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ABSTRACT Multisensor fusion estimators play an important role in modern information processing.
Weightedmeasurement fusion (WMF) algorithm has widely been applied to data compression of multisensor
linear systems. Due to the complexity and uncertainty of nonlinear systems, the application of WMF
algorithms is limited in multisensor nonlinear systems. In this article, an approximate linear relationship is
established by using the segmental Gauss-Hermite approximationmethod for multisensor nonlinear systems.
Based on the relationship and weighted least squares (WLS) method, a WMF algorithm is presented to
compress the data for multisensor nonlinear systems. By combining the WMF algorithm with Particle
Filter (PF), a weighted measurement fusion Particle Filter (WMF-PF) is presented for multisensor nonlinear
systems. Compared with the centralized fusion PF, the proposed WMF-PF has a fair accuracy and less
computational cost. It has a potential application in navigation, GPS, target tracking, communications, big
data and so on. An example is given to show the effectiveness of the proposed algorithms.

INDEX TERMS Multisensor, nonlinear system, weighted measurement fusion, segmental Gauss-Hermite
approximation, particle filter.

I. INTRODUCTION
IN order to obtain the comprehensive information, the multi-
sensor is always the irreplaceable way. Multisensor informa-
tion fusion can improve the estimation accuracy and the fault
tolerance. And it always play an important part in control,
target tracking, navigation, fault diagnosis and so on.

For the fusion estimation, there are two main kinds of
forms: the centralized structure and the distributed structure.
The centralized fusion algorithm is optimal because no infor-
mation is lost, but poor real-time because of the expensive
computational cost. Distributed fusion algorithms make the
fused estimates in the fusion center by weighting local state
estimates under a certain criterion [1]–[4], such as distributed
fusion information Kalman filter [5], distributed fusion fed-
erated Kalman filter [6], distributed weighted fusion esti-
mators [7], and distributed covariance intersection fusion
estimators [8]. They have good robustness and strong fault
tolerance. However, they are local optimal and global sub-
optimal. Based on the variances of measurement noises and
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relationships among measurement functions, the weighted
measurement fusion (WMF) algorithms compress a high-
dimension measurement of centralized fusion systems to
a low-dimension one [9]–[11], which can reduce compu-
tational cost. For linear systems, the WMF is numerically
equivalent to the centralized fusion [9], [11]. So, they are also
optimal in the sense of least mean squares. However, in non-
linear systems, time-varying, saturation, etc. often occur [12].
Due to the complexity and uncertainty of nonlinear systems,
the WMF is difficult to implement. In this article, the WMF
method will be studied for multisensor nonlinear systems,
which is seldom mentioned in the literatures [13].

Nonlinear characteristics widely exist in various practical
engineering systems [14]–[16]. Many scholars are devoted
to the research of control and estimation for nonlinear sys-
tems, and have proposed many practical methods, such
as linear approximation, neural networks, T-S fuzzy rules
[17]–[21]. The fusion estimation for nonlinear systems has
also attracted the attention of many scholars [22]–[26]. In lit-
erature [27], based on Taylor series and Unscented Kalman
filter (UKF), a weighted measurement fusion Unscented
Kalman filter (WMF-UKF) was presented. The WMF-UKF
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algorithm needs to calculate the coefficients of Taylor series
in real time, which brings the expensive online computational
cost. In literature [28], based on Gauss-Hermite approxima-
tion, a WMF algorithm is presented, which avoids the online
calculation of coefficient matrices, but it could only deal with
scalar cases and the Hermite polynomials are fixed.

Gauss-Hermite approximation [29]–[31] can approximate
most elementary functions by Gauss functions, Hermite
polynomials and some selected points. This approximation
method does not need to calculate the Jacobian in real time
like Taylor series approximation, and has a very good fitting
effect. The main contributions of this article are listed below:

1. In this article, based on segmental Gauss-Hermite
approximation, a method of measurement data compression
(or weighted measurement fusion) is proposed. This method
can effectively reduce the dimension of the measurement
equation and reduce the computational cost.

2. Based on the fusion method and PF, a WMF-PF is pre-
sented. The proposed WMF-PF can adjust the computational
complexity by Hermite polynomials according to the approx-
imated functions, and can be used for multi-dimensional
nonlinear systems.

The rest of the paper is organized as follows. Problem for-
mulation is proposed for nonlinear systems in Section II.
In Section III Gauss-Hermite approximation is proposed.
Universal WMF based on Gauss-Hermite approximation is
proposed in Section IV. In Section V WMF-PF algorithm
based on segmental Gauss-Hermite approximation is pre-
sented. The simulation analysis is given in Section VI. The
conclusions are summarized in Section VII.

II. PROBLEM FORMULATION
Consider a multisensor nonlinear dynamic system:

xk+1 = f k (xk )+ wk (1)

y(j)k = h(j)k (xk )+ v
(j)
k , j = 1, 2, · · · ,L (2)

where f k (·) ∈ <n and h(j)k (·) ∈ <mj are the known process
and measurement functions, xk ∈ <n is the state vector
at time k , y(j)k ∈ <mj is the measurement vector of the jth
sensor at time k , and wk ∼ pωk (·) and v

(j)
k ∼ pvk (·) are the

independent white process and measurement noises with zero
mean and variances Qw and R(j), respectively, i.e.,

E
{[

wt
v(j)t

] [
wT
k

(
v(l)k
)T ]}

=

[
Qw 0

0 R(j)δjl

]
δtk (3)

where E means mathematical expectation, the superscript T
means transpose, and δtk and δjl are the Kronecker delta
functions.

For such systems in Equations (1) and (2), the centralized
fusion algorithm is widely used.
Lemma 1 [27]: For the systems in Equations (1) and (2),

the measurement equation of the optimal centralized fusion

system can be written as:

y(C)k = h(C)k (xk )+ v
(C)
k (4)

where

y(C)k =

[(
y(1)k
)T
,
(
y(2)k
)T
, · · · ,

(
y(L)k

)T]T
(5)

h(C)k (xk ) =
[(
h(1)k (xk )

)T
,
(
h(2)k (xk )

)T
, · · · ,

(
h(L)k (xk )

)T]T
(6)

v(C)k =

[(
v(1)k
)T
,
(
v(2)k
)T
, · · · ,

(
v(L)k

)T]T
(7)

and its covariance is:

R(C)
= diag(R(1),R(2), · · · ,R(L)) (8)

where the ′diag(�)′ means a diagonal matrix.
Using the nonlinear filtering algorithms (e.g. Extended

Kalman Filter (EKF), UKF, PF [32], [33], Cubature Kalman
Filter (CKF) [25], [34]–[37]), the optimal centralized fusion
filtering algorithms can be obtained for the centralized fusion
systems in Equations (1) and (4). Because no information
is lost, centralized fusion is considered to be optimal. But
the fusion measurement function in Equation (4) has a high
dimension, which brings expensive computational cost. So it
is significant to find the equivalent or approximate ways
to reduce the computational cost. However, in many cases,
the measurement functions are different because of the dif-
ferent types of sensors, locations and so on. Next, we will
introduce a Lemma, which enables the WMF to be applied to
the systems with different measurement functions.
Lemma 2 [27]: For the systems in Equations (1) and (2),

if there exists a intermediary function φk (xk ) ∈ <n sat-
isfying h(j)k (xk ) = H (j)

k φk (xk ), where H
(j)
∈ <mj×p(j =

1, 2, · · · ,L), the measurement function of the optimal WMF
system is given as:

y(I)k = H (I)φk (xk )+ v
(I)
k (9)

where

y(I)k =
(
MT

(
R(C)

)−1
M
)−1

MT
(
R(C)

)−1
y(C)k (10)

v(I)k =
(
MT

(
R(C)

)−1
M
)−1

MT
(
R(C)

)−1
v(C)k (11)

and the covariance matrix of v(I)k is computed as:

R(I) =

(
MT

(
R(C)

)−1
M
)−1

(12)

where M (full-column rank) and H (I) (full-row rank) are
the full rank decomposition matrices of the matrix H (C)

=[(
H (1))T , · · · , (H (L))T]T, i.e.,

H (C)
= MH (I) (13)

which can be computed by Hermite canonical.
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Remark 1: Lemma 1 gives an effective data compression
method. This method can compress the centralized measure-
ment y(C)k into y(I)k through the M matrix. This method is
widely used in linear systems, but due to the complexity and
uncertainty of nonlinear systems, it is difficult to obtain the
intermediary function, which makes it difficult to apply for
nonlinear systems.

Next, a method of using function approximation to obtain
the intermediary function will be proposed. This method
attempts to approximately express the general functions as
unified Gauss-Hermite functions, and the unified Gauss-
Hermite functions are the intermediate functions we are look-
ing for.

III. GAUSS-HERMITE APPROXIMATION
In this section, the Gauss-Hermite approximation will be
introduced which can approximate elementary functions
by Gauss functions and Hermite polynomials. Based on
the approximation method, the measurement functions can
be converted into h(j)k (xk ) ≈ h̄

(j)
k (xk ) = H̄

(j)
k φ̄k (xk ),

where h̄
(j)
k (xk ) is the approximation function of h(j)k (xk ),

φ̄k (xk ) formed by Gauss functions and Hermite polynomi-
als is the approximation intermediary function, and H̄

(j)
k is

the corresponding constant coefficient matrix. In this way,
Lemma 2 can be implemented.
Lemma 3 [29]: Assuming {X ′i ∈ <n

} (i = 1, 2, · · · , ϒ)
is an selected ensemble of ϒ points, to each selected
point X ′i = [x ′i1 , x

′
i2
, · · · , x ′in ], (a ≤ x ′iλ ≤ x ′i+1λ

≤

b, λ = 1, · · · , n), there exists a point Z′i(x
′
i1
, x ′i2 , · · · , x

′
in ) =

[zi1 , zi2 , · · · , zip ] satisfies Z
′
i = Z(X ′i) where Z(·) is a deter-

mined multidimensional function. Then, the approximate
function Z̄(x1, x2, · · · , xn) of Z(x1, x2, · · · , xn) by Gauss-
Hermite folding reads:

Z̄(x1, x2, · · · , xn) ≈
ϒ∑
i1=1

1xi1

ϒ∑
i2=1

1xi2 · · ·
ϒ∑
in=1

1xin

·Z′(x ′i1 , x
′
i2 , · · · , x

′
in )

n∏
λ=1

1
µλ
√
π

· exp

−
(
xλ − x

′
iλ

µλ

)2
 fh̄

(
xλ − x

′
iλ

µλ

)
(14)

where 1xiλ =
1
2
(xiλ+1

− xiλ−1
), µλ(λ = 1, · · · , n) is a

coefficient, and fh̄($ ) is a correction polynomial which can
be decomposed into a series of Hermite polynomials:

fh̄($ ) =
h̄∑

—λ=0

C—λH—λ($ ) (15)

C—λ =
1

2—λ—λ!
H—λ(0) (16)

where H—λ($ ) = (−1)—λe$
2
(e−$

2
)(—λ) is a Hermite polyno-

mial [38], H—λ(0) is:

H—λ(0) =


1
2ρ(−1)ρ(2ρ − 1)!!
0

—λ = 0
—λ = 2ρ ,

—λ = 2ρ + 1
ρ = 0, 1 · · · (17)

and C—λ is:

C—λ =


1 —λ = 0

(−1)ρ
(2ρ − 1)!!
2ρ(2ρ)!

—λ = 2ρ

0 —λ = 2ρ + 1,

ρ = 0, 1 · · ·

(18)

See the detailed proof in the literature [2], [29], [31].
Remark 2: µλ(λ = 1, · · · , n) are arbitrary coefficients

related to 1xiλ (i = 1, · · · , ϒ) and should be used in con-
junction with h̄ [29]. According to the known approximated
function, we can get the suitable coefficients in advance by
experiment.
Remark 3: From Equations (15)-(17), we have the specific

forms:

C0 = 1, H0 = 1

C2 = −
1
4
, H2($ ) = 4$ 2

− 2 (19)

C4 =
1
32
, H4($ ) = 16$ 4

− 48$ 2
+ 12

Letting ψ (ε) = exp
(
−ε2

)
fh̄ (ε), Equation (14) can be sim-

plified to:

Z̄(x1, x2, · · · , xn) =
ϒ∑
i1=1

1xi1

ϒ∑
i2=1

1xi2 · · ·
ϒ∑
in=1

1xin

·Z′(x ′i1 , x
′
i2 , · · · , x

′
in )

n∏
λ=1

1
µλ
√
π
ψ

(
xλ − x

′
iλ

µλ

)
(20)

IV. UNIVERSAL WMF BASED ON GAUSS-HERMITE
APPROXIMATION
In section III, the nonlinear function is uniformly expressed
in the form of Gauss-Hermite function. From Equation (14),

if the function
ϒ∑
i1=1

1xi1
ϒ∑
i2=1

1xi2 · · ·
ϒ∑
in=1

1xin
n∏
λ=1

1
µλ
√
π

·ψ

(
xλ − x

′
iλ

µλ

)
(i = 1, · · · , ϒ; λ = 1, · · · , n) is seen as

the intermediary function φk (xk ) and Z
′(x ′i1 , x

′
i2
, · · · , x ′in ) is

seen as H (j)
k in Lemma 2, the relationships which are needed

in Lemma 2 can be established and the Lemma 2 can be
implemented.
Theorem 1: For the systems in Equations (1) and (2),

the approximate centralized measurement fusion equation is
given as:

ȳ(C)k = H̄
(C)
φ̄k (xk )+ v̄

(C)
k (21)
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FIGURE 1. Implementing process of WMF filter.

where φ̄k (xk ) is shown as Equation (26), as shown at the
bottom of the next page, xλ(λ = 1, · · · , n) is the λth state
component, x ′iλ (i = 1, · · · , ϒ) is the ith selected point
of the λth state component, and ϒ and µλ are defined as
Lemma 3. H̄

(C)
is shown as Equation (27), as shown at the

bottom of the next page, where h(j)(·) (j = 1, · · · ,L) are the
corresponding function value of the jth sensor function for xλ.
Using Lemma 2, the approximate measurement equation of
the WMF system is given as:

ȳ(I)k = H̄
(I)
φ̄k (xk )+ v̄

(I)
k (22)

where

ȳ(I)k =
(
M̄

T
(
R(C)

)−1
M̄
)−1

M̄
T
(
R(C)

)−1
y(C)k (23)

M̄ and H̄
(I)

are the full rank decomposition matrices of
H̄

(C)
, and M̄ ∈ R

∑L
i=1 mi×r is full-column rank and H̄

(I)
∈

Rr×S
n
(r ≤

∑L
i=1 mi) is full-row rank.

v̄(I)k =
(
M̄

T
(
R(C)

)−1
M̄
)−1

M̄
T
(
R(C)

)−1
v(C)k (24)

and its covariance matrix is:

R̄
(I)
=

(
M̄

T
(
R(C)

)−1
M̄
)−1

(25)

Proof: From Lemma 3, the measurement functions
h(j)k (xk )(j = 1, · · · ,L) can be approximated as:

h(j)k (xk )

≈ h̄
(j)
(x1, x2, · · · , xn)

=

ϒ∑
i1=1

1xi1

ϒ∑
i2=1

1xi2 · · ·
ϒ∑
in=1

1xinh
(j)(x ′i1 , x

′
i2 , · · · , x

′
in )

·

n∏
λ=1

1
µλ
√
π
ψ

(
xλ − x

′
iλ

µλ

)
, j = 1, · · · ,L (28)

Taking Equation (28) into the centralized fusion measure-
ment Equation (4), Equations (21)-(27) can be yielded.
From Lemma 2, the Equation (21) can be compressed into
Equation (22). Proof is completed.

An approximate intermediary function φ̄k (xk ) was con-
structed in Theorem 1 by Gauss-Hermite approximation,
which makes the local measurement equations have the rela-
tionships needed in Lemma 2, then lemma 2 can be carried
out. We can use nonlinear filtering algorithms (e. g. EKF,
UKF, PF, CKF etc.) and Theorem 1 to obtain the WMF
filtering algorithms for the approximate WMF systems in
Equations (1) and (22). It is worth noting that the measure-
ment Equation (22) has a reduced dimension compared with
the centralized measurement fusion Equation (4). So, based
on the approximate WMF systems in Equations (1) and (22),
the designed filtering algorithms will have reduced computa-
tional cost compared with the centralized fusion filter based
on Equations (1) and (4).

If the range of the state value is too large, the sample
points will increase sharply, which would increase the com-
putational cost. So the method of segmentation will be used
here. For example, for the systems with 1-dimensional state,
the range of the state can be divide into a number of line seg-
ments, and for the systemswith 2-dimensional state, the range
of the state can be divide into a number of small areas. For
simplicity, all the H̄

(I)
and M̄ for every segmentation can

be calculate off-line in advance, and the suitable H̄
(I)

and
M̄ can be chosen directly in the database according to the
predictor x̂(I)k|k−1. The implementing process ofWMFfiltering
algorithms is shown as Figure 1.

Compared with the WMF algorithm in literature [27],
the proposed WMF algorithm does not need to calculate
the fusion matrices online in real time, so its computational
complexity will be lower. Compared with the WMF algo-
rithm in literature [28], the proposed WMF algorithm can
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be used for multi-dimensional systems. And we can adjust
the coefficients µλ,1xiλ and Hermite polynomials according
to the simulation results of approximation, so the proposed
WMF algorithm is more flexible and has a wider range of
applications.

V. WMF-PF ALGORITHM BASED ON SEGMENTAL
GAUSSĺCHERMITE APPROXIMATION
In fact, the universal WMF algorithm in Theorem 1 can be
combined with various nonlinear fusion algorithms (EKF,
UKF, PF, CKF, etc.) to form the nonlinear multisensor

WMF filtering algorithms. A nonlinear multisensor WMF
Particle Filter (WMF-PF) algorithm will be presented for
example. From Algorithm 1, the differences between the
centralized fusion PF (CF-PF) and the WMF-PF are in
step 4), 5) and 6). The CF-PF needs to deal with the func-
tion with

∑L
j=1 mj−dimension, so its time complexity is

O
((∑L

j=1 mj
)2)

. But the WMF-PF needs to deal with the

function with r−dimension so its time complexity is O
(
r2
)
.

From Theorem 1, it is evident that
∑L

j=1 mj ≥ r , so the time
complexity of WMF-PF is smaller than CF-PF.

φ̄k (xk ) = π
−

n
2



n∏
λ=1

1x1λµ
−n
λ ψ

(
xλ − x

′
iλ

µλ

)
n−1∏
λ=1

1x1λµ
−1
λ ψ

(
xλ − x

′

1λ

µλ

)
·1x2nµ

−1
n ψ

(
xn − x

′

2n

µn

)
...

n−1∏
λ=1

1x1λµ
−1
λ ψ

(
xλ − x

′

1λ

µλ

)
·1xϒnµ

−1
n ψ

(
xn − x

′
ϒn

µn

)
n−2∏
λ=1

1x1λµ
−1
λ ψ

(
xλ − x

′

1λ

µλ

)
·1x2n−1µ

−1
n−1ψ

(
xn−1 − x

′

2n−1

µn−1

)
·1x1nµ

−1
n ψ

(
xn − x

′

1n

µn

)
...

n−2∏
λ=1

1x1λµ
−1
λ ψ

(
xλ − x

′

1λ

µλ

)
·1x2n−1γ

−1
n−1ψ

(
xn−1 − x

′

2n−1

µn−1

)
·1xϒnγ

−1
n ψ

(
xn − x

′
ϒn

µn

)
...

n−1∏
λ=1

1xSλµ
−1
λ ψ

(
xλ − x

′
ϒλ

µλ

)
·1x1nµ

−1
n ψ

(
xn − x

′

1n

µn

)
...

n∏
λ=1

1xϒλµ
−1
λ ψ

(
xλ − x

′
ϒλ

µλ

)


ϒn×1

(26)

H̄
(C)
=


h(1)(x ′11

, x ′12
, · · · , x ′1n ) h(1)(x ′11

, x ′12
, · · · , x ′2n ) · · · h

(1)(x ′11
, x ′12

, · · · , x ′ϒn )

h(2)(x ′11
, x ′12

, · · · , x ′1n ) h(2)(x ′11
, x ′12

, · · · , x ′2n ) · · · h
(2)(x ′11

, x ′12
, · · · , x ′ϒn )

...
...

. . .
...

h(L)(x ′11
, x ′12

, · · · , x ′1n ) h(L)(x ′11
, x ′12

, · · · , x ′2n ) · · · h
(L)(x ′11

, x ′12
, · · · , x ′ϒn )

h(1)(x ′11
, x ′12

, · · · , x ′2n−1
, x ′1n ) · · · h

(1)(x ′11
, x ′12

, · · · , x ′2n−1
, x ′ϒn ) · · ·

h(2)(x ′11
, x ′12

, · · · , x ′2n−1
, x ′1n ) · · · h

(2)(x ′11
, x ′12

, · · · , x ′2n−1
, x ′ϒn ) · · ·

... · · ·
... · · ·

h(L)(x ′11
, x ′12

, · · · , x ′2n−1
, x ′1n ) · · · h

(L)(x ′11
, x ′12

, · · · , x ′2n−1
, x ′ϒn ) · · ·

h(1)(x ′ϒ1
, x ′ϒ2

, · · · , x ′ϒn−1
, x ′1n ) · · · h

(1)(x ′ϒ1
, x ′ϒ2

, · · · , x ′ϒn )

h(2)(x ′ϒ1
, x ′ϒ2

, · · · , x ′ϒn−1
, x ′1n ) · · · h

(2)(x ′ϒ1
, x ′ϒ2

, · · · , x ′ϒn )
... · · ·

...

h(L)(x ′ϒ1
, x ′ϒ2

, · · · , x ′ϒn−1
, x ′1n ) · · · h

(L)(x ′ϒ1
, x ′ϒ2

, · · · , x ′ϒn )


L∑
i=1

mi×ϒ
n

(27)
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Algorithm 1 WMF-PF Algorithm
1)Initialization:
Initial particles:x̂(I)(i)0|0 ∼ px0 (x0) (i = 1, · · · ,Ns) and initial

prediction: x̂(I)1|0;
2)State prediction particles:

x̂(I)(i)k|k−1 = f k−1(x̂
(I)(i)
k−1|k−1)+ ζ

(I)(i)
k−1

(ζ (I)(i)k−1 is random number with the same distribution of the
process noise wk−1);
3) According to the prediction x̂(I)k|k−1, choose the segments

and the corresponding H̄
(I)
, M̄ and φ̄k (xk ) in weighted calcu-

lation center;
4) Fusion measurement:

ȳ(I)k =
(
M̄

T
(
R(C)

)−1
M̄
)−1

M̄
T
(
R(C)

)−1
y(C)k

5) Measurement prediction particles:

ŷ(I)(i)k|k−1 = H̄
(I )
h̄k (x̂

(I)(i)
k|k−1)

6) The importance weight:

ω
(I)(i)
k =

1
Ns
p
v(I)k

(y(I)k − ŷ
(I)(i)
k|k−1)

ω̄
(I)(i)
k =

ω
(I)(i)
k

N∑
i=1
ω
(I)(i)
k

7) Filtering:

x̂(I)k|k =
Ns∑
i=1

ω̄
(I)(i)
k x̂(I)(i)k|k−1

P(I)
k|k ≈

Ns∑
i=1

ω̄
(I)(i)
k (x̂(I)(i)k|k−1 − x̂

(I)(i)
k|k )(x̂(I)(i)k|k−1 − x̂

(I)(i)
k|k )T

8) Prediction:

x̂(I)k+1|k = f k (x̂
(I)
k|k )

9) Resampling:

$i =
(i− 1)+ r

N
( r ∼ U [0, 1], i = 1, · · · ,Ns),

if
m−1∑
j=1

ω̄
(I)(j)
k < $i ≤

m∑
j=1
ω̄
(I)(j)
k , we copy m particles as

resampling particles x̂(I)(i)k|k directly;
Turn to step 2) and reiterated.

VI. SIMULATION EXAMPLES
Let us consider a 2-dimensions target tracking system with
eight sensors. In 2-dimension Cartesian coordinate, the state
equation is:

xk+1 = 8xk + 0wk (29)

where xk =
(
xk ẋk yk ẏk

)T is the state vector,

8 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 , 0 =


0.5T 2 0
T 0
0 0.5T 2

0 T

 ,w(k)
is Gaussian noise with variance Qw = diag(0.12, 0.12).
Assume that there are eight angle sensors θ (j)(x(j), y(j)),

(j = 1, · · · , 8) which is located at four points, i.e., θ (1)(5, 5),
θ (2)(5, 5), θ (3)(−5, 5), θ (4)(−5, 5), θ (5)(−5, −5),
θ (6)(−5, −5), θ (7)(5, −5), θ (8)(5, −5). Then, the measure-
ment functions of the eight sensors can be written as:

z(j)k = h(j)k + v
(j)
k

= arctan
(
(yk−y(j))

/
(xk−x(j))

)
+ v(j)k ,

j = 1, · · · , 8 (30)

where v(i)k , v
(j)
k , i 6= j are uncorrelated and the variances are

σ 2
v1 = 0.0212, σ 2

v2 = 0.0222, σ 2
v3 = 0.0232, σ 2

v4 = 0.0242,
σ 2
v5 = 0.0252, σ 2

v6 = 0.0262, σ 2
v6 = 0.0262 and

σ 2
v8 = 0.0282, respectively. In simulation, we set the sample

period is T = 200ms and the initial state is x(0) = 0.

φ̄k (xk )

=
1

π (0.9)2



exp

{
−

(
x − x ′1
0.92

)2 (y− y′1
0.92

)2
}

exp

{
−

(
x − x ′1
0.92

)2 (y− y′2
0.92

)2
}

...

exp

{
−

(
x − x ′1
0.92

)2 (y− y′S
0.92

)2
}

exp

{
−

(
x − x ′2
0.92

)2 (y− y′1
0.92

)2
}

...

exp

{
−

(
x − x ′2
0.92

)2 (y− y′S
0.92

)2
}

...

exp

{
−

(
x − x ′S
0.92

)2 (y− y′1
0.92

)2
}

...

exp

{
−

(
x − x ′S
0.92

)2 (y− y′S
0.92

)2
}


42×1

(31)

From the experiment of approximation offline, we use
µi = 0.9, 1xiλ = 1 (i = 1, · · · , ϒ) and h̄ = 0 in the simula-
tion. From Equations (15)-(19), we have Equation (31).

In order to reduce the computational cost, the target
area is divided into 1 square kilometers as Figure 2 (a).
Take No.7 piece for example, its distribution of the sample
points is shown as Figure 2 (b). According to the sample
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FIGURE 2. Fusion matrix H̄(I) and M̄ .

FIGURE 3. True track and the estimated tracks using WMF-PF.

points, we get the matrices H̄
(C)

, H̄
(I)

and M̄ shown as
Figure 2(c). In the simulation, because there are two different
sensors in the same place, the H̄

(I)
∈ <4×16 is a matrix

with 4-rows.
In order to compare the impact of the number of sensor

network nodes on system accuracy and computational cost,
the sensor networks with different numbers of sensors are
compared. To compare with CF-PFs with different sensors,
the selection of these sensors is based on the dispersion
principle, i.e., we chose sensors 1 and 3 to show CF-PF with
2 sensors, sensors 1, 3 and 5 to show CF-PF with 3 sensors,

FIGURE 4. AMSEs of the distances between the actual and estimated
positions.

and sensors 1, 3, 5, 7 and 8 to show CF-PF with 5 sensors.
The true track and the estimated track using WMF-PF are
shown in Figure 3.

The estimation performance is accumulated mean square
error (AMSE) in position at time k [37], [39], [40]:

AMSE(k) =
k∑
τ=0

1
N

N∑
χ=1

(
(xχ (τ )− x̂χ (τ |τ ))2

+(yχ (τ )− ŷχ (τ |τ ))2
)

(32)

VOLUME 8, 2020 151737



Y. Li: Fusion PF for Nonlinear Systems Based on Segmental Gauss-Hermite Approximation

where (xτ (t), yτ (t)) and (x̂τ (t|t), ŷτ (t|t)) are the true and
estimated positions of the ith Monte Carlo experiment at
time t .

The AMSE curves of WMF-PF, CF-PFs with 8 sensors,
5 sensors, 3 sensors and 2 sensors are shown in Figure 4 with
20 Monte Carlo experiments. From Figure 4 we can see that
the accuracy from high to low followed by CF-PF with 8 sen-
sors, WMF-PF, CF-PF with 5 sensors, CF-PF with 3 sensors
and CF-PF with 2 sensors. This shows that the number of
sensors has an important influence on the accuracy of the
estimation systems. But the computational cost from high to
low followed by CF-PF with 8 sensors, CF-PF with 5 sensors,
WMF-PF, CF-PF with 3 sensors and CF-PF with 2 sensors,
because the H̄

(I)
∈ <4×42 is a matrix with 4-rows. As the

number of sensors increases, the dimension of the WMF
measurement equation will not change, but the dimension
of the centralized fusion system will greatly increase. So,
the advantage of the proposed WMF-PF in computational
cost will be more obvious for massive sensor systems.

VII. CONCLUSION AND FUTURE WORKS
In this article, we firstly use the segmental Gauss-Hermite
approximation method combined with the WLS method to
present a universal nonlinear WMF algorithm. Then, based
on the WMF algorithm and PF, a nonlinear WMF-PF is
presented. The proposed WMF-PF can deal with the fusion
estimation problems for multidimensional nonlinear multi-
sensor systems. Compared with centralized fusion PF, it has
an approximate accuracy and less computational cost. The
advantage of the proposed WMF filtering algorithm in com-
putational cost will be more obvious for massive sensors
systems. In simulation, we analyzed the WMF-PF, CF-PFs
with 8 sensors, 5 sensors, 3 sensors and 2 sensors in accu-
racy and computational cost. Experimental results verify the
effectiveness of the proposed WMF-PF algorithm.

Although the approximation effect of the Gauss-Hermite
approximation method is better, just like other approximation
functions (such as polynomial interpolation), its convergence
has not been proven, that is it will not asymptotically con-
verge as the Hermite polynomial increases. In the next work,
we will study the convergence of the method. In addition,
other methods that can be used to approximate nonlinear
functions (such as neural networks) will also become one of
our research contents.
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