
Received July 28, 2020, accepted August 13, 2020, date of publication August 18, 2020, date of current version August 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3017552

Optimizing OpenCL Code for Performance on
FPGA: k-Means Case Study With
Integer Data Sets
NUNO PAULINO 1,2, JOÃO CANAS FERREIRA 1,2, (Senior Member, IEEE),
AND JOÃO M. P. CARDOSO 2, (Senior Member, IEEE)
1INESC TEC, University of Porto, 4099-002 Porto, Portugal
2Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal

Corresponding author: Nuno Paulino (nuno.m.paulino@inesctec.pt)

This work was supported in part by the Power Efficiency and Performance for Embedded and HPC Systems with Custom CGRAs
(PEPCC) Project, financed by the Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technology) under Grant
PTDC/EEI-HAC/30848/2017.

ABSTRACT High Level Synthesis (HLS) tools targeting Field Programmable Gate Arrays (FPGAs) aim
to provide a method for programming these devices via high-level abstractions. Initially, HLS support
for FPGAs focused on compiling C/C++ to hardware circuits. This raised the issue of determining the
programming practices which resulted in the best performing circuits. Recently, to further increase the
applicability of HLS approaches, renewed effort was placed on support for HLS of OpenCL code for
FPGA, raising the same issues of coding practices and performance portability. This paper explores the
performance of OpenCL code compiled for FPGAs for different coding techniques. We evaluate the use
of task-kernels versus NDRange kernels, data vectorization, the use of on-chip local memories, and data
transfer optimizations by exploiting burst access inference. We present this exploration via a case study of
the k-means algorithm, and produce a total of 10 OpenCL implementations of the kernel. To determine the
effects of different data set characteristics, and to determine the gains from specialization based on number of
attributes, we generated a total of 12 integer data sets. The data sets vary regarding the number of instances,
number of attributes (i.e., features), and number of clusters. We also vary the number of processing cores,
and present the resulting required resources and operating frequencies. Finally, we execute the same OpenCL
code on a 4GHz Intel i7-6700K CPU, showing that the FPGA achieves speedups up to 1.54× for four cases,
and energy savings up to 80% in all cases.

INDEX TERMS OpenCL, k-means, clustering, FPGA, hardware accelerator, HLS.

I. INTRODUCTION
Unlike devices such as Central Processing Units (CPUs)
and Graphics Processing Units (GPUs), the reconfigurabil-
ity of Field Programmable Gate Array (FPGA) allows for
very finely-tuned and application-specific implementations
of circuits. For very demanding and yet very rigidly spec-
ified applications, specially those with energy consumption
constraints, FPGAs are a popular choice [1]–[3]. However,
the traditional programming flow for these devices requires
describing a circuit’s behaviour via Hardware Descrip-
tion Languages (HDLs), followed by lengthy and labori-
ous simulation, verification, and integration. Also, despite

The associate editor coordinating the review of this manuscript and

approving it for publication was Remigiusz Wisniewski .

the beneficial circuit specialization, the respective lack of
programmability implies the same design effort for future
revisions.

In order make these devices more suited for general use,
over a decade of development has focused on efficient genera-
tion of circuits via High Level Synthesis (HLS) of source code
such as (subsets of)C/C++ orMATLAB [4], [5]. The study of
HLS techniques for FPGAs using these languages comprises
a long body ofwork [6]–[9], focusing on optimizing the use of
FPGAs as new computing platforms by studying appropriate
coding techniques.

More recently, progress has been made towards extending
this approach to other languages such as OpenCL. This makes
FPGAs similar to GPUs, in that they can be deployed in
the same fashion, and targeted by the same programming

152286 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5547-0323
https://orcid.org/0000-0001-7471-3888
https://orcid.org/0000-0002-7353-1799
https://orcid.org/0000-0001-6829-2263

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

language. FPGA-based PCIe boards become appealing for
servers workloads, since there is a less pronounced interfer-
ence with the infrastructure, especially because development
(and revision) of code continues to reside within a familiar
ecosystem. Notable work in OpenCL compilation for FPGAs
includes both academic research [10]–[12] and commercial
tools that have become widely known [13], [14]. Just as with
HLS of C/C++, research has emerged that studies the set
of best practices when writing OpenCL code for FPGAs,
how they differ from code targeting CPUs or GPUs, and if
portability is or is not compromised.

In this paper, we evaluate the performance of OpenCL
code on FPGA resulting from applying multiple coding
techniques, including the use of single-task kernels ver-
sus NDRange kernels, combined with data vectorization
and the use of local memories and burst accesses to local
memory. We study these aspects via the popular k-means
algorithm [15]. Startingwith a sequential OpenCL implemen-
tation of the algorithm, we perform incremental modifica-
tions, and evaluate the performance and power consumption
of all resulting code versions. To allow us to evaluate the
effects of the number of instances (i.e., data points), number
of features, and number of clusters, we randomly generated
12 data sets. The random generation produced instances with
a given number of integer attributes, distributed according
to the specified number of centroids, and ensured random
correlation between attributes.

We focus on data sets with integer attributes since they
are the best candidates for FPGA execution relying heavily
on parallelism, due to the typically limited number of on-
chip resources for floating-point calculations. Additionally,
a considerable amount of domains rely on integer data sets for
clustering and classification [16]. Examples include medical
applications [17], [18], asset tracking [19], [20], and text
processing [21], [22]. Given this, evaluating the use of FPGAs
for this scenario is a relevant effort.

The contributions of this paper are the following:
• Demonstrating the changes required to a baseline
sequential OpenCL implementation of a clustering algo-
rithm to improve performance for FPGA;

• Presenting 10 OpenCL implementations for the case
study of the k-means algorithm;

• Evaluation with 12 generated integer data sets, regarding
execution time and resource requirements;

• A comparison between CPU and FPGA regarding exe-
cution time and energy consumption;

• Discussion about the effects of algorithm characteristics
on code restructuring, and about the general applicabil-
ity of the techniques employed.

This paper is organized as follows. Section II presents
related work on acceleration via HLS of OpenCL to FPGAs,
focusing on k-means or similar algorithms. Section III sum-
marizes the k-means algorithm. Section IV shows the imple-
mented code versions, explains the differences between them
and the coding techniques used. Section V presents experi-
mental setup and results, including a comparison between the

several versions executing on FPGA, a comparison between
CPU and FPGA execution, and a thorough discussion on the
influence of the characteristics of the algorithm and of the
OpenCL paradigm on the code techniques applied. Finally,
Section VIII concludes the paper.

II. RELATED WORK
Classification algorithms such as k-means, k-nearest neigh-
bours (kNN), and mean-shift have been implemented fre-
quently on FPGAs [23]. Although GPUs already enjoyed
widespread use in data centers, to allow parallel processing
of the large amounts of data required by these tasks, it was
the relative energy efficiency of FPGAs that increased their
appeal, along with the capability of fine tuning the hardware
design. However, prior to the emergence of HLS, designs
required hardware specification of the core via HDL, and
integration with the host system. Synthesis of OpenCL to
FPGA emerged to further address this.

One issue with the use of FPGAs as OpenCL devices is
performance portability. Code optimized for CPUs or GPUs
performs poorly when compiled for FPGAs, due to the differ-
ent computing paradigms. As such, considerable refactoring
is required to truly exploit the potential of FPGA computing.
Existing work has thus focused on exploring the best methods
for segmenting algorithms into inter-connected kernels, and
on optimization of kernel code [24]–[26]. This section briefly
summarizes some implementations of the k-means and simi-
lar algorithms on FPGA, resorting to either manual hardware
design or HLS.

Hussain et al. [27] present an HDL based design of the
k-means algorithm on a Virtex-4 based board. All the pro-
cessing steps of the algorithm are offloaded to the FPGA.
The design synthesis parameters include the bit width of the
data, the number of attributes, the number of clusters, and
the number of data points. The implementation resorts to
fixed-point arithmetic. Data points reside in external memory,
and are fetched by a streaming interface. Parallel distance
calculations to each centroid are then performed, resorting
to the Manhathan distance. The smallest distance is then
added to an accumulator respective to the cluster, and finally
processed by a pipelined divider. Comparisons are performed
to an Intel Core 2 Duo CPU and an NVIDIA GeForce 9600M
GT GPU. For two data sets of up to six million points with
a single integer attribute, the FPGA implementation is up to
6.7× faster than the GPU.
Pu et al. present an OpenCL based implementation of

the kNN algorithm [26]. The approach employs two kernels
exchanging data through an on-chip local memory. The first
kernel computes one point distance to one centroid per work-
item. The second kernel computes a partial bubble to deter-
mine the nearest neighbours of each data point. The number
of work-groups equals the number of data points, and each
group contains k work-items. The design was implemented
on a Stratix IV based FPGA board. For comparison, an Intel
i7-3770k CPU and an AMD Radeon HD7950 GPU were
used. An integer data set with approximately 20 thousand

VOLUME 8, 2020 152287

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

data points and 64 attributes was used. For k = 20, the FPGA
implementation achieves a speedup of 148× over aMATLAB
implementation of kNN executing on the CPU. This is 2.7×
slower but 3× more energy efficient than the GPU executing
the same OpenCL.

Tang et al. provide this exploration for the k-means algo-
rithm [28] via HLS of OpenCL code. A first implementation
of the sequential baseline k-means algorithm leads to poor
performance on the FPGA, due to poor use of memory band-
width. The best performing solution relied on two kernels
making use of local memories within the FPGA. The first is a
multiple work-group kernel (i.e., NDRange kernel) for com-
putation of distances, and the second a single-thread kernel
(i.e., task kernel) for calculation of new centroids. Additional
code variations to account for number of attributes were also
studied, as well as fixed-point data types and the use of the
Manhattan distance. For implementations on anAltera Stratix
V FPGA, speedups of up to 21× are achieved in the best case
versus an Intel Xeon hexa-core processor, and performance
is comparable to an NVIDIA GTX280 GPU.

Muslim et al. study the kNN algorithm [29]. The algorithm
calculates which k nearest points in a training set are closest
to each point n of the input data set. Two implementations
were tested on anAlphaData PCIe board with a Xilinx Virtex-
7 family device. Firstly, a version where the distance calcu-
lation of each point is implemented as an NDrange kernel,
and the remaining portions of the algorithm execute on the
host machine. This implementation relied only on global data
memory. The second version employs two kernels using local
memories and inter-kernel communication channels. Perfor-
mance is compared with an NVIDIA GTX960. The FPGA
performs better for the second implementation, while the
GPU performs better for the first implementation. Comparing
the best cases, the FPGA achieves a speedup of 2.5×, and
consumes between 8× and 9× less energy.
Canilho et al. [30] present a many-core design for k-means,

implemented via HDL on a Xilinx Zynq-7000. The design
relies on the Manhattan distance, and uses floating-point
arithmetic for calculations. The configurable number of cores
affects only the replication of the distance calculation mod-
ule, which computes the distance of a single data point to a
subset of the centroids. The closest centroid of each subset
is then fed to a reduction module which performs the final
selection via consecutive comparisons in a tree structure. The
accumulation step uses distributed Block RAMs (BRAMs),
storing each attribute of the accumulator in a separate mem-
ory, allowing for a parallel computation of the final division
and centroid update, which is performed on the host ARM
processor. For a data set of 1 million points with 32 attributes
and 100 clusters, the hardware/software solution is up to
20× faster than software-only execution.

Raghavan et al. present an integrated approach imple-
mented on a Virtex-6 FPGA [31]. A custom k-means mod-
ule is attached to a host MicroBlaze central processor, and
data are fetched via Direct Memory Access (DMA) from
external DDR memory. The design parameters determine the

replication of distance calculation sub-modules, meaning the
k-means core processes multiple data points in parallel. The
Squared Euclidean Distance is used as the distance metric.
These sub-modules compute the distance of multiple points
to a single cluster centroid only, meaning that distance cal-
culations of each batch of points to each centroid is per-
formed sequentially. For one data set with integer attributes
from [16], the augmented solution resorting to 32 cores
achieves speedups up to 368× against the MicroBlaze pro-
cessor alone.

Shata et al. present a lengthy study of several generic code
optimizations for OpenCL kernels [32]. These include avoid-
ing the use of global variables (e.g., for reduce operations),
studying the effect of suggested or enforced work-group size
for different kernels, and employing inter-kernel channels.
Regarding the use of channels between a producer-consumer
pair, three cases were considered. Firstly, a NDRange pro-
ducer kernel writing an arbitrary number of items in arbitrary
order to one NDRange consumer via N channels; secondly,
use of only a single channel for a single consumer kernel; and
finally, relying on an NDRange producer and N task-kernel
consumers with individual dedicated channels. These strate-
gies were individually applied to several OpenCL use-cases
to evaluate their effects. The k-means baseline is an OpenCL
implementation in the form of two NDRange kernels, one for
assignment, and the other for centroid recalculation. From the
transformations studied, the use of channels led to the best
speedup, which was 2.1× and 1.8× for a data dimensionality
of 2 and 4, respectively. The speedup was independent of the
number of clusters or points. A combination of optimizations
led to a speedup of 3.2×. For the remaining benchmarks,
speedups when relying on task kernels (i.e., single work-item
work-groups) can range up to 140× when combined with
manual loop unrolling.

An OpenCL implementation of a real world application
for genomic workload is presented in [33]. The algorithm,
k-mers, entails parallel comparisons of large amounts of
genome data samples. A solution was achieved by segment-
ing the workload into producer and consumer kernels, with
channel-based communication. The performance scalability
was analysed by increasing the number of both types of
kernels or the number of FPGAs. Due to the random memory
access requirements of one of the kernels, a dual FPGA
solution is required to outperform the baseline. This approach
provides a performance improvement of 1.32× relative to
execution on a dual 12-core Xeon CPU setup, and out-
performs energy consumption of an NVIDIA GTX1080 Ti
by 1.5×. The performance impact of bandwidth limitations
of FPGA communication through PCIe channels is also
characterized.

Song et al. also present an HLS implementation of the
kNN algorithm on a PCIe board with a Xilinx UltraScale
FPGA [34]. Focus is given on reducing data transfers
between the FPGA and main memory, to minimize over-
head. To achieve this, a combination of principal component
analysis and data precision reduction is employed. A large

152288 VOLUME 8, 2020

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

data set consisting of one million 960-dimensional points is
used to evaluate the implementation versus a dual Intel Xeon
E5-2699 (2.2GHz) server setup capable of executing up to
88 concurrent threads. As the number of bits used to represent
data decreases, the performance of the FPGA implementation
over the CPU setup noticeably increases. For a 4 bit data
width, performance is comparable to 56 threads on the CPU,
while operating at 260MHz. Additionally, the amount of data
transit is reduced by 28×, relative to conventional kNN.

Dias et al. also present an implementation for k-means
through an HDL based custom design [35]. Design param-
eters include the bit-width of the fixed-point arithmetic
employed, and the number of cores, i.e., replication of
the pipelines for distance calculation and cluster assign-
ment for a single data point. Hardware is also replicated as
needed according to the number of attributes of the data.
Regarding the distance calculation, multiple distance met-
rics can be chosen, including the Euclidean distance, for
which a custom module was implemented. Experimental
evaluation was carried out on a Virtex-6 FPGA. Synthetic
data sets of normally distributed clusters were used to eval-
uate the effect of the chosen distance metric (Manhattan,
Euclidean, or Squared Euclidean) on the resulting hard-
ware requirements. Additional machine learning data sets
[16], [36] were used to perform the same analysis for the num-
ber of attributes, the number of clusters, the parallelization
level, and the data bit width. For four cores, up to 31 million
data points can be processed per second for a data set where
points possess 8 attributes.

III. THE k-MEANS ALGORITHM
The k-means algorithm [15] is a process of data quantiza-
tion that is widely used for data clustering and classification
[37], [38], and is summarized in Algorithm 1.
Given a set of input data N , all of equal dimension D,

the purpose of k-means clustering is to find a set of K
centroids Ck = (c1, c2, . . . , cn), such that the sum of the
squares of the distances of all points to their closest cluster
is minimized. In every iteration, each data point is assigned
to the cluster of the corresponding closest centroid, and new
centroids are computed based on the assignments. The algo-
rithm may have two termination conditions. It may end after
a given number of iterations, or only when the position of
the centroids in sequential iterations varies less than a given
threshold. Implementations in this paper employ the later
condition.

The K parameter is given to the algorithm, and its
value depends on some type of prior knowledge about the
nature of the data to classify. Auxiliary algorithms, like
k-means++ [39] are used to determine initial centroids for
k-means that reduce the chance of convergence to local
minima.

Being heavily used in applications such as computer
vision, machine learning, and market analytics, k-means is
used to process very large amounts of data, often with many
features. Parallelizing the algorithm is possible since the

Algorithm 1 k-means Clustering
Data: Set of N = X1,X2, . . . ,XN input data, where

Xn = x1, x2, . . . , xd , threshold , K , D, N
Result: Set of K cluster centroids C = C1,C2, . . . ,Ck

and assignments of each datum Xn to a cluster k
while error > threshold do

set old_error = error ;
set error = 0;
forall the Xn in X do

set mindist = 0;
forall the Ck in C do

Compute distance dist of Xn to Ck ;
if dist < mindist then

mindist = dist;
assign Xn to cluster k;

error = error + mindist;
forall the Ck in C do

Compute new Ck from points assigned to cluster
k

computations of each datapoint’s distance to each cluster are
independent operations. The scalability of parallel computing
solutions for k-means, and similar algorithms, is limited by
aspects like the computing architecture (e.g., number of cores
and operating frequency), and data transfer bandwidth.

This paper presents implementations that exploit paral-
lelization, in the context of HLS of OpenCL code for FPGA
targets. Although FPGAs operate at lower frequencies than
other devices, their capability for implementing application-
specific circuits leads to reductions in energy consumption,
despite any possible increases in execution time. This makes
FPGAs appealing for large-scale data centers where energy
savings are paramount for cost-cutting reasons.

FIGURE 1. OpenCL Task-Kernel vs NDRange Kernel execution; for
NDRange, workgroups have local size {1 < n < N, 1, 1}, where
N = total # workitems.

IV. IMPLEMENTED CODE VERSIONS
We implemented versions of the k-means algorithm in
OpenCL to evaluate the effects of different code styles when
targeting FPGA devices via HLS. Figure 1 summarizes the
execution models adopted on the FPGA via the overarching
OpenCL model. The application is comprised of host-side
code (C/C++) executing on the CPU, and OpenCL ker-
nels which are invoked via the OpenCL API. Typically, the

VOLUME 8, 2020 152289

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

OpenCL runtime compiles the kernel for the target device
on-the-fly (e.g. OpenCL execution on the CPU). For FPGA
execution, the runtime is responsible for reconfiguring the
FPGA with the respective kernel circuit. For task-kernels,
a single work-group with one work-item executes on one
Compute Unit (CU). For NDRange kernels, multiple work-
groups are scheduled onto the available CUs at runtime.

Regarding the optimization techniques used, some are rec-
ommended by the vendors of HLS tools for FPGAs [40].
These include optimizations to the host code and to the
OpenCL code. Included in the later are the optimization of
the data transfers with the FPGA, and the refactoring of code
to express computation parallelism (e.g., loop pipelining and
unrolling) and to exploit the use of multiple cores. We per-
form no optimization of the host code, but employ the listed
techniques to optimize the FPGA-side OpenCL code.

TABLE 1. k-means kernel versions.

LISTING 1. Version v1 (baseline).

Table 1 summarizes themain aspects of each version, while
Listings 1 to 5 present the most relevant excerpts of the code
versions. Version v1 serves as a baseline, and is similar to

LISTING 2. Version v2/3 (v1 refactor for D = {8, 16}).

LISTING 3. Version v4 (multiple work groups).

a plain C implementation of the algorithm, implementing
only the keywords required to express it as anOpenCL kernel,
e.g., __kernel and global. Versions v1 to v3, are task-kernels,
while versions v4 to v6 are NDRange kernels. The remaining
cases are modifications which aim to maximize bandwidth
utilization by directing the HLS tools to exploit burst accesses
to the global off-chip data memory.

A. TASK-KERNEL (SINGLE-THREAD) VERSIONS
Listing 1 shows the code for the baseline kernel. Through-
out this paper, we refer to the highlighted code segments,
A to D where required, and omit actual code in favor of these
identifiers in code shown later on, for clarity and to highlight
only differences between versions.

152290 VOLUME 8, 2020

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

LISTING 4. Version v1b (v1 + burst access).

The k-means kernel is implemented here by four loops:
loop A clears intermediate calculations and checks for the ter-
mination condition, loop B iterates through every data point
to assign to a cluster, loop C computes the distance of each
point to each candidate cluster, and loop D iterates through
each dimension of the data points. This version receives as
inputs the integer parameters n, m, and k, which respectively
represent the number of data points, the dimensionality of the
data, and the number of clusters.

The distance metric used in section D is the Squared
Euclidean distance. All implementations avoid the use of
the square root, since this operation is particularly costly
in FPGAs for two reasons. Firstly, the square root is
implemented as a function call which, when placed into
an innermost loop, makes it difficult to pipeline the loop
in hardware, and secondly because the square root requires
its input argument to be a floating-point number. We chose
to avoid floating-point operations due to the expected

LISTING 5. Version v5b8 (v5 + to burst access).

performance impact. Casting an integer to a floating-point
value is also costly, and likewise prevents pipelining of the
scope in which it is performed, as we observed in previous
work [41]. We also needed to divide the new candidate dis-
tance, dist, and the current minimum distance by two, when
performing the comparison in section C. Without doing so,
comparing two values of type ulong directly, would lead
to an incorrect behavior where the comparison would be
performed as if values were signed long integers. To prevent
this, we discard the most significant bit, and cast the values
to signed integers.

Versions v2 and v3 are shown in Listing 2. The differences
to v1 are the data type of some input arrays (e.g., uint8 for v2,
as highlighted), and the replacement of the innermost loop in
sectionDwith a vector operation to compute the distance over
the D = {8, 16} dimensions. This modification was tested to
determine if explicit vectorization of the loop inD is required
for the HLS compiler to pipeline the loop in C.

B. NDRange KERNEL (MULTI-THREAD) VERSIONS
While the former three code versions relied on a single work-
group, i.e., thread, the versions shown in Listing 3 adopt a
multiple work-group approach. This means multiple CUs can

VOLUME 8, 2020 152291

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

be instantiated to execute the kernel, and further parallelism
can be achieved, whilst still allowing for loop pipelining to be
applied to the innermost loops in C and D. Relative to v4, v5
(omitted for clarity) merely replaces the loop in section D in
the same fashion as the vectorization performed for v2 shown
in Listing 2, and likewise adjusts the data types of the input
arguments data and centr to uint8.

The outermost loop is moved to the host side. This means
that the kernel is called multiple times, while the termination
condition is checked on the host, along with the calculation
of the new centroids. Since each work-group handles only
a batch of the total amount of data points, it would only
be possible to compute partial sums, which would then be
reduced on the host, and finally divided by the number of
points in each cluster to compute the new centroids. Instead,
we chose to compute the new centroids entirely on the host to
reduce the data traffic. For v4/5, the data transferred are the
new labels per point, and each point’s distance to the centroid,
in order to compute the new error on the host side also. The
v6 variant (omitted for clarity) is identical to v4/v5, except
for the outermost loop, B, which was moved to the host side.
That is, each work-group processes a single data point.

C. OPTIMIZING MEMORY BANDWIDTH USAGE
Initial experimental results, shown later in Section V, lead
us to refactor the code to optimize bandwidth use between
the FPGA and the global memory, while also reducing the
total number of accesses required. The kernel versions shown
so far either do not vectorize their global input arguments
(e.g., v1) to preserve flexibility, or relied on equating the
vectorization width to the number of features in the input data
(e.g., v2/v3). This allows for simpler code and is a straightfor-
ward transformation, but there is no advantage in not trans-
mitting themost data per read/write to global memory. For the
FPGA used (and its compilation environment), the maximum
width of a data transfer is 512 bit, which corresponds to the
vector datatype uint16. We re-implemented v1 and multiple
versions of v5 (for D = {2, 8, 16}). The former functions
as a secondary baseline, firstly to determine the gains of
optimizing the data transfers by comparison with the primary
baseline, and secondly to evaluate the improvement due to
the multi-threading and vectorization adopted in v5, free from
performance degradation due to poor usage of bandwidth.

Listing 4 shows the optimized version of v1. Segment E1
declares local memories to store labels, the number of data
points in each cluster, the sum of all data points in each
cluster, a local batch of data points (whose amount is defined
by TMPPTS constant), and the new centroids. All memories
are given the attribute xcl_array_partition, with a cyclic par-
titioning strategy into 16 sub-ranges, with dimension 1. This
means that each declared array is instantiated as a 16-port
local memory, to which we can read/write 512 bit of data in
a single clock cycle. This is necessary to allow for the burst
writes/reads implemented in E2, E3, and E4. However, unlike
the v1 version, this introduces a limitation in the maximum
supported values for n, k, and m, since the amount of on-chip

BRAM is limited. However, this implementation still sup-
ports any combination of the three parameters (up to a given
maximum for each). All omitted code in segments A, B, C,
andD is the same as shown for v1, save for the fact that every
operation is now performed over these local memories.

The burst reads are inferred by the compiler if the state-
ment which assigns the global input argument to a local
memory is placed within a loop amenable to pipelining, e.g.,
the loop within segment E2. This portion of code computes
howmany data points we are capable of retrieving per 512 bit
transfer, which varies with the number of features, m. Then,
it computes the number of bursts required to transmit all
initial/current k centroids, and read one uint16 datum into
the local memory. We implement this via explicit pointer
casting of the destination address, since we encountered
inconsistent behavior and simulation errors when resorting
to the standard OpenCL vstore16 call. This happens like-
wise for writes to global memory, and in E4 we resort to
explicit pointer arithmetic and casts to send the computed
centroids, counts and labels to the host, in place of calls to
vload16. Like the read bursts, write bursts are inferred by the
compiler if the write operation is expressed as shown, in an
isolated loop with constant stride without other statements or
loops.

Finally, the read loop within E3 is similar to the read burst
in E2, and is used to read TMPPTS data points at a time
into the respective local memory. Without this loop, every
iteration of the outermost loop of B would require an access
to external memory to transmit a single data point. This
periodic read every TMPPTS iterations of the loop reduces
the total number of accesses, and increases the amount to data
transmitted per access, reducing overall overhead.

We then applied the same strategy to v5. That is,
we resorted to local memories and burst reads/writes,
as shown in Listing 5. Segment A is once again moved to
the host-side code, meaning that fewer local memories are
required to hold new centroids and the number of points per
cluster. Also, the version shown is specialized for D = 8,
which simplifies the code further, particularly in the E seg-
ments, since it is easy to compute the number of points per
burst, while avoiding the pointer arithmetic and casts required
before. For versions v5b2 and v5b16 (specializations for
D = 2 and D = 16), the partitioning for the tmppts and tmp-
centr arrays must be modified, so that a single write/read cor-
responds to a complete datum. In the first case, the attribute is
changed to xcl_array_partition(cyclic, 4, 1), and in the latter,
no partitioning is required. The loops in E2 and E3 must be
changed accordingly. For instance, for D = 16, use of the
hi/lo fields is not required, and a single assignment from the
burst read to the tmpcntr array copies a complete datum.

If the number of features is a power of two, the OpenCL
vector data types allow for this simplification. Otherwise,
e.g., D = 6, we could either pad the two remaining uint ele-
ments in each uint16 burst to zero, to keep data aligned, or opt
to transmit partial packets. Either case requires additional
code to handle the necessary data realignment.

152292 VOLUME 8, 2020

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

Finally, unlike all other versions of the code, the partitioned
local memories employed in v1b and v5b, which allow for
pipelined read/write loops due to the multiple memory ports,
are usable with the CPU, as the partitioning attribute is spe-
cific to the OpenCL compiler targeting the FPGA.

V. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The experimental setup consisted of a single desktopmachine
with an Intel Core i7-6700K CPU (4GHz), and an Alpha
Data ADM-PCIE-KU3 PCI-Express board with a Kintex-
6 XCKU060 FPGA [42]. The host-side code allocated input
and output arrays, read input data points from existing
files, computed initial kernels through k-means++ [39],
and performed the required setup to call the kernel. Data
is exchanged between the CPU and the FPGA via the sys-
tem memory, by resorting to traditional OpenCL API calls
(specifically by Xilinx’s OpenCL runtime). The same API is
used to retrieve execution times of the kernel, while the total
execution time is computed via system calls.

We executed each code version for several combinations
of the amount of input data N = {32k, 64k}, number
of clusters K = {8, 16}, and number of features D =
{2, 8, 16}. Algorithm 2 shows the pseudo-code of the algo-
rithm used to generate the twelve data sets processed in the
experimental evaluation. Data sets can be generated with a
given number of points, attributes, and clusters. Additionally,
it ensures a specified upper bound to the value of each
attribute, and a given minimum distance between centroids.
The data points are distributed normally along each dimen-
sion, centered on one randomly generated centroid. The
standard deviation along each dimension is randomized,
as well as the correlation between dimensions. By changing
the data types employed in the implementation, it is pos-
sible to generate data sets of integers of standard widths
(e.g., 16 bit), floating-point numbers, or double-precision
numbers.

Line 12 shows the new candidate centroid generation,
where the distance of the new random candidate is compared
to previously generated centroids until the condition is met.
Afterwards, a vector holding each value for the jth dimen-
sion of all points in the new cluster is generated (Line 33).
A component derived from the (j− 1)th dimension is applied
via Cholesky decomposition to induce correlation (Line 36).
Finally, the NxD matrix corresponding to each clusteri is
constructed by appending each j dimension (Line 38).
We performed four executions for each case to retrieve an

average execution time. We executed all versions of the code
both on the FPGA and on the CPU (save for v1b and v5b for
the latter, as the code is not supported), to provide additional
comparisons beyond the baseline code.We generated the data
sets automatically based on the N , K , and D parameters,
assigning approximately the same amount of points to each
cluster, and also ensuring random correlation between the
data features. For all data sets, we confirmed that FPGA and

Algorithm 2 Pseudo-Code for Data Set Generation
Data: Number of points N , Number of dimensions D

Number of clusters K , maxval, spread
Result: Dataset {cluster1, . . . , clusterk},

centroids = {centroid1, . . . , centroidk}
1 Function randn(m = 1, n = 1) is
2 return Amxn, {aij = X ∼ N (0, 1)}

3 Function rand(m = 1, n = 1) is
4 return Amxn, {aij ∈ R|0 < aij < 1}

5 Function lsq(a, b) is
6 return

∑N
i=0(ai − bi)

2;

7 Function randV() is
8 return (rand(1, d)× maxval)+ spread ;

9 Function newCentroid(centroids) is
10 min← 0;
1212 while min > 2× spread2 do
13 newc← randV ();
14 foreach c ∈ centroids do
15 lsq← lsq(newc, c);
16 if lsq < min then
17 min← lsq;

18 return newc;

19 Function generateDataSet(N, D, K, maxval, spread) is
20 foreach clusteri do
21 if i == 0 then
22 centroidi← randV ();

23 else
24 centroidi← newCentroid(centroids0,i−1);

25 //Number of points in cluster
26 NP = floor((rand()+ 1)× N/(K × 2));
27 //Generate jth coordinate for all points in clusteri
28 variance = spread ;
29 foreach dimension j ∈ D do
30 variance← randn() ∗ variance;
31 corr ← rand()− 0.5;
3333 coordsj← randn(NP, 1) ∗ variance;
34 if j > 1 then
3636 coordsj = coordsj−1 × corr + coordsj ×

sqrt(1− corr2))

3838 clusterij← coordsj;

39 clusteri← clusteri + centroidi;

CPU execution produced the same point clustering results
and required the same number of iterations. We present the
speedups of the several code versions relative to the v1
baseline, followed by the improvements achieved by burst
optimization, a comparison between FPGA execution and
CPU execution, and finally summarize resource requirements
and power and energy consumption.

VOLUME 8, 2020 152293

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

FIGURE 2. Example data set generated for D = 2, K = 4, and N = 4096.

FIGURE 3. Speedup for v2 and v3 over baseline v1 (one CU for all cases).

B. SPEEDUPS FOR TASK-KERNEL (SINGLE-THREAD)
IMPLEMENTATIONS
Figure 3 shows the speedups for v2 and v3 over the v1
baseline, for the four specific cases that each version supports,
i.e., whereD = 8 orD = 16. All cases achieve speedups, and
varying the data dimensionality results in the most significant
change, as expected. However, there is some variation intro-
duced by the N and K parameters, most noticeably the latter.
Speedups for both v2 and v3 are greater for their runs where
K = 8, than those where K = 16.

Since the data sets are different, we cannot draw direct
conclusions based on the total run time. Instead, when com-
puting the execution time required per iteration for all data
sets, and comparing v1, v2 and v3, we find that for all three
the variation is in near direct proportion to N . However,
the execution time for v1 increases by approximately 25%
when K is doubled. For the latter two cases, the increase is
between 45% and 55%. We conclude that since the code in
segmentD, and the loop which computes the auxiliary sum c1
have been accelerated, the impact of increasing K on the first
and last loops of segment A, which iterate over k, is greater.
We can verify this by analysing the data transfer profiles.

Table 2 shows this data for the runs where K = 8. Data
are shown, for both read and write transactions, for the total
number of accesses, the transfer rate, the respective utiliza-
tion of transfer bandwidth, and the average transfer size.
The transfer rate is computed from the total amount of data
transferred over the execution time. The bandwidth utilization
is computed from the transfer rate over the maximum transfer
rate of the FPGA board. Finally, the transfer efficiency in

TABLE 2. Effect of data vectorization on data transfer for task-kernel
versions.

the last row is a combined metric for the read and write
transactions. It is equal to the average number of bytes per
transfer over 4 kB, which is the maximum burst size of the
AXI4 bus which connects the CUs to the global memory.

With respect to v1, we observe that v2 achieves a read rate
which is 2.58× (70.5MB/s) greater, and a write rate which
is 7.1× (14.7MB/s) greater. For v3, the values are 4.3× and
13.1×, respectively. The average size of each data transfer
increases by the width of the vectorization used, as expected.
Note that although it is significant to compare data transfer
rates, comparison of the total number of performed accesses
across data sets (e.g., N64K8D8 vs N64K8D16) has no
significance since the data sets converge differently and thus
a different number of iterations are required.

However, when K = 16, the profiling reports for both v2
and v3 indicate that while the read transfer rate increases by
11%, the write transfer rate decreases by 24%, relative the
respective cases where K = 8. The loop in segment C for
both v2 and v3 scales with K × D, and performs data reads.
The first loop of segment A scales with K , and performs data
writes. This is consistent with the observed transfer rates.

Despite this, both cases display a speedup derived from
the vectorization and removal of the innermost loop, which is
around 2× for v2 and 4× for v3, which for both cases is 4×
lower than what we expected to achieve, meaning that other
factors are curtailing the benefits from wider data transfers.

Regarding pipelining, only the three innermost loops are
pipelined for v1: the loop which clears the c1 array, with an
Initiation Interval (II) of 1 clock cycle, the loop in segmentD,
and the last loop which computes the new centroids, both
with IIs of two clock cycles. This latter loop is the only one
which is also pipelined for v2 and v3, although with an II
of 138 clock cycles. The loop in segment C is not pipelined
despite no longer containing any inner loops, and neither is
the single loop which clears the counts and c1 arrays. For the
former case, the if-else statement likely prevents pipelining
due to misprediction, and for the latter, the alternating access
to two global arrays has the same effect.

C. SPEEDUPS FOR NDRange KERNEL
(MULTIPLE-THREAD) IMPLEMENTATIONS
Implementations v4 and v5 allow the instantiation of multiple
CUs. Henceforth, we refer to number of cores of NDRange
kernel implementations by suffixing the number of CUs to
their identifiers, e.g., v4#8 (8 CUs). Figure 4 shows the

152294 VOLUME 8, 2020

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

FIGURE 4. Speedup for v4 and v5 over baseline v1, for several numbers
of CUs.

speedups for v4 and v5 over the baseline for several numbers
of CUs (shown as incremental stacked bars). In every case,
we set the number of work-groups to be equal to the number
of CUs. We increased the number of CUs to the maximum
of 16 permitted by the HLS flow, resulting in a noticeable
effect on the speedup.

For v4, the four rightmost data sets omit the speedups
attained for 16 CUs, since this number of cores for these
cases does not alter the speedup, or results in a very small
decrease, for reasons explained below. Analysing these cases
must take into account that part of the k-means algorithm
executes on the host. However, when comparing the time
measurements retrieved from OpenCL calls, to the system
timer, we conclude that the time spent on host execution
accounts for only approximately 2% of the total time.

For D = 2 and D = 8, the speedup decreases when K is
increased as we have shown in the previous section. Specif-
ically, the execution time of v4 varies in direct proportion to
both K and N . This can be explained by noting that the total
number of iterations of the kernel is given by the number of
points in the workgroup (N ÷ #CUs) multiplied by K and D.
However, for D = 16, v4 achieves a greater speedup for a
higher value ofK . Computing the execution time per iteration
again, we observe that while it doubles for v4 when doubling
K , as explained, the total execution time is lower than that
of v1 for N64K16D16. This is because v1 requires a total
of six iterations to complete, while v4 requires only three.
Considering all data sets, we find that v4 requires, on average,
two thirds of the iterations required by v1, regardless of the
number of CUs. This is unlike the behaviour for v2/v3, which
has the same number of iterations as v1 for all data sets.

Although the run time for v4 increases with D due to the
loop in code segment D, we can see the mitigating effects

from the modifications applied through v5 on the right hand
side of Figure 4, where we show the speedup for all cases
supported by v5. The specialization for D = 8 results in
analogous increases in performance to those of v2 over v1,
shown previously. We can directly compare N64K8D8 and
N64K16D8 between both charts, and conclude that vector-
ization provides an improvement of approximately 3.9× for
v5 over v4, making this the most efficient implementation
over the baseline, when resorting only to vectorization and
multiple work-groups. We were able to increase the number
of CUs up to the maximum permitted by the HLS flow, 16,
without the loss of performance seen for v4. This indicates
that all CUs perform concurrent work, and do not stall due to
memory access contention, since the memory access time of
each CU is reduced due to vectorization.
Finally, the execution time per iteration for v5 also varies

in direct proportion with N , but is no longer affected by
K . We can observe this comparing N32K8D8 to N64K8D8
and N32K16D8, where K no longer decreases the speedup.
However, the overall performance is still less than expected
when instantiating 16 CUs, each performing data transfers
of vector data of type uint8. We explain these two points by
again analysing profiling data.

TABLE 3. Effect of kernel parallelism on data transfer.

Table 3 shows this data for N64K16D8. We first compare
v1 to v4#8, which both support any value of N , K or D,
to determine the effects of multiple cores on the transfer
rates. The number of reads and writes performed to global
memory are 2× and 3× greater for v1 than those performed
for v4, respectively. These values hold for any number of
cores used for v4. In contrast, the transfer rates increase
in proportion to the number of cores. An implementation
with 8 CUs provides read and write transfer rates that are
3.8× (148MB/s) and 2.5× (4.27MB/s) greater than those
of v1, respectively. Increasing the number of cores to 16 pro-
vides no improvement as we have mentioned, meaning that
further increases of the transfer rates are hampered by how
often accesses are performed.

Also shown in Table 3 is a comparison between v2 and
v5#8, i.e., between the task-kernel implementation special-
ized for D = 8 and its equivalent multi-thread version.
We can thus establish the improvement derived from paral-
lelism alone. We find that the transfer efficiency is equal,
regardless of the number of cores used for v5. This indi-
cates that all performance improvements derive from straight-
forward parallelism, and that the cores do not perform

VOLUME 8, 2020 152295

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

concurrent accesses to memory. This confirms that the degra-
dation in performance in v4 when the number of CUs is
increased from 8 to 16, is due to idle time introduced due
to global memory access contention by each CU. The total
number of accesses and average transfer size (4 B) are also
constant, for any number of cores.

Version v6 achieves speedups comparable to v4, except for
the case when only one CU is used, since there are as many
kernel calls as data points, leading to a large overhead. In this
case, there is a slowdown of 1% for v6 relative to the baseline.
Conversely, we note that the speedup for v4 saturates for
eight or more CUs, even under-performing slightly relative
to v6. Version v6 performs better for the CPU.
Finally, like v1, the loop in segment D of v4 is pipelined

with a II of two clock cycles, while the outer loops in B and C
are not, and likewise for v5. For v6, the only loop which
remains in the kernel (segment C), is pipelined with an II
of 145 clock cycles.

FIGURE 5. Speedup for v1b and v5b8 vs. the respective versions without
burst optimization.

D. SPEEDUP FOR BURST OPTIMIZATION
Figure 5 shows the speedup for two burst optimized versions,
v1b and v5b#8, over their respective baselines. As before,
the number of work-groups are set to be equal to the number
of CUs. For v1b, all eight innermost loops are successfully
pipelined, with IIs between one and three clock cycles. These
include all E loops (see Listing 4), which are responsible
for reads/writes to the global memory. Resorting to local
memories allows for pipelining of other loops, such as the
main loop in D and the first two loops in A, and greatly
decreases the amount of global memory accesses. Relative
to v1, the improved version performs at most only 0.3%
and 0.1% of reads and writes, respectively, for all data sets.
We observe again the influence of increasingK for any values

ofN andD, and that for larger amounts of data with more fea-
tures, the burst optimization shows the largest improvement.

On the right-hand side, we show two comparisons. Using
the burst capable version, v5b, it is possible to instantiate at
most four CUs due to resource requirements (specifically,
insufficient BRAMs). Given this, we first compare v5b8
(burst optimization with specialization for D = 8) with v5
(specialization for D = 8) using only four CUs, to evaluate
the gains of burst accesses alone; secondly, we evaluate v5b8
using four cores, versus the non-burst version with 16 cores.
In both cases, the burst optimization provides improvements
upwards of 14×, and unlike previous cases, is not signifi-
cantly affected by the number of clusters,K . When compared
to v1, any specialization of v5b (i.e., for any tested value of
D = 2, 8, 16) achieves speedups between 414× and 752×,
the latter being forN64K16D16. As the next section explains,
this is the only code version that results in both energy savings
and speedups over the CPU when running on the FPGA.

TABLE 4. Effect of burst optimization on data transfers.

Table 4 contains data transfer profiling information for the
burst optimized versions for data set N64K16D8. On the
left-hand side, the v1 baseline is compared to its optimized
version. Due to the use of the widest possible vector data
type to perform reads and writes, the average transfer size
for v1b is always 64B, for any data set. However, a decrease
of transfer rates is observed.

The use of local memories greatly reduces the accesses
to global memory, and the use of burst transfers reduces the
amount of time spent on data transactions. Since the transfer
rate is computed given the amount of data to transfer, and the
total run time of the kernel, this explains the reduced rates.
For example, for the data set shown in Table 4, v1b reads
60MB from global memory, while v1 reads 2.1GB. We also
note that the amount of data written to global memory for
v1b depends almost entirely on N for all data sets, since the
bulk of the data are the assignments of points to clusters per
iteration. This means that write transfers do not vary with
K or D. In comparison to v1, the amount of data written
to memory is between 60× and 350× smaller. In contrast,
the amount of read data varies as a function of all three data
set parameters, but is consistently 19× less for v1b when
K = 8, and 35× lesser when K = 16. Only for K = 8
does v1b achieve a (marginally) higher read rate. Similarly to
previous cases, when K increases more time is spent on the

152296 VOLUME 8, 2020

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

loop in segment C, although the loops in E3 still access data
in bursts, and are independent of K , the additional run time
in C lowers the read rate. Regardless, for every data set the
transfer efficiency of v1b over v1 is 15.6× greater.

The right-hand side of Table 4 compares v5 with its
burst optimized equivalent. The most notable difference is
the average read transfer size, which is 1024B for v5b8
(i.e. for specialization for D = 8) and v5b16, for any number
of CUs. For v5b2 the average is only 256B. The values are
as expected for these cases, as well as for v1b, and their
differences are due to the achieved burst transfer length.

For any burst optimized version, the bulk of the read trans-
actions is due to the loop in E3, which reads TMPPTS =
32 points at a time. For v1b, the trip count of this loop is
data-dependant, which prevents the compiler from generating
burst accesses. That is, the burst length is 1, although the
maximum supported AXI transfer width of 64B is used
(i.e., a utin16 vector data type). This is coherent with the
number of read accesses per iteration of v1b for N64K16D8,
which is ∼32k since 2 points out of the total of 64k
are retrieved per iteration, and with the average transfer
size of 64B.

For any variant of v5b, the number of iterations of the loop
is equal to TMPPTS ÷ (16÷ D). For v5b8, since D = 8 and
each iteration of the loop reads 64B, the total amount of data
read by the loop is 1 kB. This can be transferred in a single
burst transaction, meaning that all iterations of the loop are
processed at once. We did not specify a burst length for the
inferred burst transfers, which lead the compiler to limit the
length to 16. We observe this for v5b16, where the average
transfer size is also 1 kB. This means that the 32 iterations
of the loop in E3 which fetch a total of 2 kB is implemented
as 2 burst transactions, which is coherent with the number of
measured read accesses. Despite this, the maximum transfer
rates are achieved for v5b16. The read and write rate scale
with the number of cores, with maximums of 524MB/s
and 65MB/s for 4 CUs. The resulting transfer efficiency is
93.8× greater than that of the baseline.

Further performance improvements may be possible by
increasing the TMPPTS parameter. This is only limited by the
amount of the FPGA’s on-chip memory. The v5b versions are
also constrained by the memory limit through the values set
for theMAXK ,MAXM , andMAXPTS parameters, but achieve
the best performance. In contrast, versions that do not resort
to local memories, such as v5, support unbounded values for
the data set parametersK , N , andD, and although they do not
provide speedups over the CPU baseline, energy savings are
still possible.

E. FPGA VS CPU: SPEEDUPS AND POWER CONSUMPTION
While so far we have presented the performance gains of
incremental optimizations to the OpenCL code for the FPGA
over its sequential baseline, this section compares FPGA exe-
cution with CPU execution, by executing all (portable) code
versions on the latter. The Intel i7-6700K used contains four
cores, which are subdivided into a total of 8 OpenCL CUs.

FIGURE 6. Power consumption on FPGA for all cases and different
numbers of CUs.

Additionally, Intel’s OpenCL runtime performs implicit vec-
torization of the kernel arguments [43]. In contrast, explicit
vectorization is required when targeting the FPGA.

TABLE 5. Best code version for CPU and FPGA, respective speedup, and
power/energy consumption.

Table 5 shows overall performance results as a function of
the three parameters, N , D, and K , namely, which version
of the code achieves the best performance for the CPU and
FPGA, the speedup attained by FPGA execution over the
CPU, and the respective power and energy consumption.
For the CPU, the version which leads to the best result
varies based on the input parameters, and is either v2#1,
v3#1, or v6#4. The only exception is for input parameters
N32K8D2 for which v1 performs best, although only 1.03×
better than v6#16. This contrasts with FPGA execution, for
which v6 performs the worst, due to the much higher number
of kernel calls, transfer of data between the FPGA and the
global memory, and the small workload of each kernel call
itself.

As we had concluded before, versions of v5b specialized
for the target data dimension D always perform best by the
FPGA. For most other cases, no speedup is attained over the
CPU, except for the four instances highlighted in Table 5.
Note that the speedup for, for instance, N32K16D8 is double
that of the analogous case where K = 8. This holds for
the other cases where speedups are achieved, which hints
that the performance gains attained on the FPGA for v5b
are derived from successfuly pipelining the main loop of

VOLUME 8, 2020 152297

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

segment C. Since this loop iterates up to the value of K ,
a sufficient number of iterations help in reaching a trade-off
point where this strategy is more beneficial than the higher
parallelism (i.e., more compute units) possible on the CPU.
This behaviour does not occur for the four cases for which
D = 2; we attribute this to the fact that the number of
temporary points (TMPPTS in Listing 5) is constant (32)
for all implementations of v5b. Since four data transfers are
enough to read this amount of datapoints in segment E3when
D = 2, this loop is executed much more often relative to the
cases of D = 8, 16, leading to more overhead.
We retrieved power consumption values for the FPGA

from post-route reports, and for the CPU using Intel’s
Running Average Power Limit (RAPL) interface [44] which
queries processor condition in real-time. All versions of
the code, when implemented on FPGA, dissipate approxi-
mately the same power, which scales mostly with the number
of CUs instantiated. The power consumption ranges from
9.06W (for v4) to 15.05W (for v5#16), with 13 out of the
28 implemented circuits consuming between 9W and 10W.
We retrieved power consumption metrics from the CPU for
all code versions which were compatible with its OpenCL
runtime (i.e., all except v1b and v5b), and concluded that
the power consumption was very nearly equal for all cases,
with an approximate value of 40W. Finally, we evaluated the
energy consumption for execution on the FPGA. Despite the
increased execution time relative to the CPU, for most of
the cases, a decrease between 60% and 80% in total energy
consumed is possible for all cases. The greatest decrease
occurs for v5b#16, when computing the centroids for the data
set where N = 32k , K = 16, and D = 8.

TABLE 6. Resource requirements and operating frequency for each
version’s maximum achievable number of CUs (LUTs and FFs are shown in
thousands; percentages are relative to available kernel budget).

F. RESOURCE REQUIREMENTS
The resource requirements for the evaluated cases are shown
in Table 6, comprising Lookup Tables (LUTs), Flip-Flop
(FF), BRAMs, and Digital Signal Processors (DSPs) blocks.
We show only each case’s implementation with the highest
number of CUs achievable, e.g., for the v5b cases, more
than four CUs were not possible due to the resource require-
ments. For reference, the FPGA used contains 331 thousand
LUTs, 663 thousand FFs, 1 thousand 36 bit BRAMs, and

2.7 thousand DSP blocks. The resources shown in Table 6 are
for the kernel modules only, and do not include the hardware
overhead of AXI buses. This overhead is fixed for all cases,
representing 30%, 17%, and 10% of all LUTs, FFs, and
BRAMs, respectively. Thus the percentages shown in Table 6
are relative to the remaining resources available for use.

The baseline case v1 requires the least amount of resources
as it is the simplest implementation. Specifically, the number
of required BRAMs is very low, since no local memories are
required; the parameter LUTMem represents howmany LUTs
were used as local distributed memory. The number used is
smaller than for all other cases for the same reason.

The effect of instantiating multiple CUs is noticeable for
v4/v5, for which sixteen CUs were instantiated. The number
of resources varies linearly with the number of CUs, so when
comparing the cost of a single CU for v4/v5 with v1, both
cases require less resources overall. This is expected, since
a considerable portion of the code was moved to the host,
namely all loops in segment A and the last loop in segment B,
along with all arrays used to hold intermediate results.

On the other hand, each CU of any burst optimized version
requires approximately the same number of LUTs and FFs
as v1, with the exception of the number of BRAMs, which
are used to hold all temporary variables introduced in the E
segments. In fact, it was the number of required BRAMs that
limited the number of CUs to four in all these cases.

Regarding operating frequency, nearly all cases tested
(i.e., any code version implemented by any number of CUs)
operates at 250MHz, except for v5b2, v5b8, or v5b16. For
these cases, the lowest operating frequency is 182MHz, and
occurs for v5b16#4, while the remaining burst optimized
instances achieve between 200MHz and 250MHz.

G. COMPARISON TO C IMPLEMENTATION
In order to determine the impact of resorting to integer data
types for intermediate calculations in the kernels, such as
distances, we performed a comparison to pure C execution
on the CPU. The C implementation of k-means used was
the starting point for the v1 implementation in OpenCL,
and is in all aspects identical, except for the data types.
All data types in the C executions are double where appro-
priate (e.g., centroids and intermediate calculations.

We then retrieved the clustering results for all data sets
for this implementation, and computed the error relative to
execution of v1 on the CPU. Note that, as we have stated
before, we had previously verified that the clustering results
obtained through OpenCL were identical between CPU and
FPGA. The error relative to double precision is given by:

K∑
k=0

‖dk − ck‖/‖dk‖ (1)

where dk and ck are the centroids computed by the C version
and the centroids computed by the OpenCL implementations,
respectively. All runs for the C version used the same initial
centroids as the OpenCL runs for each respective data set.

152298 VOLUME 8, 2020

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

The resulting average error is 0.22%, with a maximum error
of 1%. Additionally, we retrieved the execution times of the
C version and compared them with the best case OpenCL per
data set, as per Table 5 (columns 2 and 3). We find that the
average speedup of OpenCL over C is 264× (81×— 461×)
on the CPU, and 283× (67×— 667×) on the FPGA.

VI. DISCUSSION AND OBSERVATIONS
In this set of experiments, we evaluated the performance
of OpenCL kernels compiled for FPGAs by applying some
of the possible implementation techniques on the k-means
use case kernel. Specifically, we employed: explicit vec-
torization (and removal of innermost loops as consequence
of vectorization), use of NDRange kernels (and consequent
removal of outermost loops), and use of memories local
to each work-group combined with burst memory access
inference. Given the exploration presented, and the features
explored, we present the following observations on the fol-
lowing aspects:

• type of kernel to use;
• effect of the number of CUs on the implementations;
• effect of the data set parameters on code structure and
achievable number of CUs;

• use of loop pipelining and vectorization;
• possibility of optimization for energy consumption;
• use of local memories combined with burst accesses;
• algorithm workload performed by the host;
• cost-performance comparison of FPGA and CPU;
• generalized applicability of the developed code for other
clustering/classification kernels, with two examples.

• unexplored strategies for kernel design

a: TASK-KERNELS VS. NDRange KERNELS
For the tested implementations, NDRange kernels prove
advantageous over task-kernels, as expected. Specifically,
the NDRange kernels have global workgroup sizes of
{>1, 1, 1}, and local sizes of {1, 1, 1}. Each work-group
effectively behaves as a task-kernel which computes a given
range of the trip count of the removed outermost loop. This
approach exploits both the traditional OpenCL model of
multiple identical work-groups with balanced loads, com-
bined with the capability of compiling pipelined loops that is
native to FPGAs. However, the application of this approach
was only straightforward since there are no inter-iteration
data dependencies in the outermost loop in B, which is a
characteristic inherent to the target algorithm. Any such data
dependencies would have to be addressed by transferring data
between work-groups either through the host, by using global
on-chip memory, or through channels. This would introduce
the need for additional code (and therefore hardware) for
synchronization between instances of the kernel (i.e., CUs).

b: EFFECTS DUE TO NUMBER OF COMPUTE UNITS
Regarding the number of CUs employed, the resulting per-
formance varies proportionally, as well as the amount of

required resources. The achievable operating frequency is not
directly affected by the number of cores (e.g., the operating
frequency for v4, v5, and v6 for any number of cores). Instead,
the frequency only varies based on the type and amount
of resources used by the kernel (e.g., BRAMs). Thus the
number of CUs only indirectly decreases the frequency due to
increased use of resources which affect routing (e.g., v5b16
suffers a decrease for 4 CUs, relative to 2 CUs).

c: DATA SET PARAMETERS
The N , D, and K parameters of the data set do not restrict the
number of CUs that can be instantiated. Instead, the param-
eters exert influence on code structure, depending on the
nesting level of the loops they are directly associated with.
The number of points N controls the trip count of the loops
in B, as seen in Listing 1. It cannot exert any influence on the
possible code structure of the kernel unless it becomes the
outermost loop, which is the approach adopted for v4 and v5.
This allows for the otherwise impossible partition of the total
number of iterations into work groups, distributed among
CUs. Also, for the solutions employing local memories
(i.e., v1b and v5b<D>), there is an upper bound to the sup-
ported value of N , since these memories hold, for instance,
the label assignments for all points in the data set.

The number of clusters, K , controls the trip count of the
loop in C. This loop cannot be pipelined if the innermost
loop D has an unknown trip count. A restructuring based
on this parameter would be possible if loops B and C were
interchanged, with C becoming the outer loop. Combined
with moving loop A to the host and therefore adopting an
NDRange approach, separate ranges of iterations of C could
be divided among CUs. The disadvantage would be that each
CU (i.e., workgroup) would need to access the entire range of
N input points. Although the total number of comparisons of
each point to each centroid, and therefore memory accesses,
is the same regardless of which loop is outermost, the imple-
mentations that resort to local memories benefit greatly from
having the outermost loop access non-overlapping ranges
of input data, and storing the much smaller amount of data
required by the inner loop in local memories, which would
not be possible if C was the outermost loop.
The number of attributes D exerts the greatest influence

on code structure. Specialization through vector data types
was based on the number of features, which also allowed
for the removal of inner loops. Consequently, the structure
of the code is influenced by supporting, or not, arbitrary
run time values for D. Although N and K may assume
arbitrary values for the kernel versions presented, arbitrary
D values are not supported for the best performing ver-
sions, i.e., v5b<D>. Depending on whether the number of
features is smaller or greater than the vectorization width
used, the loops responsible for burst transfers may require
modifications. Also, the loop in D (shown in Listing 1 and
Listing 3) needs to be reintroduced if the number of features
is greater than the vectorization width, and is conversely not
required if the width is smaller. If the number of features is not

VOLUME 8, 2020 152299

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

a multiple or a divisor of the vectorization width, then further
adjustments are required to account for alignment of the
feature data. This would also require adapting the number of
burst reads/writes required to transmit each complete feature
vector.

d: OPTIMIZATION FOR ENERGY CONSUMPTION
The implementations shown were iteratively designed by
evaluating the resulting execution time, without direct con-
sideration given to power consumption. However, the power
measurements taken during FPGA execution demonstrate
that no significant differences are observed between either the
kernel version, or for different numbers of CUs for the same
version. Thus, directly optimizing for power consumption
through code modifications/optimizations seems unpromis-
ing. The energy efficiency of the FPGAs is largely controlled
by the static power consumption of the device, which is
determined by technology parameters.

e: LOOP PIPELINING AND VECTORIZATION
We did not make explicit use of loop pipelining directives.
The compiler is capable of generating pipelined loops under
certain conditions. Namely, the loop must not contain func-
tion calls with arbitrary runtime (such as sqrt), accesses to
high latency memory (i.e. global memory), or inner loops that
cannot be fully unrolled.

Regarding function calls and memory access, we avoided
use of the square root function (i.e. employed squared
Euclidean distance), and employed local partitioned memo-
ries. We did not resort to manual loop unrolling or unrolling
pragmas. Instead, vectorization using vector data types in
the innermost loop in D effectively removes this loop, and
thus use of vectorization not only better utilizes data transfer
bandwidth but enables more loop pipelining opportunities.
Combined with the use of local memories for the data points
and centroids, loop C achieves a body amenable to pipelin-
ing. Although always advantageous, vectorization must be
applied explicitly when compiling for FPGAs. The if clause
in C did not prevent loop pipelining either, since it does not
contain any of the forbidden elements mentioned earlier.

Finally, when compared to loop unrolling, removing the
inner D loop is limited by the maximum vectorization width,
and how the width relates to the number of features. However,
combining both methods is possible. For instance, replacing
a loop without vectorization which iterates over a feature
size of 32, with two unrolled iterations of an equivalent loop
resorting to a vector data type of 16 elements.

f: LOCAL MEMORIES AND BURST ACCESSES
TO GLOBAL MEMORY
The use of local memories leads to the greatest performance
improvement. The only limitation on their use is the amount
of available BRAMs. This limit can be reached due to the
size of the local memories declared in the kernel code, or by
instantiating more copies of the kernel, i.e., multiple CUs.
In our solutions, we did not explore adjusting the size of the

local memory used to hold the batches of points retrieved
from the data set of N points. All other local memories are
large enough to hold a complete copy of the respective global
data, e.g., the local copies of all centroid values, point labels,
and current distances of each point to its assigned cluster.
A potential improvement would be to replace these latter two
local copies (i.e., tmplabels and tmpdist in v5b<D>) with
smaller memories, and transmit label data to the host in a new
loop analogous toE3whichwould execute after loopC. Since
this loop would replace E4, the effect on run time would be
minimal, but resource savings would be substantial. Also, this
would allow support for unbounded values of N .

The use of local memory is only significantly beneficial
however when combined with loops that result in inference of
burst accesses to global memory. We achieve this with single-
statement loops without conditional statements. The transfer
rate is greater for wider vector data types. This means the
available beat width (512 bit) is not automatically exploited
when using narrower vector types by combining consecutive
iterations of transfer loops into a single beat.

Regarding the maximization of transfer rate, an additional
reader/writer kernel could be employed, which would per-
form burst accesses without interruption, and forward the
data to other kernels via global on-chip memory or channels.
However, this would impact on the load balance of the CUs,
as discussed in the following section.

g: WORKLOAD PARTITIONING AND LOAD BALANCE
For implementations using multiple CUs (i.e., v4 and v5),
we structured the code to ensure a load balance between the
cores. The bulk of the workload of the k-means kernel is
the calculation of point distances to cluster centroids, which
we distribute evenly among the CUs. The calculation of new
centroids is done by the host.

Alternatively, the reduction operations of the centroid
update step may be implemented in the OpenCL kernel as
well, in three different ways: by writing work-item specific
code, thus performing partial reductions on only one work-
item per work-group, by writing work-item specific code
where one work-item performs the full reduction for all work-
groups, or by using multiple kernels. The first two methods
would require considerably more control code, and result
in additional hardware requirements. For instance, synchro-
nization barriers would be required to idle the work-item
responsible for reduction while the remaining items com-
pleted execution.

If resorting to an additional kernel for centroid update,
either global memories or communication channels would
be required. Also, only one CU would be in use during the
centroid update, since there is no inherent parallelism in this
step. At best, the sequential calculation of new centroids
could be pipelined, but given the low volume of data to
process, and that the FPGA operates at a lower frequency than
the host code running on the CPU, we argue that this step is
more efficient when executed on the CPU.

152300 VOLUME 8, 2020

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

Instead, selectively executing some of the workload on the
host allowed for kernel code resulting in uniform workload
for all work-items, preventing CUs idleness and hardware
overheads. The simpler code also facilitated the introduc-
tion of local memories and loops for inference of burst
accesses. Work-item specific asymmetry was also avoided
due to the local work-group sizes, as discussed in the next
section.

Finally, another potential cause for work-group asymmetry
are unbalanced if-else clauses. However, none are present
in this case. Regardless, different execution times for work-
items in different work-groups would only be relevant if there
was exchange of data between groups.

h: LOCAL WORK-GROUP SIZES
We did not define local work-group sizes, instead opting
to bind the number of work-groups to the number of CUs.
Except for v6, all local work-group sizes are {1, 1, 1}. Our
NDRange kernel implementations (e.g., v5), effectively act
as parallel task-kernels each processing a subset of the data.
The number of points processed by each work-group is set
implicitly by the iteration bounds of the loop in B (see
Listing 5). Setting a local work-group size of {n > 1, 1, 1}
would considerably increase code complexity.

Specifically, the loops in E1, E2, and E4 would have to
be enclosed in conditional statements controlled by the local
work-item id. That is, only one work-item (e.g. id == 0)
would load data into local memories, and synchronization
barriers would be needed to prevent the remaining work-
items from proceeding until data was read in. Conversely,
the work-item responsible for writing data in E4 would be
forced to halt until completion of the remaining items.

Additionally, for a local work-group size equal to
{n > 1, 1, 1} (where n < N), the main loop in B would pro-
cess a different subset of size n. Thismeansmultiple instances
of E3 would be required per work-item, and therefore addi-
tional local memories to hold each non-overlapping batch of
temporary points. Idle time for each work-item would also
occur due to competing global memory accesses, and due to
accesses to the local memory for the centroid values in C.
Lastly, besides increasing code complexity, the need for

conditional statements, synchronization barriers, and more
local memories, would increase hardware overhead. This is
significant considering that for our best performing imple-
mentations, v5b<D>, themaximumCUs that could be instan-
tiated, 4, was already limited by the available BRAMs.

i: GENERALIZED APPLICABILITY
The best performing implementations can be adapted easily
to other similar algorithms, for example, for the k-nearest
neighbours (kNN) algorithm [45]. The pseudo-code for this
example is shown in Algorithm 3. The batch of candidate
centroids read in segmentE2 of Listing 5 can be replacedwith
a subset of the points to classify. Then, loop B iterates over
the same npoints subset of points, loading batches to local
memories as per E3. The code in C can compute the distance
of each point to classify to each subset point, and store the

Algorithm 3 Generalization of the Best Kernel Version
for kNN Classfication (for Fixed Feature size)
Data: Size Ns of subset of known points

S = S0, . . . , SNs , Size Nc of subset of points to
classify P = P0, . . . ,PNc , number of
neighbours K

Result: One set Ci = Ci0 , . . . ,Cik per point Pi of its
k-nearest points in the input subset S

declare lP; //local memory for P
declare lC ; //local memory for C
declare lS; //local memory for S batches
lP← P; //Vectorized burst read loop
c← 0;
for i = 0 to Ns do

if lS batch consumed/empty then
c← 0;
lS ← Batch of S; //Vectorized burst read loop

forall the lPj in lP do
if distance(lPj to lSc) < maxDistance(Cj) then

Replace index of most distant point in set Cj
with that of known point Si (i.e., lSc)

c← c+ 1;
C ← lC ; //Vectorized burst write loop

indexes of its k-nearest points. Lastly, a final selection of
the k-nearest neighbours can be performed on the host over
a reduced set of candidates, whose number is equal to the
number of work-groups times k.

Another example is the Mean-Shift clustering [46]
algorithm. The pseudo-code of this example is shown in
Algorithm 4. Loop E3 can load an arbitrary number of search
window centers into a partitioned local memory. Loop B
can iterate over the same subset of data set points, compute
a partial sum of all points within the search window dis-
tance, and the calculation of the new search window center
could be performed on the host, as well as verification of
convergence.

j: COST-PERFORMANCE COMPARISON WITH CPU
The FPGA in the Alpha Data ADM-PCIE-KU3 accelerator
card used, a Xilinx Kintex UltraScale XCKU060-2, achieves
notable performance in comparison to an Intel Core i7-6700K
CPU, especially considering the release date of both devices,
2014 and Q2’2015, respectively, and that the CPU was a
high-end device on release. The retail price of the FPGA
card is 6× higher ($2700) than the CPU, but considering
that the power consumption and possible speedups result in
4.8× better energy efficiency, the equivalent cost is only
1.25× higher, in exchange for 1.5× faster execution time.
Also, the CPU was manufactured on a 14 nm node, and the
FPGA on a 20 nm node. Considering this difference, and that
the FPGA is a mid-range device for its family, these results
indicate a potential for further performance gains for more
recent high-end FPGAs manufactured at smaller nodes.

VOLUME 8, 2020 152301

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

TABLE 7. Comparison and characteristics of related approaches.

Algorithm 4 Generalization of the Best Kernel Version
for Mean-Shift Clustering (for Fixed Feature size)
Data: Size Ns of subset of known points

S = S0, . . . , SNs , number Nk of search window
centers W = W1, . . . ,WNk , and window sizeWs

Result: Partial sumsWp = Wp1, . . . ,WpNk of new
window centers

declare lW ; //local memory forW
declare lWp; //local memory of window center partial
sums
declare lS; //local memory for S batches
lWs← Ws; //local copy ofWs
lW ← W ; //Vectorized burst
read loop
c← 0;
for i = 0 to Ns do

if lS batch consumed/empty then
c← 0;
lS ← Batch of S; //Vectorized burst read loop

forall the lWj in lW do
if distance(lWj to lSc) < lWs then

lWpj = lWpj + lSc;

c← c+ 1;
Wp← lWp //Vectorized burst write loop

k: UNEXPLORED DESIGN TECHNIQUES
In this paper we did not explore the use of multiple het-
erogeneous kernels, and consequently did not employ vari-
ables declared in the global scope of the OpenCL source
code files (visible to all kernels), and inter-kernel channels
(i.e., OpenCL pipes). We note however some observations
derived from preliminary exploration. Firstly, separating
algorithm workload into multiple kernels is not a trivial task.
It entails determining a segmentation point such that it not
only separates two discrete processing steps in such a way
that each can be optimized, but also then imposes an amount
of data transfers between kernels which does not lead to
prohibitive hardware overhead (e.g., global on-chip memo-
ries or channels). Secondly, designing two or more kernels
to implement the totality of the algorithm workload may

lead to load imbalance. Since kernels are heterogeneous, this
may result in under-utilization of CUs and in overall perfor-
mance degradation relative to a symmetric load implemen-
tation derived from a single-kernel approach. Lastly, since
the FPGA OpenCL compilation flow allows determining the
number of cores up to a fixed total, this introduces addi-
tional design parameters, namely, the number of cores per
kernel.

VII. COMPARISON WITH STATE-OF-THE-ART
Table 7 compares several aspects of the approaches summa-
rized in Section II. Upper bounds for speedups are given since
averages are not available for all cases, and also because some
approaches report the arithmetic mean while others report
the geometric mean. It is difficult to draw a straightforward
comparison due to the diversity of baselines, data sets, and
target devices. We find that the approaches most similar to
our own, considering the baseline, approach, and platform,
are Tang et al. [28] and Muslim et al. [29].

Regarding Tang et al. [28], the k-means algorithm was
also implemented via OpenCL on a comparable FPGA. The
approach relied on multiple kernels exchanging data via local
memories, while our approach resorted to a single-kernel,
either task-kernel or NDRange. The k-means implementation
that ran on the XeonW3670 was OpenMP based, making use
of this CPU’s six cores. From the achieved 21× speedup we
may extrapolate a speedup of 126× if a single-core alone had
been used. Our implementation achieved an average speedup
of 283× for the FPGA over the CPU executing sequential
C code (single-thread). We believe the greater performance
is due to greater synthesis optimization by consolidating the
entire kernel in a single loop. This also allows for loop
pipelining of work-items, as opposed to handling each point
as a single work-item, which requires greater OpenCL run-
time overhead for workload scheduling.

Muslim et al. [29] evaluate performance for the kNN
algorithm, which shares considerable similarities to k-means.
The evaluation platform used contains a Virtex-7 FPGA,
versus the Kintex-7 on our own board. While the achievable
operating frequencies and process nodes are comparable,
the Virtex-7 family contains significantly more digital signal
processing blocks. The best performing implementation of
kNN on the FPGA relied on two kernels (distance calculation

152302 VOLUME 8, 2020

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

and assignment) sharing a global on-chip memory loaded by
burst accesses to the global system memory, similar to our
approach. Both our approach and that of Muslim et al. use
OpenCL execution on another device as a baseline toOpenCL
execution on the FPGA. The code executing on the devices is
either identical or very similar. Although we employ an Intel
i7-6700K and Muslim et al. employ an NVIDIA GTX960
GPU, both devices were released in the same year (2015),
and both contain 8 OpenCL cores. Given this, the resulting
speedups between the approaches are consistent given the
coding techniques employed.

From the reviewed work, we find that adoption of OpenCL
has led to more complex and flexible designs. One advan-
tage of FPGA-based accelerator boards programmed via
OpenCL over HDL implementations is that, for algorithms
like k-means or kNN, it is significantly more straightforward
to support arbitrary values for parameters such as the number
of clusters or number of attributes.When designing circuits at
low-level, the hardware details may greatly depend on high-
level algorithm details. This leads to specialization of circuits
based on adopting fixed values for one or more algorithm
parameters.

VIII. CONCLUSION
This paper evaluated the performance of OpenCL code com-
piled for FPGAs, by applying multiple transformations to a
baseline implementation of the case study of the k-means
clustering algorithm. The resulting kernel version were com-
piled by commercial HLS tools. The resulting circuits were
evaluated in terms of execution time for several data set sizes,
number of features, and number of clusters. We compared
the FPGA implementations amongst themselves, relative
to a non-parallel oriented implementation of the algorithm
serving as a baseline, in order to determine the effects of
different coding techniques. We also compared the exe-
cution time and power consumption of the FPGA with a
desktop CPU.

We find that the code that yields the best results for the
FPGA is not portable to other OpenCL capable devices,
due to the necessity of using vendor specific extensions for
efficient exploitation of FPGA characteristics. Specifically,
to achieve speedups over the CPU baseline, significant trans-
formations were required to make use of local memories,
by combining global memory accesses into well defined
loops that the HLS compiler was capable of synthesizing into
efficient burst accesses. Relative to the sequential baseline
implementation of the k-means algorithm as a task-kernel
on the FPGA, these optimizations improved the efficiency
of global memory access by 15.6×. When combined with
and NDRange implementation and data vectorization, this
increases to 93.8×. The resulting speedups over the OpenCL
baseline executing on the FPGA reach 725×.

Kernel implementations with these features resulted in
the best FPGA performance for any combination of data
dimensionality, number of clusters, and number of points. For
four out of the twelve combinations parameters, the FPGA

achieves speedups over the CPU of approximately 1.5×, and
reduces energy consumption for all cases by 60% to 80%.
Considering that the operating frequency for the FPGA is
around 250MHz for almost all cases (and only 182MHz for
the best case), and that the CPU operates at 4GHz, the poten-
tial for performance improvement by per-application special-
ization via HLS for FPGA is well illustrated. Additionally,
the FPGA we used lies on the low-end of its product range,
indicating potentially higher gains for higher-end devices,
especially if more on-chip memory is available.

REFERENCES
[1] C. Kachris and D. Soudris, ‘‘A survey on reconfigurable accelerators

for cloud computing,’’ in Proc. 26th Int. Conf. Field Program. Log.
Appl. (FPL), Aug. 2016, pp. 1–10.

[2] S. Mittal, ‘‘A survey of FPGA-based accelerators for convolutional neu-
ral networks,’’ Neural Comput. Appl., vol. 32, no. 4, pp. 1109–1139,
Feb. 2020.

[3] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, ‘‘Network-attached
FPGAs for data center applications,’’ in Proc. Int. Conf. Field-Program.
Technol. (FPT), Dec. 2016, pp. 36–43.

[4] Xilinx. (2017). Vivado High-Level Synthesis. Accessed:
Apr. 11, 2020. [Online]. Available: https://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.html

[5] MathWorks. (2017). HDL Coder–MATLAB & Simulink. Accessed:
Apr. 20, 2020. [Online]. Available: https://www.mathworks.
com/products/hdl-coder.html

[6] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
‘‘High-level synthesis for FPGAs: From prototyping to deployment,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011.

[7] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, ‘‘A survey
and evaluation of FPGA high-level synthesis tools,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 35, no. 10, pp. 1591–1604,
Oct. 2016.

[8] L. Daoud, D. Zydek, and H. Selvaraj, ‘‘A survey of high level synthesis
languages, tools, and compilers for reconfigurable high performance com-
puting,’’ inAdvances in Systems Science, J. Swiątek, A. Grzech, P. Swiątek,
and J. M. Tomczak, Eds. Cham, Switzerland: Springer, 2014, pp. 483–492.

[9] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, ‘‘LegUp: An open-source high-level syn-
thesis tool for FPGA-based processor/accelerator systems,’’ ACM Trans.
Embedded Comput. Syst., vol. 13, no. 2, pp. 1–27, Sep. 2013.

[10] T. S. Czajkowski, U. Aydonat, D. Denisenko, J. Freeman, M. Kinsner,
D. Neto, J. Wong, P. Yiannacouras, and D. P. Singh, ‘‘From opencl to
high-performance hardware on FPGAS,’’ in Proc. 22nd Int. Conf. Field
Program. Log. Appl. (FPL), Aug. 2012, pp. 531–534.

[11] T. S. Czajkowski, D. Neto, M. Kinsner, U. Aydonat, J. Wong,
D. Denisenko, P. Yiannacouras, J. Freeman, D. P. Singh, and S. D. Brown,
‘‘OpenCL for FPGAs: Prototyping a compiler,’’ in Proc. Int. Conf. Recon-
figurable Syst. Algorithm (ERSA), 2012, pp. 3–12.

[12] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos, ‘‘Synthesis
of platform architectures from OpenCL programs,’’ in Proc. IEEE 19th
Annu. Int. Symp. Field-Program. Custom Comput. Mach., May 2011,
pp. 186–193.

[13] Xilinx. (2020). SDAccel Development Environment. Accessed:
Apr. 11, 2020. [Online]. Available: https://www.xilinx.com/products/
design-tools/software-zone/sdaccel.html

[14] Intel. (2020). Intel FPGA SDK for OpenCL. Accessed:
Apr. 11, 2020. [Online]. Available: https://www.intel.com/content/
www/us/en/software/programmable/sdk-for-opencl/overview.html

[15] S. Lloyd, ‘‘Least squares quantization in PCM,’’ IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129–137, Mar. 1982.

[16] D.Dua andC.Graff. (2017).UCIMachine Learning Repository. Accessed:
May 25, 2020. [Online]. Available: http://archive.ics.uci.edu/ml

[17] T. D. Hocking, P. Goerner-Potvin, A. Morin, X. Shao, T. Pastinen, and
G. Bourque, ‘‘Optimizing ChIP-seq peak detectors using visual labels
and supervised machine learning,’’ Bioinformatics, vol. 33, Oct. 2016,
Art. no. btw672.

VOLUME 8, 2020 152303

N. Paulino et al.: Optimizing OpenCL Code for Performance on FPGA: k-Means Case Study With Integer Data Sets

[18] M. Patrício, J. Pereira, J. Crisóstomo, P. Matafome, M. Gomes, R. Seiça,
and F. Caramelo, ‘‘Using resistin, glucose, age and BMI to predict the
presence of breast cancer,’’ BMC Cancer, vol. 18, no. 1, p. 29, Dec. 2018.

[19] M. Mohammadi and A. Al-Fuqaha, ‘‘Enabling cognitive smart cities using
big data and machine learning: Approaches and challenges,’’ IEEE Com-
mun. Mag., vol. 56, no. 2, pp. 94–101, Feb. 2018.

[20] A. Metzger, P. Leitner, D. Ivanovic, E. Schmieders, R. Franklin, M. Carro,
S. Dustdar, and K. Pohl, ‘‘Comparing and combining predictive business
process monitoring techniques,’’ IEEE Trans. Syst., Man, Cybern. Syst.,
vol. 45, no. 2, pp. 276–290, Feb. 2015.

[21] H. Soleimani and D. J. Miller, ‘‘Semi-supervised multi-label topic models
for document classification and sentence labeling,’’ in Proc. 25th ACM Int.
Conf. Inf. Knowl. Manage. New York, NY, USA: Association for Comput-
ing Machinery, Oct. 2016, pp. 105–114, doi: 10.1145/2983323.2983752.

[22] I. Guyon, S. Gunn, A. B. Hur, and G. Dror, ‘‘Result analysis of the NIPS
2003 feature selection challenge,’’ in Proc. 17th Int. Conf. Neural Inf. Pro-
cess. Syst. (NIPS). Cambridge, MA, USA: MIT Press, 2004, pp. 545–552.

[23] D. G. Bailey, ‘‘Image processing using FPGAs,’’ J. Imag., vol. 5, no. 53,
2019.

[24] Z. Wang, B. He, and W. Zhang, ‘‘A study of data partitioning on OpenCL-
based FPGAs,’’ in Proc. 25th Int. Conf. Field Program. Log. Appl. (FPL),
Sep. 2015, pp. 1–8.

[25] L. Di Tucci, K. O’Brien, M. Blott, andM. D. Santambrogio, ‘‘Architectural
optimizations for high performance and energy efficient smith-waterman
implementation on FPGAs using OpenCL,’’ in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 716–721.

[26] Y. Pu, J. Peng, L. Huang, and J. Chen, ‘‘An efficient KNN algorithm
implemented on FPGA based heterogeneous computing system using
OpenCL,’’ in Proc. IEEE 23rd Annu. Int. Symp. Field-Program. Custom
Comput. Mach., May 2015, pp. 167–170.

[27] H. M. Hussain, K. Benkrid, A. T. Erdogan, and H. Seker, ‘‘Highly parame-
terized K-means clustering on FPGAs: Comparative results with GPPs and
GPUs,’’ in Proc. Int. Conf. Reconfigurable Comput. FPGAs, Nov. 2011,
pp. 475–480.

[28] Q. Y. Tang and M. A. S. Khalid, ‘‘Acceleration of K-means algorithm
using altera SDK forOpenCL,’’ACMTrans. Reconfigurable Technol. Syst.,
vol. 10, no. 1, pp. 1–19, Dec. 2016.

[29] F. Muslim, A. Demian, L. Ma, L. Lavagno, and A. Qamar, ‘‘Energy-
efficient FPGA implementation of the K-nearest neighbors algorithm using
OpenCL,’’ inProc. Position Papers Federated Conf. Comput. Sci. Inf. Syst.,
Oct. 2016, pp. 141–145.

[30] J. Canilho, M. Véstias, and H. Neto, ‘‘Multi-core for K-means
clustering on FPGA,’’ in Proc. 26th Int. Conf. Field Program.
Logic Appl. (FPL), Lausanne, Switzerland, 2016, pp. 1–4. [Online].
Available: https://ieeexplore.ieee.org/document/7577313, doi: 10.1109/
FPL.2016.7577313.

[31] R. Raghavan and D. G. Perera, ‘‘A fast and scalable FPGA-based parallel
processing architecture for K-means clustering for big data analysis,’’
in Proc. IEEE Pacific Rim Conf. Commun., Comput. Signal Process.
(PACRIM), Aug. 2017, pp. 1–8.

[32] K. Shata, M. K. Elteir, and A. A. EL-Zoghabi, ‘‘Optimized implementation
of OpenCL kernels on FPGAs,’’ J. Syst. Archit., vol. 97, pp. 491–505,
Aug. 2019.

[33] N. Cadenelli, Z. Jaksić, J. Polo, and D. Carrera, ‘‘Considerations
in using OpenCL on GPUs and FPGAs for throughput-oriented
genomics workloads,’’ Future Gener. Comput. Syst., vol. 94, pp. 148–159,
May 2019.

[34] X. Song, T. Xie, and S. Fischer, ‘‘A Memory-Access-Efficient adaptive
implementation of kNN on FPGA through HLS,’’ in Proc. IEEE 37th Int.
Conf. Comput. Design (ICCD), Nov. 2019, pp. 177–180.

[35] L. A. Dias, J. C. Ferreira, and M. A. C. Fernandes, ‘‘Parallel imple-
mentation of K-means algorithm on FPGA,’’ IEEE Access, vol. 8,
pp. 41071–41084, 2020.

[36] P. Fränti and S. Sieranoja, ‘‘K-means properties on six clustering bench-
mark datasets,’’ Appl. Intell., vol. 48, pp. 4743–4759, Jul. 2018. [Online].
Available: http://cs.uef.fi/sipu/datasets/

[37] D. Xu and Y. Tian, ‘‘A comprehensive survey of clustering algorithms,’’
Ann. Data Sci., vol. 2, no. 2, pp. 165–193, Jun. 2015.

[38] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach,
D. J. Hand, and D. Steinberg, ‘‘Top 10 algorithms in data mining,’’ Knowl.
Inf. Syst., vol. 14, no. 1, pp. 1–37, 2008.

[39] D. Arthur and S. Vassilvitskii, ‘‘K-means++: The advantages of careful
seeding,’’ in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms
(SODA), 2007, pp. 1027–1035.

[40] Xilinx. (2019). UG1207–SDAccel Development Environment
Methodology Guide-Performance Optimization. Accessed:
Apr. 11, 2020. [Online]. Available: https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2019_1/ug1207-sdaccel-optimization-
guide.pdf

[41] N. Paulino, L. Reis, and J. M. P. Cardoso, ‘‘On coding techniques for tar-
geting FPGAs via OpenCL,’’ in Proc. Int. Conf. Parallel Comput. Parallel
Comput. Everywhere (ParCo), Sep. 2017, pp. 652–663.

[42] Alpha Data. (2018). ADM-PCIE-KU3 User Manual 1.13. Accessed:
Apr. 20, 2020. [Online]. Available: http://www.alpha-data.com/pdfs/adm-
pcie-ku3 usermanual.pdf

[43] Intel. (2019). Benefitting From Implicit Vectorization. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/documentation/
iocl-opg/top/coding-for-the-intel-cpu-opencl-device/benefitting-from-
implicit-vectorization.html

[44] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanaa, and C. Le,
‘‘RAPL: Memory power estimation and capping,’’ in Proc. 16th
ACM/IEEE Int. Symp. Low Power Electron. Design (ISLPEDNew),
York, NY, USA: Association for Computing Machinery, 2010,
pp. 189–194, doi: 10.1145/1840845.1840883.

[45] N. S. Altman, ‘‘An introduction to kernel and nearest-neighbor non-
parametric regression,’’ Amer. Statistician, vol. 46, no. 3, pp. 175–185,
Aug. 1992.

[46] Y. Cheng, ‘‘Mean shift, mode seeking, and clustering,’’ IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 17, no. 8, pp. 790–799, Aug. 1995.

NUNO PAULINO received the M.Sc. degree in
electrical and computer engineering from the Fac-
ulty of Engineering, University of Porto, in 2011,
and the Ph.D. degree in electrical and com-
puter engineering from the University of Porto,
in 2015. He is currently an Assistant Profes-
sor with the University of Porto. He is also
a Researcher with INESC Technology and Sci-
ence, where his research interests include run-
time reconfigurable systems, embedded systems in

FPGAs, co-processor hardware acceleration, and tools for hardware/software
codesign automation.

JOÃO CANAS FERREIRA (Senior Member,
IEEE) received the Licenciatura and Ph.D. degrees
in electrical and computer engineering from the
University of Porto, Portugal, in 1989 and 2001,
respectively. Since then, he has been an Assistant
Professor with the Faculty of Engineering, Uni-
versity of Porto, and a Senior Researcher with
INESC TEC. His current research interests include
dynamically reconfigurable systems, application-
specific architectures for cognitive radio and sen-

sor networks, and adaptive embedded systems. He is a member of ACM and
Euromicro.

JOÃO M. P. CARDOSO (Senior Member, IEEE)
received the D.Eng. degree from the University
of Aveiro, Portugal, in 1993, and the M.Sc. and
Ph.D. degrees in electrical and computer engi-
neering from the Technical University in Lisbon
(IST/UTL), Portugal, in 1997 and 2001, respec-
tively. He is currently a Full Professor with the
Department of Informatics Engineering, Faculty
of Engineering, University of Porto, and a Senior
Researcher with INESC TEC. Before, he was

with IST/UTL, from 2006 to 2008, a Senior Researcher with INESC-ID,
from 2001 to 2009, and with the University of Algarve, from 1993 to
2006. In 2001 and 2002, he worked for PACT XPP Technologies, Inc.,
Munich, Germany. His research interests include compilation techniques,
domain-specific languages, reconfigurable computing, and application-
specific architectures. He is a Senior Member of ACM.

152304 VOLUME 8, 2020

http://dx.doi.org/10.1145/2983323.2983752
http://dx.doi.org/10.1109/FPL.2016.7577313
http://dx.doi.org/10.1109/FPL.2016.7577313
http://dx.doi.org/10.1145/1840845.1840883

