the relative
rotation between the wheels, so it does not need an additional
steering motion to turn. The kinematic model of the robot in
Cartesian coordinates is the following [6], [30]:

ẋc = v cos(θ)
ẏc = v sin(θ)
θ̇ = ω,

(6)

where θ is the heading direction angle of the robot and it
is perpendicular to the turning radius (R). The instant linear
velocity v = (vL+vR)/2 is the average of the linear velocities
of the left and right wheels, vL and vR, respectively. The
angular velocity ω = (vL − vR)/L is defined with respect to
the ICC (Instantaneous Center of Curvature), where L is the
distance between the wheels. Naturally, the mobile robot has
a maximum linear velocity vmax and, usually, also a minimum
turning radius Rmin, i.e, it cannot freely rotate [15].

B. POSITION CONTROL PROBLEM
This experiment consists of driving a mobile robot from point
C (current position of the robot) to point Tp (target point),
by manipulating its angular (ω) and linear (v) velocities. Note
that these velocities are then transformed into speeds for the
left and right motors as the robot is a double wheeled one.
Figure 2 shows the variables involved in this experiment.
This problem has been widely studied in recent years.

Although the kinematic behavior of these robots may seem
simple, the nonholonomic constraints introduce a challeng-
ing problem when designing a control law. This has been
explained in more detail in some of the author’s previous
works, [15], [31], and [32]. In regular motion, the differ-
ential robot describes a circular trajectory of radius R with

FIGURE 3. Block diagram of the position control problem.

center ICC . The position control algorithm seeks to minimize
the orientation error, θe = α− θ , where α is the current angle
to the target point and θ is the current orientation of the robot.
At the same time, the robot tries to reduce the distance to the
target point (d → 0).
Figure 3 shows the block diagram of the control algorithm

for this experiment, where the inner dashed square repre-
sents the controller and the outer dashed square represents
the robot. Note that the Position Sensor is an IPS (Indoor
Positioning System), which provides the absolute position
and orientation of the robot [5], [33].

Equation (7) calculates the distance (d) and equation (8)
calculates the angle to the target point (α). In both cases,
the values used for the calculation are the coordinates
of Tp(xp, yp) and C(xc, yc). Note that both equations are
implemented in the block Compute.

d =
√(

yp − yc
)2
+
(
xp − xc

)2 (7)

α = tan−1
(
yp − yc
xp − xc

)
(8)

Taking the time derivative of Eq. 7, 8 and after some
mathematical manipulations, the following dynamical system
is obtained [15]:

ḋ = −v cos(θe)

ėθ =
v
d
sin(θe)− ω. (9)

With the distance and angle to the destination point,
the algorithm must obtain the corresponding angular and
linear velocities to reach it, using the implementation of the
block Control Law. This control law can be designed in
different ways: see, for example, a traditional approach called
here Villela [16] for short, or the one developed previously
by the authors named IPC [15]. This latter control law is
described by Eq. 10.

v = min {Kvp (θe) d, vmax} ,

ω = Kp sin (θe)+ Ki
t∫
0
θedt,

(10)

where, p(θe) = 1− |θe|/π , for θe ∈ [−π, π] and Kv, Kp, and
Ki are tuning parameters of the control law.

C. MOBILE ROBOT POSITION CONTROL WITH RL
The main idea is to control the mobile robot using RL instead
of a traditional control algorithm. To this end, the block
Control Law has to be replaced with a trained RL model.
During the training stage, this algorithm learns how to obtain

152944 VOLUME 8, 2020

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

FIGURE 4. Learning stage example.

the velocities (v, ω) using distance (d) and angle (α) to the
destination point.

For simplicity, the model is trained initially to manipulate
only the angular velocity (ω) depending on the angle error
(θe). This means that the linear velocity (v) can be held
constant, at a maximum value, while the robot is outside of
the docking area. The case that considers the manipulation of
both velocities (v and ω) at the same time is also studied here.

As was mentioned before, the process to build the RL
control law is divided into two stages. During the first stage,
the learning matrix Q is built. The entries to this matrix are
composed of pairs (state, action), which are the states of the
robot and its corresponding actions. The state, in this case,
is the angle error (θe), and the action (control signal) can
be the angular velocity (ω) of the robot. The other state,
distance d , is not presently used in the algorithm. Each pair
(state, action) generates the rewards that comprise the
matrix Q. These rewards depend on the criterion that wants
to be applied for the specific task to solve. In this approach,
the criterion is to negatively penalize the absolute deviations
of the controlled signal, which are any changes in the error
angle of the robot, i.e. ρ(xk , uk) = −|θe|.

At the beginning of this stage, the algorithm finds in the
matrix Q the current state of the robot using the current angle
error. From this state the robot determines if it advances
randomly or if it advances taking into account the principle
of switching between exploration (uncharted territory) and
exploitation (of current knowledge). The outcome is a value
of the angular velocity selected from the actions set, which
is then executed by the robot. This process is repeated until a
value defined by the user indicates the end of the search. The
number of iterations depends on the obtained results and it
is adjusted by trial and error. Note that the implementation
of the algorithm considers the inclusion of disturbances by
the modification of the distance and angle error to the target
point after each trial. The idea is to cover different scenarios to
improve learning. These disturbances are supplied at the end
of each learning run. At this time the accumulated rewards are
rewritten into the matrix Q using equation 4. Figure 4 shows
an example of this stage after 5 million iterations.

FIGURE 5. Matrix Q at the end of the learning stage, States in degrees
(θe), and Action in radians per second (ω).

The blue line represents the trajectory followed by the
robot and the red crosses represent the destination points. The
red arrow represents the initial position (0;0) and orientation
of the robot. As can be seen, when the process starts, the robot
has to reach point number 1 from its initial position at the
origin. In this part of the learning process, its behavior is
mostly random because it is building the matrix Q using
aleatory actions without prior knowledge of the environment.
After a big number of trials, the first target is reached.

From point number 1 to point number 2, the built matrix
Q is used to reach this destination point, which means that
the robot uses the current knowledge to make that task. For
the rest of the target points (3, 4, 5, 6 and 7), the process is
repeated. Note that for these last targets the behavior of the
robot is much more precise, which means that the robot has
learned how to go from its current position to a predefined
target. Figure 5 shows the resultingmatrix Q after the learning
stage of this example for 5 million iterations.

In the case of the use of artificial neural networks for the
implementation of RL, i.e. the mapping of the policy function
and of the value function, stability is to be achieved upon
convergence to the optimal fixed points ([17] and [23]). The
present case is based on the Q-learning approach, where an
n-dimensional matrix is obtained during the learning method,
so no direct stability analysis is made.

IV. SIMULATION AND EXPERIMENTAL RESULTS
This section shows the results of the application of the
Reinforcement Learning algorithm in simulation and exper-
imental environments. The results are compared with the
application of the Villela and IPC algorithms for the position
control problem. Note that all the experiments are performed
with the same initial conditions.

A. SIMULATION RESULTS
This subsection shows the results of the simulation for
different tests on various iterations to build the matrix Q.
The matrix Q is obtained in MATLAB during the learning
stage, and it is exported to Python (Spyder-Anaconda IDE).
The V-REP software is connected to Spyder via Remote
API, making it compatible for Python programming. Sim-
ulation tests are carried out in V-REP using the KH4VREP

VOLUME 8, 2020 152945

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

FIGURE 6. Software V-REP with KH4VREP library.

library, which has been developed by the authors [33]–[35].
Figure 6 shows a view of the GUI of the library.

In the learning stage, the algorithm builds the matrix Q to
learn how to reach the destination point. To this end, the angle
error (θe) is used to obtain the angular velocity (ω) in order to
control the position of the robot. Note that initially, the linear
velocity (v) is kept constant at its maximum value until the
robot reaches the docking area.

The matrix Q is composed of the sets (state, action), where
the state is the angle error (θe), and the action is the angular
velocity (ω). The criterion for obtaining the rewards of matrix
Q is to penalize the significant changes in the angle error
of the robot and the little changes in the angular velocity
of the robot. The states have been divided into 126 regu-
larly spaced values between −180◦ and 180◦. The actions
have been divided into 20 regularly spaced values between
–π/2 and π/2 in radians per second. Thus, the matrix Q is
2-dimensional, and its size is 126 × 20. The procedure to
populate the matrix Q (i.e. the learning stage) in MATLAB
takes around 20 minutes. Note that, the discretization interval
can be reduced arbitrarily. However, it should be considered
that the more values the speed and error have, the more
complex the Q-matrix becomes, and the training time can
increase considerably, with no guarantee that this will result
in better system performance.

Figure 7 shows the results of the position control exper-
iment for different algorithms (Villela, IPC, and RL). The
lines describe the trajectories followed by the robot for each
control law. The initial position of the robot is represented
by the black circle at (−0.4;−0.4), and the target point is
represented by the black cross located at (0.4;−0.4).

The initial orientation of the robot is represented by the
black arrow and its value is 180◦. In all cases, the initial condi-
tions are the same, which means that the angle error between
the initial position of the robot and the target point is 180◦.
Note that, the parameters used in the IPC algorithm were
finely tuned, then closely giving the best response possible for
that kind of controller (Kv = 0.15, Kp = 1.5 and Ki = 10−5).

FIGURE 7. Obtained trajectories for each control algorithm (Villela, IPC
and RLw).

FIGURE 8. Distance to the target vs. time for each control algorithm
(Villela, IPC and RLw).

The continuous blue line represents the control algorithm
of Villela. This control law shows the longer trajectory of
all the algorithms. On the other hand, the shortest trajectory
is shown by the IPC control law, which is represented by
the continuous red line. The rest of the dashed lines are
the results of the implementation of the RL algorithm for
different numbers of iterations of the matrix Q learning stage.
For example, RLw2M represents the performance of the
implemented control law with the matrix Q after 2 million
iterations, and the line RLw8M describes the results of the
RL algorithm for 8 million iterations on the learning stage.
As can be seen, when the number of iterations is increased,
the trajectory to the destination point is improved, which
means that the robot describes a shorter path to reach the
target point. Note that all RL trajectories show shorter paths
than the Villela algorithm but, all of them are larger than the
IPC control law.

Figure 8 shows the distance to the destination point
for these experiments. The y-axis represents the distance
in meters and the x-axis represents the time in seconds.
As can be seen, the distance that takes more time (around
20s) to reach the destination point is the Villela algorithm
(continuous blue line).

152946 VOLUME 8, 2020

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

TABLE 1. Time to reach the target point for each algorithm.

TABLE 2. Performance indexes for each algorithm.

On the other hand, the IPC distance (continuous red line)
needs a shorter period of time (around 13s) to reach the
destination. The remaining distances (dashed lines) depict the
expected behavior for the RL algorithms. The more iteration
has the matrix Q, the less time to reach the target point is
needed. These results show that the improvements of the
trajectories are not only in terms of distance, but also in
time. Note that, the difference between the best and the worst
trajectory is around 8s, while the difference between the IPC
and RLw8M is only 0.05s. Table 1 shows the time to reach
the target point for all experiments.

The quality of each control algorithm can be evaluated by
using performance indexes. These indexes use the integral
of the error, which is, in our case, the distance to the target
point. The performance indexes considered in this work are
the following: 1) Integral Square Error (ISE), 2) Integral
Absolute Error (IAE), 3) Integral time Squared Error (ITSE),
and 4) Integral time Absolute Error (ITAE). Note that the last
two also include the time in the analysis [36]. Table 2 shows
the performance indexes to compare the results of each
algorithm. Note that a lower value of the index implies a
shorter path.

As can be seen, the IPC algorithm shows the lower value
for all indexes, which means that this algorithm has better
performance because the trajectory is the shortest. While the
RL algorithm shows good performance indexes, they never
improve the IPC results mainly due to the RL algorithm only
manipulates the angular velocity of the robot (ω). That is
the reason it never surpasses the IPC algorithm performance
no matter the number of iteration in the calculation of the
matrix Q.

A way to improve the results of the RL algorithm is to
include the linear velocity of the robot (v) in the learning
stage. As in the previous case, the robot learns how to reach
the destination point, but in this case, by manipulating the
angular velocity (ω) and also, the linear velocity (v).
To this end, the matrix Q is composed of the sets

(state, action1, action2), and it is also built in the learning
stage. In this case, the state is the angle error (θe), and the
actions are linear (v) and angular (ω) velocities. The criterion
for obtaining the rewards of matrix Q is to penalize the

FIGURE 9. Trajectories obtained for control algorithm IPC and
Reinforcement Learning (RLVw).

TABLE 3. Performance indexes for IPC and RL algorithms.

significant changes in the error angle of the robot and the little
changes in the velocities of the robot.

The state is divided into 126 regularly spaced values
between−180◦ and 180◦. The actions have been divided into
20 regularly spaced values between −π/2 and π/2 for ω,
and divided into 27 regularly spaced values between 0 and
0.08 for v. Thus, the matrix Q is 3-dimensional, and its size
is 126×20x27. The procedure of completing the matrix Q in
MATLAB is very complicated, and that increases the training
time up to two hours.

Figure 9 shows the results of the simulation for the position
control of the robot using IPC and RL. For this latter algo-
rithm, the RL considers two cases: RLw (i.e. manipulat-
ing only ω), and RLwV (i.e. manipulating both velocities v
andω). As in the previous case, the initial position of the robot
is represented by the black circle at (−0.4;−0.4). The target
point is represented by the black cross located at (0.4;−0.4).
The initial orientation of the robot is represented by the black
arrow and its value is 180◦. The lines describe the trajectories
followed by the robot for each algorithm. In the figure, RLw
is represented by the black dashed line, RLwV is represented
by the red dashed line and the IPC is represented by the solid
blue line.

For the RL algorithms, the simulation was performed with
the Qmatrix of 100 million iterations in both cases. As can be
seen, the IPC algorithm shows the shortest trajectory (but not
necessarily the fastest) to the target point. As in the previous
case, table 3 shows the performance indexes obtained for the
IPC algorithm and the RL algorithms.

As can be seen, the performance indexes are very similar.
However, the performance indexes IAE, ITSE, and ITAE
show better results in the case of RLVw in comparison to the
IPC algorithm.

VOLUME 8, 2020 152947

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

FIGURE 10. Distance to the target for control algorithm IPC and
Reinforcement Learning (RLVw).

Figure 10 shows the distance to the destination point
for these experiments. The y-axis represents the distance in
meters and the x-axis represents the time in seconds. The solid
blue line represents the control algorithm IPC and the dashed
lines represent the RL algorithms.

As can be seen, the RLVw algorithm shows the fastest
performance, reaching the target point at 12.85s. The IPC
algorithm takes 13.10s to reach the target point. Finally,
the longest duration corresponds to RLw with 13.25s. Note
that, the maximum peaks of the distance belong to the RL
algorithms, even RLVw arrives a few moments before the
IPC algorithm. This is because the IPC algorithm has a small
delay at the beginning, when it is turning to get the right
orientation. Due to the integral action of the IPC controller,
the linear speed increases slowly until the robot can modify
its orientation.

Once the position of the robot is controlled, it is interesting
to add obstacles in the trajectory of the robot and try to
avoid them. This problem can be addressed in different ways.
In this case, due to the type of proximity sensors of the
Khepera IV robot, thewell-knownBraitenberg algorithm [39]
was selected. This algorithm creates a weighted matrix that
converts the sensor inputs into motor speeds. This matrix is
a two-dimensional array with the number of columns cor-
responding to the number of obstacle sensors (8) and the
number of rows corresponding to the number of motors (2).
Theweights of thematrix are determined empirically depend-
ing on the location of the sensors in the robot [33]. Note
that the obstacles avoidance algorithm can be considered as
a disturbance in the motors speeds for the control position
problem (see figure 3).

Figure 11 shows the obstacle avoidance experiment using
the control laws involved in this research. The configuration
shows one obstacle in grey color. The robot (solid small
circle) starts the motion from position (-0.4;-0.4) with−180◦

of orientation (represented by the black arrow). The dotted
circle represents the vision margin of the object detection
sensors used in the Braitenberg algorithm. The robot must
reach the target point, which is represented by the black cross
situated at (0.4;-0.4).

FIGURE 11. Braitenberg algorithm for obstacles avoidance with IPC, RLw,
and RLVw.

TABLE 4. Performance indexes for Braitenberg Algorithm with IPC and RL
control laws.

As can be seen, in all cases, the robot reaches the target
point avoiding the obstacle and describing similar trajecto-
ries. Table 4 shows the performance indexes obtained for all
experiments. As can be seen, the performance indexes are
very similar; however, the RLw algorithm shows the best
results.

B. EXPERIMENTAL RESULTS
This subsection shows the experimental results that have
been carried out in the platform [5] previously developed by
the authors. The components of the platform are the follow-
ing: a Khepera IV robot, an arena with a dimension of 2m x
1.5m, a USB camera, a desktop computer that runs SwisTrack
[37] and Easy Java Simulations (EJS) [38], and a WI-FI
router, which is in charge of the communications between the
robot and the computer. Note that the camera, the SwisTrack
software, and the WI-FI router work as an Indoor Positioning
Sensor (IPS) or indoor GPS, to provide the absolute position
and orientation of the robot.

Figure 12 shows the overall block diagram of the control
architecture. The images obtained by the camera are pro-
cessed by the SwisTrack software (block 3), which obtains
the current position and orientation of the robot. After that,
the distance and angle error are calculated. The control action
(velocities v and ω) are then obtained by applying the RL
algorithm (block 5). Finally, these velocities are sent by the
WI-FI network to the robot, which updates the left and right
motor speeds (block 2).

Figure 13 shows the position control experiment.
The initial conditions of the experiments results are the same
as in simulation. The blue line represents theVillela algorithm
and the brown line represents the IPC control law. The rest
of the lines are the results for the implementation of the RLw

152948 VOLUME 8, 2020

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

FIGURE 12. Block diagram of the proposed control architecture.

FIGURE 13. Position control experiment for each algorithm (Villela, IPC
and RLw).

FIGURE 14. Distance to the target for each control law (Villela, IPC and
RLw).

algorithm for different numbers of iterations in the calculation
of the matrix Q.

As expected, when the number of iterations is increased,
the trajectory to the destination point is improved, which
means that the robot describes a shorter trajectory to reach the
target point. The experimental results on the increase in the
number of iterations of the RL algorithm confirm the results
obtained in simulation. The Villela algorithm shows a better
performance than the RLw algorithms with few iterations
(less than 5 millions of iterations), but RLw cases with higher
iterations (5 and 8 millions of iterations) show better results.

TABLE 5. Arrival time for each algorithm in experimental environment.

TABLE 6. Performance indexes for each algorithm.

Figure 14 shows the results for the distance to the target
point. The y-axis represents the distance to the target in
meters and the x-axis represents the time in seconds. As can
be seen, the results confirm that the best performance cor-
responds to the IPC algorithm, where the robot reaches the
destination point in 18s. In the case of the Villela algorithm,
the robot reaches the destination in 25s.

Table 5 shows the time to reach the destination for the
algorithms represented in figure 14. As expected, the IPC
algorithm shows the best results reaching the destination
point in 18.74s. While the RLw2M, RLw5M and RLw8M
show better results than Villela algorithm.

Finally, table 6 shows the performance indexes for
experimental results with the Villela, IPC and RLw algo-
rithms. As can be seen in the last column, the IPC algorithm
has the best performance, showing the lowest values for all
errors indexes. The results also show that when increasing the
number of iterations for the RLw algorithm, the trajectories
are improved. As expected, the RLw algorithm never sur-
passed the IPC results, due to the reasons exposed in previous
section.

V. CONCLUSION
In this paper, an algorithm to control the position of a wheeled
mobile robot using Reinforcement Learning has been tested
in simulation and experimentally. The proposed algorithm is
compared with traditional control approaches.

The results show that the proposed controller is able to
perform the point stabilization problem successfully. The
trajectories of the robot to the destination point are improved
with the increase in the iterations on the learning stage.
However, manipulating only the angular velocity (ω), it is not
enough to overpass the performance of the IPC algorithm.
In order to improve the results, the linear velocity (v) was
also included in the RL algorithm. This modification makes
the learning process more complex and it also increases the
training time, but in turn, it is able to get a better performance
than the IPC control law in simulation. The implementation in
the experimental environment in the lab shows similar results
as in simulation.

VOLUME 8, 2020 152949

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

Future works include the implementation of different
control problems inmobile robot using this approach, such as,
larger and complex obstacles avoidance, trajectory tracking,
master-slaves formation control and consensus algorithm.

REFERENCES
[1] A. Bechar and C. Vigneault, ‘‘Agricultural robots for field operations.

Part 2: Operations and systems,’’ Biosyst. Eng., vol. 153, pp. 110–128,
Jan. 2017.

[2] L. Haiming, L. Weidong, Z. Mei, and C. An, ‘‘Algorithm of path planning
based on time window for multiple mobile robots in warehousing sys-
tem,’’ in Proc. Chin. Control Conf. (CCC), Guangzhou, China, Jul. 2019,
pp. 2193–2199.

[3] A. Liaqat, W. Hutabarat, D. Tiwari, L. Tinkler, D. Harra, B. Morgan,
A. Taylor, T. Lu, and A. Tiwari, ‘‘Autonomous mobile robots in manufac-
turing: Highway code development, simulation, and testing,’’ Int. J. Adv.
Manuf. Technol., vol. 104, nos. 9–12, pp. 4617–4628, Oct. 2019.

[4] A. G. Ozkil, Z. Fan, S. Dawids, H. Aanes, J. K. Kristensen, and
K. H. Christensen, ‘‘Service robots for hospitals: A case study of trans-
portation tasks in a hospital,’’ in Proc. IEEE Int. Conf. Autom. Logistics,
Aug. 2009, pp. 289–294.

[5] G. Farias, E. Fabregas, E. Peralta, H. Vargas, S. Dormido-Canto, and
S. Dormido, ‘‘Development of an Easy-to-Use multi-agent platform for
teaching mobile robotics,’’ IEEE Access, vol. 7, pp. 55885–55897, 2019.

[6] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots. Cambridge, MA, USA: MIT Press, 2011.

[7] S. G. Tzafestas, ‘‘Mobile robot control and navigation: A global overview,’’
J. Intell. Robotic Syst., vol. 91, no. 1, pp. 35–58, Jul. 2018.

[8] A. Rezaee, ‘‘Model predictive controller for mobile robot,’’ Trans. Environ.
Electr. Eng., vol. 2, no. 2, pp. 18–23, 2017.

[9] B. Dumitrascu, A. Filipescu, and V. Minzu, ‘‘Backstepping control of
wheeled mobile robots,’’ in Proc. 15th Int. Conf. Syst. Theory, Control
Comput., Oct. 2011, pp. 1–6.

[10] R. Gonzalez, M. Fiacchini, T. Alamo, J. L. Guzman, and F. Rodriguez,
‘‘Adaptive control for a mobile robot under slip conditions using an LMI-
based approach,’’ Eur. J. Control, vol. 16, no. 2, pp. 144–155, Jan. 2010.

[11] S. Zihao, W. Bin, and Z. Ting, ‘‘Trajectory tracking control of a spherical
robot based on adaptive PID algorithm,’’ in Proc. Chin. Control Decis.
Conf. (CCDC), Nanchang, China, Jun. 2019, pp. 5171–5175.

[12] C. Caceres, J. M. Rosario, and D. Amaya, ‘‘Approach of kinematic con-
trol for a nonholonomic wheeled robot using artificial neural networks
and genetic algorithms,’’ in Proc. Int. Conf. Workshop Bioinspired Intell.
(IWOBI), Jul. 2017, pp. 1–6.

[13] O. Mohareri, R. Dhaouadi, and A. B. Rad, ‘‘Indirect adaptive tracking
control of a nonholonomic mobile robot via neural networks,’’ Neurocom-
puting, vol. 88, pp. 54–66, Jul. 2012.

[14] H. Omrane, M. S. Masmoudi, and M. Masmoudi, ‘‘Fuzzy logic based con-
trol for autonomous mobile robot navigation,’’ Comput. Intell. Neurosci.,
vol. 2016, pp. 1–10, 2016.

[15] E. Fabregas, G. Farias, E. Aranda-Escolastico, G. Garcia, D. Chaos,
S. Dormido-Canto, and S. D. Bencomo, ‘‘Simulation and experimental
results of a new control strategy for point stabilization of nonholonomic
mobile robots,’’ IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6679–6687,
Aug. 2020.

[16] V. J. Gonzalez, R. Parkin, M. L. Para, and J. M. Dorador, ‘‘A wheeled
mobile robot with obstacle avoidance capability,’’Mechanica Technologia,
no. 1, pp. 150–159, 2004.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[18] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
Boca Raton, FL, USA: CRC Press, 2017.

[19] S. Liang and F. Gan, ‘‘Balance control of two-wheeled robot based on
reinforcement learning,’’ in Proc. Int. Conf. Electron. Mech. Eng. Inf.
Technol., Aug. 2011, pp. 3254–3257.

[20] I. Carlucho, M. De Paula, and G. G. Acosta, ‘‘Double Q-PID algorithm
for mobile robot control,’’ Expert Syst. Appl., vol. 137, pp. 292–307,
Dec. 2019.

[21] X. Ruan, D. Ren, X. Zhu, and J. Huang, ‘‘Mobile robot navigation based
on deep reinforcement learning,’’ in Proc. Chin. Control Decis. Conf.
(CCDC), Jun. 2019, pp. 6174–6178.

[22] L. Tai, G. Paolo, and M. Liu, ‘‘Virtual-to-real deep reinforcement learning:
Continuous control of mobile robots for mapless navigation,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Vancouver, BC, Canada,
Sep. 2017, pp. 31–36.

[23] M. Szuster and Z. Hendzel, ‘‘Control of Mechatronic Systems,’’ in Proc.
Intell. Optim. Adapt. ControlMechatronic Syst.Berlin, Germany: Springer,
2017, ch. 8, pp. 255–297.

[24] X. Zhou, P. Wu, H. Zhang, W. Guo, and Y. Liu, ‘‘Learn to navigate:
Cooperative path planning for unmanned surface vehicles using deep
reinforcement learning,’’ IEEE Access, vol. 7, pp. 165262–165278, 2019.

[25] T. Jaksch, R. Ortner, and P. Auer, ‘‘Near-optimal regret bounds for rein-
forcement learning,’’ J. Mach. Learn. Res., vol. 11, pp. 1563–1600, 2010.

[26] C. C. White, ‘‘Markov decision processes,’’ in Encyclopedia of Operations
Research and Management Science. New York, NY, USA: Springer, 2001.

[27] C. Watkins, Learning From Delayed Rewards. Cambridge, MA, USA:
King’s College, 1989.

[28] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[29] Y. Ma, V. Cocquempot, M. El Badaoui El Najjar, and B. Jiang, ‘‘Actu-
ator failure compensation for two linked 2WD mobile robots based on
multiple-model control,’’ Int. J. Appl. Math. Comput. Sci., vol. 27, no. 4,
pp. 763–776, Dec. 2017.

[30] M. C. G. C. Morales, V. V. Alexandrov, and J. E. M. G. Arias, ‘‘Dynamic
model of a mobile robot with two active wheels and the desing an optimal
control for stabilization,’’ in Proc. IEEE 9th Electron., Robot. Automot.
Mech. Conf., Nov. 2012, pp. 219–224.

[31] E. Fabregas, G. Farias, S. Dormido-Canto, M. Guinaldo, J. Sánchez, and
S. Dormido Bencomo, ‘‘Platform for teaching mobile robotics,’’ J. Intell.
Robotic Syst., vol. 81, no. 1, pp. 131–143, Jan. 2016.

[32] D. Galán, E. Fabregas, G. Garcia, J. Sáenz, G. Farias, S. Dormido-Canto,
and S. Dormido, ‘‘Online virtual control laboratory of mobile robots,’’
IFAC-PapersOnLine, vol. 51, no. 4, pp. 316–321, 2018.

[33] E. Fabregas, G. Farias, E. Peralta, H. Vargas, and S. Dormido, ‘‘Teaching
control in mobile robotics with V-REP and a khepera IV library,’’ in Proc.
IEEE Conf. Control Appl. (CCA), Sep. 2016, pp. 821–826.

[34] E. Peralta, E. Fabregas, G. Farias, H. Vargas, and S. Dormido, ‘‘Devel-
opment of a Khepera IV library for the V-REP simulator,’’ IFAC-
PapersOnLine, vol. 49, no. 6, pp. 81–86, 2016.

[35] G. Farias, E. Fabregas, E. Peralta, E. Torres, and S. Dormido, ‘‘A Khepera
IV library for robotic control education using V-REP,’’ in Proc. IFAC-
PapersOnLine 20th IFACWorld Congr., Toulouse, France, 2017, pp. 9150–
9155.

[36] Y. K. Soni, R. Bhatt, ‘‘BF-PSO optimized PID controller design using ISE,
IAE, IATE andMSE error criteria,’’ Int. J. Adv. Res. Comput. Eng. Technol.,
vol. 2, no. 7, pp. 2333–2336, 2013.

[37] T. Lochmatter, P. Roduit, C. Cianci, N. Correll, J. Jacot, and A. Martinoli,
‘‘SwisTrack–A flexible open source tracking software for multi-agent
systems,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Nice, France,
Sep. 2008, pp. 4004–4010.

[38] F. Esquembre, ‘‘Easy java simulations: A software tool to create sci-
entific simulations in java,’’ Comput. Phys. Commun., vol. 156, no. 2,
pp. 199–204, Jan. 2004.

[39] M. Shayestegan and M. H. Marhaban, ‘‘A braitenberg approach to mobile
robot navigation in unknown environments,’’Proc. Int. Conf. Intell. Robot.,
Automat., Manuf. Berlin, Germany: Springer, Nov. 2012, pp. 75–93.

GONZALO FARIAS received the degree in
computer science from the Universidad de la Fron-
tera, Temuco, Chile, in 2001, the Ph.D. degree in
control engineering from the National University
of Distance Education (UNED), in 2010, and the
Ph.D. degree in computer science from the Com-
plutense University of Madrid (UCM), Madrid,
Spain, in 2013. Since 2012, he has been with the
Electrical Engineering School, Pontificia Univer-
sidad Católica de Valparaíso (PUCV). His current

research interests include machine learning, pattern recognition, simulation
and control of dynamic systems, and engineering education.

152950 VOLUME 8, 2020

G. Farias et al.: RL for Position Control Problem of a Mobile Robot

GONZALO GARCIA received the B.S. degree
in electronics engineering (radar design) from
the Naval Polytechnic Academy, Chile, in 1994,
the M.S. degree in electronics engineering (auto-
matic control) from Universidad Técnica Fed-
erico Santa Maria, Valparaíso, Chile, in 2006, and
the Ph.D. degree in aerospace engineering from
The University of Kansas, in 2013. He is cur-
rently a Postdoctoral Fellow with the Department
of Ocean and Mechanical Engineering, Florida

Atlantic University (FAU). His research and teaching interests include design
of advanced control systems for unmanned aerial, terrestrial, underwa-
ter vehicles, including robust control, nonlinear control, optimal control,
predictive control, and reinforcement learning.

GUELIS MONTENEGRO received the B.S.
degree in electronics engineering from Universi-
dad Técnica Federico Santa Maria (UTFSM), Val-
paraíso, Chile, in 2016. He is currently pursuing
the M.S. degree in sciences of engineering with
the Pontificia Universidad Católica de Valparaíso
(PUCV). His current research interests include
simulation and control of dynamic systems and
mobile robotics applied to engineering education.

ERNESTO FABREGAS received the B.S. degree
in automation control and the M.S. degree in
digital systems from Polytechnic Jose Antonio
Echeveria (CUJAE), Havana, Cuba, in 2004 and
2008, respectively, and the Ph.D. degree in com-
puter science from the Universidad Nacional de
Educación a Distancia (UNED), Madrid, Spain,
in 2013. From 2015 to 2019, he was a Postdoctoral
Fellow with UNED, where he has been an Assis-
tant Professor, since 2019. His current research

interests include control of multiagent systems, machine learning, mobile
robot control, remote laboratories, and engineering education.

SEBASTIÁN DORMIDO-CANTO received the
M.S. degree in electronics engineering from Uni-
versidad Pontificia de Comillas (ICAI), Madrid,
Spain, in 1994, and the Ph.D. degree in physics
from the Universidad Nacional de Educación a
Distancia (UNED), Madrid, in 2001. Since 1994,
he has been with the Department of Computer
Science and Automatic Control, UNED, where he
is currently a Full Professor of control engineer-
ing. His research and teaching interests include

automatic control, machine learning, and parallel processing.

SEBASTIÁN DORMIDO (Member, IEEE)
received the B.S. degree in physics from the Com-
plutense University of Madrid, Madrid, Spain,
in 1968, the Ph.D. degree in science from the
University of the Basque Country, Bilbao, Spain,
in 1971, and the Doctor Honorary degree from
the Universidad de Huelva, in 2007, and the Uni-
versidad de Almeria, in 2014. In 1981, he was
a Professor of control engineering with UNED,
Madrid. He has authored or coauthored more than

350 technical articles in international journals and conferences. He has
supervised 38 Ph.D. theses. His scientific research interests include computer
control of industrial processes, model-based predictive control, event-based
control, and web-based laboratories for distance education. From 2001 to
2006, he was the President of the Spanish Association of Automatic Control,
CEA-IFAC. He received the National Automatic Control Prize from the
IFAC Spanish Automatic Control Committee, in 2008, and the IFAC Control
Education Lifetime Achievement Award, in 2019.

VOLUME 8, 2020 152951

