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ABSTRACT Automatic target recognition (ATR) has always been an important research topic, and the
performance is affected by feature extraction. High-resolution range profiles (HRRP) contains structural
information of target from different angles. Existing target recognition algorithms are mostly adopt the
supervised learning and verify the validity through classification accuracy. However, these methods cannot
satisfy the information acquisition such as correlation, composition analysis and attitude analysis of
unlabeled or uncoordinated targets. Therefore, we are committed to researching new intelligent feature
extraction and analysis method. In this article, a novel learning framework is proposed to realize the
angle correlation feature extraction and feature analysis of multi-angle HRRP targets. A multi-layer
sparse autoencoder is applied to extract HRRP features and the extracted features are mapped to the
low-dimensional space by manifold learning method to find the correlation distribution of HRRP data.
The effectiveness of the proposed framework is demonstrated by experiments with simulated and measured
data. The experimental results show that the framework realizes the extraction of angle-invariant features,
and the analysis of distribution relationship between HRRP data and angles. The research results of the
correspondence between the assembly and the related geometry provide the basis and possibility for further
identification and composition determination.

INDEX TERMS ATR, feature extraction, HRRP, manifold analyzer, sparse autoencoder.

I. INTRODUCTION
High-resolution range profiles (HRRP) is the magnitude of
coherent summations of the complex time return from target
scatters along the radar line of sight. Since HRRP data are
relatively easy to acquire and process and provide plenty of
information, many researches have been developed based on
HRRP in recent years [1]. In [2], deep network structure
is introduced to solve the problem of target recognition,
while researchers [3], [4] adopt traditional methods such as
dictionary learning and decision tree. In [5], multi-kernel
learning is introduced to improve the nonlinear ability of
the classifier, and a new adaptive method [6] is proposed
based on the small sample characteristics of HRRP data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jingchang Huang .

In the previous studies, researchers mostly adopted the
supervised training methods commonly used in pattern
recognition and the most likely label prediction was given
according to some evaluation rules. However, HRRP target
recognition research has its own challenge. The target
recognition of radar HRRP is quite different from that of
our daily objects or visible images. Firstly, radar target
recognition is a single-sample recognition task, and each
type of target is the data obtained by a single object from
different angles. Therefore, the difference within the class
is only the azimuth difference in data acquisition. Secondly,
the research object samples in HRRP recognition are not
completely independent from each other, and each sample
is generally acquired along a certain trajectory, so there is a
certain spatiotemporal correlativity of these samples. In the
actual recognition task, it is rare to obtain the complete

153250 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0741-7074
https://orcid.org/0000-0001-7424-1008
https://orcid.org/0000-0001-6193-2619


X. Chen et al.: Sparse Autoencoder Based Manifold Analyzer Model of Multi-Angle Target Feature

label of the recognition object, so the recognition needs
to start from feature analysis. The geometric characteristics
of targets and the distribution of strong scattering points
in HRRP data are generally affected by such properties
as amplitude sensitivity, translation sensitivity and azimuth
sensitivity. Azimuth sensitivity usually establishes the data
and corresponding template by dividing the specific angle
area, which may not completely reflect the target properties.
In addition, when the target is a non-matching or non-fixed
category of objects and the labels in the training library are
unable to give accurate recognition results, it is more helpful
to identify the target by analyzing the target components
and giving the information of possible components of the
target than simply giving a certain classification label. In view
of the characteristics and existing problems of the above
HRRP target recognition task, we consider the solution of
this problem from a new perspective. Instead of classifying
the objects in the way of supervised learning and training,
we are committed to extracting the angle-related features and
analyzing the possible component in HRRP target.

Therefore, regardless of the applications of HRRP,
the extraction and interpretation of features are critical, and
the quality of extracted features affects the performance of
HRRP-related applications. Many scholars have spent much
effort studying the methods of HRRP feature extraction.
Some researchers [7], [8] have used complicated statistical
models to extract HRRP features, which have specific
physical meaning, such as the target size, center of gravity,
and number of peaks. Using super-resolution algorithms,
the precise location and intensity information of radar HRRP
scatterers can be extracted [9], [10]. However, the effects of
these feature-based extraction methods are highly dependent
on the experience of the researchers, which will cause the
extracted features to be incomplete or to deviate without
sufficient prior knowledge. In contrast, the data-driven
feature extraction method eliminates human interference and
directly obtains accurate information from the data. In [11],
a subspace model is established to realize feature extraction
based on principal components analysis (PCA). Manifold
learning is used in target recognition of radar HRRP to
reduce the feature dimensions [12]. These methods map
high-dimensional data to low-dimensional space and realize
feature extraction by data dimensionality reduction.

At present, many common methods of dimensionality
reduction are divided into linear and nonlinear algorithms.
The algorithm performance of linear dimensionality reduc-
tion methods, such as PCA, linear discriminate analysis
(LDA) [13], and multidimensional scaling (MDS) [14], are
limited by the linear characteristics of the method, especially
for radar signals, which contain much noise information; the
effect may not be ideal. Isomap [15], Laplacian eigenmaps
(LE) [16], and locally linear embedding (LLE) [17] are
typical nonlinear algorithms. Some new dimensionality
reduction methods have been proposed to solve the classifi-
cation of hyperspectral images [18], [19]. However, we are
more concerned about nonlinear dimensionality reduction

methods belong to the category of manifold learning,
whose goal is to find low-dimensional manifolds embedded
in high-dimensional space. Manifold mapping needs to
satisfy the homeomorphic mapping relationship between
two spaces, which is consistent with our goal of studying
the low-dimensional spatial distribution of radar signals.
However, when looking for angle invariance, a large number
of high-dimensional spatial data need to be mapped to a few
low-dimensional spatial points, which is inconsistent with the
injective conditions in homeomorphic mapping. An impor-
tant component of machine learning, the autoencoder plays
an important role in unsupervised learning and nonlinear
feature extraction. As a good feature extraction structure,
autoencoder is used in combinationwithmany othermethods,
such as extreme learning machine (ELM) [20] and some
traditional classifiers, for target recognition. The improved
autoencoder with different regularization constraints, such
as sparse autoencoder has better performance in various
target recognition studies [21]. Therefore, we adopt the
autoencoder method to achieve dimensionality reduction
and find the low-dimensional angle invariance features of
high-dimensional HRRP data. In [22], manifold learning
method is combined with antoencoder, but the goal of
this article is to improve the performance of autoencoder.
Our goal of combining the two methods is to form a
novel framework for the extraction and analysis of target
angle-related features and component correlation.

The framework is proposed to analyze the angle correlation
characteristics of HRRP data from the perspective of feature
extraction and analysis, and looks for the corresponding
relationship between assembly and corresponding geometry.
In this way, the angle-invariance feature and the angular
mapping relationship of HRRP data in the low-dimensional
space are obtained. This method can be used to realize
the analysis of non-specific angle targets, extract the angle
relevant characteristics of target, and extract the features of
non-cooperative or non-specific types of targets with some
common features, and put forward identification suggestions.
This article is composed as follows. Chapter two intro-
duces the HRRP feature extraction and analysis framework
proposed in this article, as well as the algorithm and
principle of related functions. Chapter three introduces the
experimental data set making, experimental design and
analysis. Chapter four is the summary and prospect of future
work.

II. ALGORITHM
A. FRAMEWORK
In this article, we propose a novel feature extraction
and analysis framework to realize the multi-angle HRRP
target feature extraction and analysis function. Through a
multi-layer sparse autoencoder, feature extraction of HRRP
data is realized by unsupervised learning. Then, the manifold
mapping is introduced to map the HRRP features into a
low-dimensional space to obtain the distribution of HRRP
data in the low-dimensional space for characteristic analysis.
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FIGURE 1. Overall flow chart of our proposed framework.

Supervised training is conducted on the previously obtained
features to extract the angle invariance of HRRP targets.
After encoding the HRRP data of a class of targets from
different angles into angle-invariant feature vectors, the
vector performance is tested by the classifier. The overall flow
chart of the proposed framework is shown in Fig. 1.

Therefore, this framework mainly realizes the following
three contents:

1. Data dimensionality reduction and feature extraction:
1024-dimensional HRRP radar target data obtained by
simulation are reduced to 30-dimensional output features
via a multi-layer sparse autoencoder.

2. HRRP feature manifold mapping: the 30-dimensional
features obtained by unsupervised learning are taken
as input to study the manifold distribution of
high-dimensional features in low-dimensional (2-
dimensional and 3-dimensional) spaces.

3. Angle-invariant feature extraction: After the new net-
work parameters are acquired by supervised learning,
the angle-invariant features can be converted from 1024-
dimensional data to 30-dimensional features, and then
the softmax classifier verifies the validity of the features.

The research object of the experiment in this article is to
obtain basic geometry data by simulation. The data-related
details and data set construction rules will be introduced
in the following chapters. This chapter mainly explains the
related algorithms of feature dimension reduction, network
parameter optimization and manifold mapping within the
framework.

B. STEP 1: HRRP DIMENSIONALITY REDUCTION
The HRRP of a certain target under a certain pitch and hor-
izontal angle obtained by simulation is a 1024-dimensional
vector, and each dimension represents the intensity in the
width upward. After the HRRP data are formed into a dataset
according to certain rules, a multi-layer sparse autoencoder is
used for data dimensionality reduction and feature extraction.
An autoencoder is an artificial neural network that can obtain
efficient representation of input data through unsupervised
learning. The unsupervision of the autoencoder lies in that

after encoding and decoding input data, network parameter
training can be completed by minimizing reconstruction
errors.

y = fθ1 (x) = s (W1x + b1) (1)

z = fθ2 (y) = s (W2y+ b2) (2)

minL = J (W , b) =
1
m

m∑
i=1

1
2
‖xi − zi‖2 (3)

where s is a nonlinear function, and the sigmoid function
is used as the activation function in this article. (1) and (2)
are the encoding and decoding processes, respectively. Input
x is transformed into the activation value of the hidden
layer and then reversely transformed into a reconstruction
representation z of the original input. θ1 = {W1, b1}
and θ2 = {W2, b2} are the sets of parameters for two
transformations. (3) is the loss function of the autoencoder,
and the minimization is to make the representation z infinitely
close to x. The loss function can be minimized by repeated
iteration, and the main information and characteristics of the
samples can be retained in the coding process.

There are many applications and improvements of autoen-
coder, but in the demand for learning features, especially
for recognition features, sparse autoencoder is often adopted.
In this article, sparse expression is introduced to obtain
unique statistical features that reflect the training dataset,
rather than just finding identity functions in the coding and
decoding process. Through this learning process, replication
tasks with sparse punishment can be performed to obtain
models that can learn useful features. In addition to obtaining
the parameter sets, the sparse autoencoder also needs to solve
the average activity of neurons in the hidden layer in the
coding and decoding process:

ρ̂j =
1
m

m∑
i=1

[
αj

(
x(i)
)]

(4)

The αj (x) is used to indicate the activation of the hidden
neuron j given an input of x and m is the number of hidden
neurons. When the average activity of a hidden neuron is
small, it can be considered to optimize it by introducing the
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FIGURE 2. The sparse autoencoder.

sparsity restriction ρ. In this article, we set the value of this
variable to 0.1 for each layer. The additional sparse penalty
factor is added to the loss function to be optimized through
the sparse constraint condition and the Kullback-Leibler
Divergence (KL) is introduced to measure the similarity
between the average activity output ρj of a hidden node j and
the sparse restriction:

KL
(
ρ
∥∥ρ̂j ) = ρ log ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

(5)

Jsparse (W , b) = J (W , b)+ β
m∑
j=1

KL
(
ρ
∥∥ρ̂j ) (6)

(6) is the function of the optimal value of the final
demand solution. Parameters W and b are updated to
obtain the optimal solution through iteration. In traditional
learning algorithms, the gradient descent method is often
used to solve the optimal value, but in the optimal solution
of high-dimensional data, the convergence speed is slow.
Therefore, the L-BFGS (L means limited memory) algorithm
is adopted in this article to solve network parameters. The
L-BFGS algorithm is an optimization of the traditional BFGS
algorithm, which approximates the inverse of the Hessian
matrix with a matrix without the second derivative. The
iteration formula of the estimated inverse Hessian matrix
B = H−1 is as follows:

Bk+1 = V T
k BkVk + ρksks

T
k (7)

where Vk = 1 − ρkyksTk , ρk = 1/
(
yTk sk

)
, yk = gk+1 − gk ,

gk = ∇f (xk), Bk = rk I , rk =
(
sTk−1yk−1

)
/
(
yTk−1yk−1

)
, sk =

xk+1− xk . ∇f (xk) is the gradient of the objective function at
xk . Then, for the kth iteration, if only the information of the

last m iterations is retained, the expression becomes:

Bk =
(
V T
k−1 · · ·V

T
k−m

)
Bk (Vk−m · · ·Vk−1)

+

(
V T
k−1 · · ·V

T
k−m+1

)
sk−mρk−msTk−m

× (Vk−m+1 · · ·Vk−1)

+

(
V T
k−1 · · ·V

T
k−m+2

)
sk−m+1ρk−m+1sTk−m+1

× (Vk−m+2 · · ·Vk−1)

+ · · · + sk−1ρk−1sTk−1 (8)

Then, L-BFGS only needs to record m vectors to con-
struct an approximate matrix, thus reducing the memory
footprint and computational complexity and improving the
convergence speed. The pseud-code of L-BFGS optimization
algorithm is as follows:

Step 1: Initial point x0, initialize k = 0, H0 = I , r =
∇f (x0)
Step 2: Compute the iteration direction pk = −rk
Step 3: Compute the step length αk , then search for
f (xk + αkpk) = min

α≥0
(xk + αkpk)

Step 4: Update the weights
Step 5: If k > m, then start to save the most recent mth
vector pairs
Step 6: Compute and save
Step 7: Compute rk = Hk∇f (xk), k = k+1
Step 8: If ‖∇f (xk+1)‖ ≤ ε then return the optimal
solution, else go to Step 2.

By taking the hidden layer of the sparse autoencoder as
the input layer of the next autoencoder, multiple autoencoders
can be stacked to form a deep structure, which can compress
or extract the data features layer by layer for analysis and
subsequent application. In this article, a three-layer sparse
autoencoder is adopted, and the number of hidden layers is
set to 256 and 128. The output features of the multi-layer
self-encoder (dimension is set to 30) are the unsupervised
learning features obtained.

C. STEP 2: HRRP FEATURE MANIFOLD MAPPING
After obtaining the 30-dimensional features from the
multi-layer sparse encoder, this article completes the extrac-
tion and visualization of the target angle features by using
low-dimensional spatial mapping through manifold learning.
From the introduction of the first part, the common dimen-
sionality reduction algorithms are divided into linear and
nonlinear. The complexity of the radar working environment
and echo and the noise in the HRRP data make the data and
characteristics highly nonlinear. Therefore, the t-distributed
stochastic neighbor embedding (t-SNE) algorithm [23] with
the best performance among the nonlinearmethods is adopted
in this article. t-SNE measures the distribution characteristics
of the data in two spaces by calculating the distribution
probability density between samples in high-low dimensional
space. The t-SNE algorithm used in this step is to convert
Euclidean distance into conditional probability to express
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the similarity between points. The probability distribution
of high-dimensional data is constructed, and the amount
of data adjacent to each data point is set by perplexity.
Then the probability distribution of these data points is
constructed in the low-dimensional space, and the two
probability distributions are made as similar as possible
through iterative training. While achieving homeomorphism
mapping, the manifold distribution of high-dimensional data
in low-dimensional space is obtained. For high-dimensional
data, that is, the 30-dimensional HRRP features obtained
through unsupervised learning in this article, the condi-
tional probability distribution of any two vectors is first
calculated:

pj|i =
exp

(
−
∥∥xi − xj∥∥2/2σ 2

i

)
∑

k 6=i exp
(
−‖xi − xk‖2

/
2σ 2

i

) (9)

pj|i represents the similarity between the data points xi
and xj. The parameter σi is the Gussianmean square deviation
centered on xi. The joint probability density of HRRP features
in high-dimensional space is calculated according to the
conditional probability distribution, and the joint probability
density qij and gradient ∂C/∂Y of low-dimensional space
are calculated by using the t distribution with 1 degree of
freedom.

pij =
pj|i + pi|j

2n
(10)

qij =

(
1+

∥∥yi − yj∥∥2)−1∑
k 6=l

(
1+ ‖yk − yl‖2

)−1 (11)

C = KL (P ‖Q ) =
∑
i

∑
j

pij log
pij
qij

(12)

δC
δyi
= 4

∑
j

(
pij − qij

) (
yi − yj

)
(13)

where C is the loss function defined by the Kullback-Leibler
Divergence (KL) distance, and each iteration needs to cal-
culate whether the loss function reaches the minimum value
to determine the optimal solution. During the experimental
process in this article, when dimension reduction of HRRP
features is carried out in some cases, the loss function will
continue to decline, but the final decline rate is extremely
slow. When the number of iterations is set to the maximum
value, the increase in time complexity does not significantly
increase the efficiency, so the number of iterations in this
article is set to 400. The pseud-code of t-SNE algorithm is
as follows:

Step 1: Input Data: X = {x1,x2,. . . ,xn}, initialize the
number of iterations T, learning rate η, momentum α(t)
Step 2: Compute the parameter Perp of cost function
Step 3: Compute the conditional probability pj|i under Perp
with formula (9)
Step 4: Compute formula (10)
Step 5: Randomly initialize Y with N (0, 10−4I )

Step 6: Iteration from t = 1 to T
Compute formula (11)-(13)
Update Yt

Step 7: End

D. STEP 3: ANGLE-INVARIANT FEATURE EXTRACTION
HRRP data have a strong angle sensitivity, but in some
classification and recognition tasks, there is a need to
eliminate or reduce the differences caused by the angle within
the class and ensure that the differences between classes are
not affected to maintain large differences between classes.
In the third step, we achieved this goal through supervised
learning and extracted the angle-invariant features of HRRP
data.

We used the unsupervised learning parameters W0 ={
W (1)

0 ,W (2)
0 ,W (3)

0

}
and b0 =

{
b(1)0 , b(2)0 , b(3)0

}
as the initial-

ization parameters and obtained the adjusted parametersW ={
W (1),W (2),W (3)

}
and b =

{
b(1), b(2), b(3)

}
by supervised

learning. The HRRP data extraction process in the proposed
framework can obtain a 30-dimensional feature that can be
used to identify and distinguish between classes. The training
data set constructed in this article is the radar HRRP data
under an elevation angle of 0 to 90 degrees and a horizontal
angle of 0 to 90 degrees. Therefore, for a certain class
of targets, the unified features obtained under supervision
training are the angle-invariant features of these targets.
A softmax classifier was used to verify the effectiveness of
the feature extraction in this step.

III. EXPERIMENT AND RESULT ANALYSIS
A. SIMULATED DATA AND DATASET
The experimental HRRP data used in this article is composed
of simulation data and measured data. The simulation data of
geometry and combinations are derived from electromagnetic
simulation. The parameters are an X-band center frequency
of 10 GHz, a bandwidth of 2 GB, a frequency interval
of 10 MHz, and the polarization mode adopted HH polariza-
tion. The range of the pitch angle is 0∼90◦, and the angle
interval is 10◦. The horizontal angle is 0∼90◦, and the angle
interval is 0.05◦. Thus, there are 18010 multi-angle HRRP
data for each type of target. This article studies five types
of typical geometry, namely, cube, cylinder, dihedral angle,
trihedral angle and cone, and four other combinations. The
geometric shapes and related parameters are as follows:

Figure 4 and Figure 5 have high similarity in geometry.
However, in HRRP, when several components are combined,
the imaging will change to some extent due to the increase
in the reflection times, which means a simple object as an
individual is different from a component in HRRP data.
As shown in Fig. 6 and Fig. 7, we present the HRRP images
of the cube and trihedral in three angles and compare them to
the combination at the corresponding angle.

In HRRP data, the peak value and number of strong
scattering points will change at different azimuth angles.
As we show in Fig. 6 and Fig. 7, the cube’s number of
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FIGURE 3. The multi-layer sparse autoencoder.

FIGURE 4. The geometric shapes of typical geometry.

TABLE 1. Geometric parameters and information.

strong scattering points and peak value vary at different
angles in HRRP data. In addition, there is a strong similarity
between the cube and the trihedral in HRRP data at some
certain angles. Therefore, we focus on two points in the
analysis of Angle characteristics: one is the angle-invariant
feature used for recognition, and the other is the angle-based
low-dimensional spatial distribution in the class. For the
analysis of the basic composition of complex objects, we also

FIGURE 5. The geometric shapes of combinations.

TABLE 2. Information for combination.

consider the simple geometry and the geometry on the plate
as two types to analyze their relevance in the feature space.

To construct the training set and test set, 6000 data are
extracted from 18010 data of each type, of which 4000 are
training data and 2000 are verification data, so the training
set size is 20000, and the verification set size is 10000. The
sampling rules for constructing the data set are as follows:
600 data were selected evenly from 1801 data by evenly
selecting ten reference angles, and 60 data were selected at
intervals of 0.05 degrees around each reference angle. Forty
of the 60 data points were randomly selected into the training
set, and the others were selected into the test set. To further
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FIGURE 6. The HRRP of cube and cube with plate.

verify the effectiveness of the target angle-invariant feature
extracted by the method in this article, 200 data from each
category were randomly selected as supplementary validation
data sets in the remaining data.

In order to verify the performance of the method in
complex measured data, four kinds of ground vehicle data
in MSTAR data (t72, btr70, brdm2, and bmp2) are selected
as research objects. MSTAR data is the currently available
and most widely used ground stationary target data of SAR.
Many researches on SAR image target recognition are carried
out based on this data. In recognition studies, 128∗128 slice
images obtained after signal processing are mostly used,
while the data we used were processed into HRRP data for
experiment. The visual images and corresponding HRRP data
are shown in Fig. 8. The data was collected at elevation angles
of 17o and horizontal angles of 0o to 360o, and the sampling
interval is 0.2o. Target names and the number of samples in
training and test set are shown in table 3.

B. EXPERIMENTAL DESIGN AND OBJECTIVES
To verify the performance of the HRRP feature extraction
and analysis framework proposed in this article, the extracted
features need to be displayed, and the validity of the features
should be verified through classification. In this article,
after the training of a multi-layer sparse autoencoder model,
the validation set is used to classify five categories of simple
geometry to verify the validity of angle-invariant features that

FIGURE 7. The HRRP of trihedral and trihedral with plate.

TABLE 3. Information for MSTAR dataset.

can be used to distinguish between classes. In addition, for
the features extracted from the unsupervised part, the results
are analyzed in a visual way, and the specific contents are as
follows:

a. Verify the validity of the features by classifying the test
sets and sorting the angle-invariant feature vectors, which can
also be called category labels;

b. Visualize the feature vectors of each layer obtained
from unsupervised and supervised training to compare
and elaborate the extracted feature of each layer from a
multi-layer sparse autoencoder;

c. Visually display the dimensionality reduction features of
the unsupervised learning part in three-dimensional space and
observe the distribution and characteristics of their changes
with angle and category;

d. Visually display the dimensionality reduction features
of the unsupervised learning part in two-dimensional space
and observe the changes in its distribution and characteristics
with angle;
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FIGURE 8. The visual images and HRRP of four kinds of MSTAR.

e. Visually display the dimensionality reduction features
of the combination in two-dimensional and three-dimensional
spaces, observe the differences with the typical geometry, and
analyze the distribution changes and feature analysis of the
geometric component.

C. RESULTS AND DISCUSSION
Our experiments are conducted in Matlab, and we use
computer with CPU cores for computing. The multi-layer
sparse autoencoder adopted in this article is a three-layer
network. The input data are 1024-dimensional HRRP data,
and the dimensions of the hidden layer characteristics
are 256 and 128. In this way, each data is output as
a 30-dimensional eigenvector through the network. After
the model parameters are adjusted through the labeled
supervision training, the output through the network is also an

adjusted feature. The features are sent into softmax to classify
the five types of basic geometry. The classification accuracy
is 99.80% on the test set and 98.86% on the supplementary
validation set. In MSTAR data, we achieve the classification
accuracy of 99.6%, which means our structure can also
achieve good feature extraction ability for complex objects.
Since the data set is constructed fromHRRP data in full angle
and the angle of supplementary validation set is different from
that of the training set and test set, the classification results
prove that the strong classification features obtained by the
method proposed in this article have angle invariance. That
is, the 30-dimensional eigenvector obtained from the target
data through the supervised learning part of the framework is
only relevant to the target category and does not change with
the changes in pitch and azimuth angle. The angle-invariant
features of typical geometry and MSTAR targets are shown
in Table 4 and Table 5:

TABLE 4. The angle-invariant features of typical geometry.

TABLE 5. The angle-invariant features of MSTAR targets.

Therefore, the high accuracy in classification comes from
the angle-invariant feature in binary form. To explore the
source of good performance of the features, the features
obtained from unsupervised and supervised learning are
visualized and analyzed layer by layer. The comparison
results are shown in Fig. 9.

FIGURE 9. a) Unsupervised and b) supervised feature.
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The comparison of visual features shows that the features
obtained by supervised learning are the further normalization
of unsupervised features and that the features are enhanced
by label-based training to eliminate the angle differences
within the class. From the perspective of feature mapping in
space, the supervised learning part of the framework further
converges the points originally mapped to the 30-dimensional
feature space to five points in the space. Therefore, features
obtained by sparse autoencoders also have certain properties,
while we observe the properties by visualizing the features
of HRRP data in three-dimensional space. 3-D visualization
results of five types of geometry targets and MSTAR targets
are shown in Fig. 10 and Fig. 11.

FIGURE 10. 3-D visualization result of five types of geometry targets.

FIGURE 11. 3-D visualization result of four MSTAR targets.

The purpose of our research is to explore the dis-
tribution characteristics of high-dimensional HRRP data
in low-dimensional space, analyze and mine the attitude
sensitivity of the target. Therefore, we compare the mapping
results of our proposed SAE+ t-sne with those of SAE+LLE
and t-sne in low-dimensional space, as shown in Fig. 12.
Comparing figure a) and c), it can be seen that under
the framework proposed in this article, t-sne algorithm has
better separability than LLE algorithm. As can be seen from
figure a), certain distribution characteristics can be extracted
through SAE. However, due to poor performance of LLE or
the inapplicability of LLE to HRRP data, the mapping from
the high-dimensional space to the low-dimensional space
results in the overlap between the distributions. In contrast,
one advantage of the t-sne algorithm is that it can enlarge
the distance between low-correlated or irrelevant samples
after mapping to a low-dimensional space. Therefore, the

FIGURE 12. 3-D visualization result comparison of different manifold
methods.

separability of t-sne in figure b) is good, but there is no
spatial distribution of the angle feature extracted by SAE.
The classification effect in figure c) is not as good as that
in figure b), but it combines the advantages of a) and b), and it
can be seen from the previous verification of angle invariance
that although the spatial distance is relatively close, it is still
separable.

Each point in the figure represents an HRRP sample,
and the five colors represent five types of typical geometry.
The figure shows that the features obtained by unsupervised
learning are also separable to some extent and have a
manifold distribution in 3-d space. The acquisition and
simulation of HRRP data are all based on the azimuth
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angle. We further analyze the characteristics and explore the
relationship between low-dimensional manifold and azimuth
in high-dimensional space. For each category of data, the 3-d
mapping of its distribution by pitch angle is visualized first,
and the results are shown in the figure below.

Each figure in Fig. 13 shows the results of visualization of
dimensionality reduction features obtained by unsupervised
learning of five types of simple bodies in three-dimensional
space. The data points with a pitch angle of 0◦, 30◦, 60◦ and
90◦ and a horizontal angle of 0◦ to 90◦ are listed here for
illustration. The data at different pitching angles are located
in different low-dimensional spaces, so the data in the class
have certain separability at the pitching angles. The search
for two-dimensional low-dimensional manifold distribution
at horizontal angles continues in the same pitching angles and
the results are shown in Fig. 14-17.

The number means that the data points in the figure are
divided into five groups of horizontal angles from 0◦ to 90◦.
The data points are represented by different colors to denote
the relationship between distribution and horizontal angles.
As we introduced in the last paragraph, the data points with a
pitch angle of 0◦, 30◦, 60◦ and 90◦ are listed for illustration.
The four subgraphs correspond in turn to the low-dimensional
mapping results under four pitch angles from 0◦ to 90◦

in Fig. 14-17. The four subgraphs of each figure are to prove
that, at different pitch angles, the high-dimensional data of
various geometric objects mapped to two-dimensional space
have manifold distributions related to horizontal angles.
In most subgraphs, the low-dimensional mapping results
obtained through the architecture have a good distribution by
horizontal Angle, but some poor distribution do occur (the
first subgraphs in Figure 14-16). Although the mapping effect
is different, the mapping conforms to the gradual feature
under the change in horizontal angle. The horizontal angle of
the target data can be confirmed and analyzed through feature
mapping, and the dimensionality reduction features extracted
by this framework can provide corresponding information in
aspects of angle analysis, trajectory analysis and category
analysis.

Therefore, the visual analysis of the characteristics of
unsupervised learning shows that the architecture pro-
posed in this article has obvious angle discrimination and
low-dimensional manifold distribution for multi-angle HRRP
targets. The results of the data under different pitching angles
in three-dimensional space prove that the data from the
same category are in different low-dimensional manifolds
according to the division of the pitching angles, while the data
of the same pitching angle have a certain order distribution in
two-dimensional space according to the horizontal angle. The
two-dimensional distribution between different categories
also has obvious differences. Therefore, the object can also
be estimated and identified in terms of angles and categories
to some extent without labels.

In this article, a research object is positioned as a typical
geometry because the latter can represent the local obvious

FIGURE 13. 3-D visualization result of single class displayed by pitch
angle.

characteristics of complex objects. In radar target recognition
and characteristic analysis, modeling and training complete
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FIGURE 14. 2-D visualization results of cube under four pitching angles.

FIGURE 15. 2-D visualization results of cylinder under four pitching
angles.

target categories in some practical situations is impossible,
or the identification requirements of some parts are higher
than that of the whole in the identification process. Therefore,
in addition to studying a typical geometry, this article
also simulates the construction of plate-typical geometry
assembly data to simulate the detection effect of components
in the overall local position. The HRRP data of the assembly
are introduced into the trained model, and the dimensionality
reduction visualization of the output features is carried out to
analyze the distribution relationship between the features and
the typical geometry.

Each subgraph in Fig. 18-20 is the low-dimensional
mapping result of typical geometry and corresponding
assembly under the same angle condition. There are two
placement modes of the cylinder in the assembly, so the
corresponding subgraphs contain three mapping results of

FIGURE 16. 2-D visualization results of dihedral under four pitching
angles.

FIGURE 17. 2-D visualization results of trihedral under four pitching
angles.

a geometry and two assembly. Fig. 18 is a full-angle
three-dimensional diagram of three simple bodies (cube,
trihedral, and cylinder) and the assembly. In Fig. 6 and
Fig. 7, we show the difference between geometry and their
corresponding assembly in HRRP image and the confusion of
different objects in specific angle. In Fig. 18 a) and b), there is
a strong similarity between geometry and the corresponding
assembly in the mapping of low-dimensional space, which
shows the corresponding relationship between geometry and
assembly in feature analysis. Although the distortion of the
cylinder in the mapping of the assembly is obvious, the
distribution results are still helpful for the feature analysis of
recognition. The results shown in Fig. 19 and Fig. 20 are the
comparisons in the two-dimensional mapping space, which
proves the high-dimensional data of assembly mapped to

153260 VOLUME 8, 2020



X. Chen et al.: Sparse Autoencoder Based Manifold Analyzer Model of Multi-Angle Target Feature

FIGURE 18. 3-D visualization comparison between the assembly and the origin. a) Cube, b) trihedral and c) cylinder.

FIGURE 19. 2-D visualization comparison between the plate-cube and the original cube.

two-dimensional space have manifold distributions related to
horizontal angles and the mapping of geometry and assembly
has a certain similarity at the same pitch angle. In this part,

the results show that the framework proposed in this article
plays a certain role in identifying the basic component in the
assembly.
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FIGURE 20. 2-D visualization comparison between the plate-cylinder and the original cylinder.

IV. CONCLUSION
In this article, we realize the analysis of angle related features
and low-dimensional distribution of multi-angle HRRP
targets, and study the relationship between the assembly and
corresponding geometry in low-dimensional distribution. The
contribution of this article lies in the construction of a novel
framework, which extracts features fromHRRP data and uses
manifold learning method to mapping into low-dimensional
space, and analyzes the features. Firstly, the angle-invariant
feature obtained after fine-tuning proves the uniqueness of
each target, which indicates that the research on HRRP target
recognition can be carried out from non-specific angles.
Secondly, the results of low-dimensional distribution after
feature extraction and mapping show that the HRRP data
corresponding to the data points in the low-dimensional space
conform to a certain distribution with the pitch angle and
horizontal angle. Finally, it can be seen from the comparison
experiment of the combination and corresponding geometry

that although there is a big difference in HRRP data, there
is a strong correlation between them in the low-dimensional
distribution obtained bymapping. The above findings provide
the possibility for multi-angle target analysis and component
feature analysis. In the future, we will further optimize our
framework for more complex environments, and improve the
algorithm to achieve better results.
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