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ABSTRACT Sinusoidal interference is a common type of noise caused by power facilities. It usually has the
fixed frequency and large amplitude which will have a negative impact on seismic data processing. We pro-
pose a new approach for suppressing sinusoidal noise, which is called randomized principal component
analysis. It takes advantage of the characteristics of noisy record itself and does not need to calculate the
amplitude or phase of the sinusoidal noise. The key algorithm steps of this method can be illustrated as
follows: first, interpolation will be applied to get the improved time accuracy. Second, frequency search and
narrow-band-pass filter are used to separate the noise-dominated component and determine its precise period.
Then, for one of the periods, we use several periods around it to form a ‘‘section’’. The randomization is then
implemented along the lateral direction to disturb the reflected signal in this ‘‘section’’. Besides, principal
component analysis is applied to extract sinusoidal noise which still has strong correlation, and to filter the
signal which has been converted into random noise. Last, the separated noise is subtracted from the record.
Via the synthetic model and field examples, this method is compared to the notch filter to demonstrate its
superiority.

INDEX TERMS Principal component analysis, randomization, sinusoidal noise attenuation.

I. INTRODUCTION
Sinusoidal noise and its harmonics have always been a prob-
lem in reflected seismic data due to the presence of power sys-
tems in the acquisition area. They often have the fundamental
frequency of 60Hz in North America and 50Hz in some other
countries such as China and Japan. Sinusoidal noise with
fundamental frequency recorded by geophone cable usually
has large amplitude compared to reflected signal, especially
in the deep parts of seismic section. Its existence causes
much trouble in the subsequent processing. Note that the
‘‘harmonic’’ here is not the land vibroseis harmonics, but
the sinusoidal noise with the fundamental frequency and its
multiples.

According to the investigation in four places in Canada
by [1], except the fundamental frequency with strongest noise
amplitude, there is still large interference energy existing in
the first few odd harmonics. Because of the requirement for
the frequency bandwidth of raw data in seismic exploration,
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simply notching many harmonics by analog filter in the field
is not practical. Therefore, finding another way to solve this
problem has become necessary.

Seismic denoising methods have been developed by many
scholars. For random noise attenuation, prediction-based
methods [2]–[5], sparse-transform-based methods [6], [7],
rank-reduction-based methods [8]–[10], machine-learning-
based methods [11]–[14] and orthogonalization [15] are most
common used algorithms. For the removal of harmonic noise
[16], [17], there are also many different methods presented
besides the analog notch filter. Among them, real-time sup-
pression methods are widely used in seismic and electromag-
netic field. But this kind of methods may not be so practical
because of the location requirement of acquisition system.
Therefore, suppressing power-line interference (sinusoidal
noise) by subsequent processing has been an agreement the
norm. Digital notch filter is the most commonly used method
because of its simple procedures. But, just like the analog one
mentioned above, when we notch the fundamental frequency
and its harmonics, the cost is that the frequency components
of signal near it will be also eliminated simultaneously. As a
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result, a distortion of signal takes place due to above opera-
tions. The spiking deconvolution is also used to suppress the
harmonic noise by flattening the spectrum. But the method
does not seem to perform well because of the presence of the
strong spectral peaks [18]. In order to overcome the disad-
vantages of notch filter and the spiking deconvolution, other
approaches have been developed. Among these methods,
estimation-subtraction is the most popular route developed
by many scholars. Reference [19] regarded the noise as a
stationary noise with a fixed frequency, amplitude and phase.
They make an initial guess frequency of the sinusoidal noise,
and the precise values of these three parameters are then
determined by an iterative process. Afterwards, the estimated
sinusoidal noise will be subtracted from the contaminated
data. Reference [18] designed a Wiener filter which takes the
corrupted trace as desired output and a reference sinusoidal
trace as initial input. The frequency of reference trace can be
determined by an automatic search algorithm. At last, a filter
is solved, which makes the error between its convolutions
with the reference trace and the corrupted trace is least. Then,
the result of convolution will be subtracted from the corrupted
data.

Reference [20] presented a block subtraction method
which takes advantage of the fact that sinusoidal in different
cycles have similar shape. A portion of the signal trace which
contains negligible reflected signal (such as several cycles
before the first break) is extracted and subtracted in different
shifting position. Reference [21] proposed a method based
on damped least square Levinson-Marquardt (L-M) inver-
sion, which can simultaneously estimate the frequency and
phase of different noise components. Singular value decom-
position (SVD) is introduced into this method to simplify
the L-M solution. The shallow seismic data contaminated
by harmonics of 60 Hz is used to test the validity of this
method. Reference [1] presented a new algorithm to estimate
stationary harmonics of one or more fundamental frequencies
in a time series by seeking a linear combination of them. Field
data examples have proven the effectiveness of this method.
Reference [22] used a suitable linear combination of Nyman
and Gaiser estimation (NGE) frequency estimates to produce
amore accurate estimate of the fundamental frequency, which
is faster than least-squares estimation and more accurate than
NGE. They applied the method to magnetotelluric data and
suppressed the power-line noise effectively.

Different from the above methods, we try to find another
route to solve the problem by randomization and principle
component analysis (PCA), which avoids the process of esti-
mating amplitude and phase. PCA is a very effective tool
to extract signal from noisy data and is widely applied in
image denoising and enhancement [23]–[25]. Reference [26]
provided a method that attenuates coherent noise and ran-
dom noise simultaneously by using randomization operator
and multichannel singular spectrum analysis (MSSA), which
is also a kind of PCA. Randomization operator is used to
preserve signal (after NMO) and disturb the coherent noise
which can be treated as random noise later. Then, MSSA is

applied to suppress the random noise. Inspired by this algo-
rithm, we present a similar approach to extract fundamental
sinusoidal noise and its harmonics. In other words, we form
a ‘‘seismic section’’ with horizontal events by using several
randomized cycles and separate out the sinusoidal noise
which is treated as signal.

In common cases, the frequency leakage is inevitable and
will have big influence on the frequency components near
noise frequency, especially when the energy of noise is very
large. For conventional notch filter, it just simply suppresses
the noise spike in an small fixed frequency range and can
not eliminate the leaking energy. If we set a big range of
notching frequencies, the signal frequencies near it may be
harmed inevitably. However, the randomization and principle
component analysis (RPCA) can get a suitable estimation of
noise in both time and frequency domain and overcome this
defect. Note that the ‘‘RPCA’’ here does not stand for the
robust PCA but the randomized PCA.

Though the fundamental frequency of power-line inter-
ference in North American may have a deviation of up to
0.03 Hz according to [27], most of the current methods are
based on the assumption that the harmonic noise is stationary
over the whole record [1]. Our method is also derived under
this assumption. Fortunately, the validity of this stationary
model has been confirmed by many scholars, and based on
this assumption, the field example we used also produces a
good result.

In this article, we first give the detailed description of
this algorithm which includes preprocess, randomization,
Principal Component Analysis (PCA) and stack. Then we
test the effect of this method on the synthetic traces and
field data. The results show that our method can remove the
sinusoidal noise effectively and has obvious advantage over
conventional notch filter. At last, we give a brief discussion
of this method and conclude.

II. METHODOLOGY
A. PREPROCESS
The sample interval in time domain is always limited in field
seismic acquisition (such as 2ms and 4ms), which makes it
difficult to precisely estimate the period of sinusoidal noise.
Therefore, we first consider interpolation of the contaminated
traces by a factor n, which is the number of interpolation
points at each interval. There are many interpolation methods
in practical engineering application, such as linear interpola-
tion, cubic interpolation and spline interpolation. Considering
the smoothness of interpolation results, we choose spline
interpolation as the first step in this article. Note that the
spline interpolation is not the only suitable way to interpolate
the seismic traces. Other methods such as sinc interpolation
can also do this job well. For a seismic data trace x(t) with
power-line interference, after the spline interpolation, we can
get the interpolated trace xp(t) which has Np sample points.

The basic principal of spline interpolation can be described
as follows: for a seismic trace x(t) (Nt points) with power-line
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interference, t = 1, 2, 3, . . . ,Nt , we try to find a piecewise
function:

S(t) =


S1(t), t ∈ [1, 2]
S2(t), t ∈ [2, 3]
. . .

S3(t), t ∈ [Nt − 1,Nt ],

(1)

which meets the requirements that:

S(t) = x(t) t = 1, 2, 3, . . . ,Nt ,

Si − 1(t) = Si(t) t, i = 2, 3, . . . ,Nt − 1,

S ′i − 1(t) = S ′i (t) t, i = 2, 3, . . . ,Nt − 1,

S ′′i − 1(t) = S ′′i (t) t, i = 2, 3, . . . ,Nt − 1. (2)

With the known boundary condition S ′(1), S ′(Nt ) or S ′′(1),
S ′′(Nt ), We can get the analytic expression of the function.
Then, according to it, we calculate the function value of
interpolation points between two original sample points. The
original seismic record x(t) will be extended to xp(t) with Np
points. Np has the following relationship with Nt :

Np = (Nt − 1)× n+ 1, (3)

where n is the number of interpolation points at each interval.
As shown in Figs. 1a and 1b, in a sinusoidal waveform,

we insert two points (red lines) in each interval. It is very clear
that, after the interpolation, the period of sinusoidal noise can
be estimated more precisely because there are more sampling
points within the same duration (See the blue dash rectangles
in these two diagrams).

FIGURE 1. The diagram of interpolation. (a) Sinusoidal noise before the
interpolation. (b) Sinusoidal noise after the interpolation. The rectangles
indicate that there are more sampling points to help determine the noise
period in (b).

Assume xp(t) contains several single-frequency harmonics
(f1, . . . , fns) which have large values in the amplitude spec-
trum. Then, in order to generate the noise-dominated series
which are more favorable for the extraction of sinusoidal in
the subsequent processing, we design some zero-phase filters
that just give pass bands of these harmonics. Fig. 4a is the

amplitude spectrum of a zero-phase filter for the 50 Hz noise,
which is equal to 1 at [40, 60] Hz and 0 at other places
(Because there are zero values in the spectrum, we use the
original amplitude instead of the log amplitude in the vertical
axis). The center frequency 50 Hz can be roughly found
by selecting the maximum value of the current amplitude
spectrum. Note that the range 40-60 is just an example. In the
other noisy data with different noise frequencies, one can
adjust the range accordingly to make it fully cover the noise
frequencies. Fig. 4b is the corresponding phase spectrum. The
values of it are all zeros. The filtering process is to multiply
the spectrum of noisy data by the filter spectrum, point by
point. Fig. 5a shows the amplitude spectrum of the noisy data
before and after the process of narrow-band filter. Fig. 5b
shows the corresponding phase spectrum. It is clear that this
simple filter only cuts part of the noisy spectrum between 40-
60 Hz, which covers the location of the 50 Hz noise.

We mark one of these separated components with certain
sinusoidal noise as xb(t) (Note that there is still some residual
signal existing in xb(t)). The reason why we separate them
from xp(t) is that, since we aim to extract the sinusoidal noise
instead of signals, the reflected signals will have the negative
impact on the extraction of the noise. In the noise-dominated
component xb(t), there is less residual signal compared to the
xp(t), which will make the extraction more precisely.

For the narrow-band sinusoidal noise, we use a special
analysis tool to get the precise frequency of it, which is same
as the automatic search algorithm mentioned by [18]. The
amplitude spectrum of Fourier transform can indicate the
rough maximum frequency fm that represents the sinusoidal
noise. Then, within the scope of [fm−1, fm+1] Hz, we divide
the frequency into Nf parts with a refined interval1f . Theo-
retically, the interval can be set as small as possible. For every
discrete frequency within it, we calculate the scalar product:

F(k) =
Np∑
i=1

xb(i)e−j2π ·(fm−1+k1f )·i·dt ,

k = 0, 1, 2, . . . ,Nf . (4)

Therefore, we can get an accurate noise frequency by search-
ing the maximum value of F(k), which is the basis of deter-
mining the period used in next step. Fig. 2 is an example of
precise frequency analysis for a 60.03 Hz sinusoidal noise.

FIGURE 2. The result of precise frequency analysis for seismic trace with
60.03 Hz sinusoidal noise, which is sampled at 1ms, 1000 points. The red
line indicates the maximum frequency which is also the noise frequency.
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FIGURE 3. The diagram of randomization and PCA: list several cycles within the time window (w=13) near ci in the horizontal direction.
These cycles are picked from the synthetic data in Fig. 8a. (a) Noisy cycles. (b)Underlying signal in these cycles. (c) Cycles of sinusoidal
noise. (d) Cycles after randomization alone the horizontal direction (reflected signal has been converted into random noise), (e) The left
sinusoidal noise after picking the largest diagonal element of (d). It is similar to but not exactly the same as (c). (f) The comparison among
underlying signal (blue line), denoised cycle of RPCA (red line) and denoised cycle of notch filter (yellow line) in the location of ci . Note that
this procedure aims to extract the signal only in ci instead of all 2w + 1 cycles. Therefore, the comparison only includes the cycle in the
location of ci .

B. RANDOMIZATION
Assuming the precise frequency derived from above pro-
cedures is f0, the accurate period of the sinusoidal can be
deduced by the reciprocal relationship between frequency
and period. With the refined time sample interval dt0 having
been decided, we can get the number of points N0 within one
period.

N0 = 1/f0/dt0. (5)

Then we can break the seismic trace into different cycles
depending on the period N0. For a certain sinusoidal cycle ci,
in the time window of 2w + 1 cycles near it ([ci−w, ci+w]),
we place them in the horizontal direction and form amatrixC ,
which can be illustrated as follows:

ci−w
...

ci
...

ci+w

→
[
ci−w . . . ci . . . ci+w

]
,

↓


ci−w,1 . . . ci,1 . . . ci+w,1
ci−w,2 . . . ci,2 . . . ci+w,2
... . . .

... . . .
...

ci−w,N0 . . . ci,N0 . . . ci+w,N0

 = C . (6)

Within the matrix C , along the row, we exchange the values
in the same time point (with the same row subscript). This
procedure is called randomization and is to preserve the shape
of sinusoidal noise while disturbing reflected signal. After
doing this exchange, we can get a ‘‘section’’ Ce made of
sinusoidal cycles and random noise (i.e., disturbed reflected
signal).

C =


ci−w,1 . . . ci,1 . . . ci+w,1
ci−w,2 . . . ci,2 . . . ci+w,2
... . . .

... . . .
...

ci−w,N0 . . . ci,N0 . . . ci+w,N0

 ,
↓

Ce =


ci,1 . . . ci−w,1 . . . ci+w,1
ci+w,2 . . . ci,2 . . . ci−w,2
... . . .

... . . .
...

ci−w,N0 . . . ci+w,N0 . . . ci,N0

 . (7)
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FIGURE 4. (a) The amplitude spectrum of a zero-phase filter for the 50 Hz
noise. (b) The corresponding phase spectrum.

C. PRINCIPAL COMPONENT ANALYSIS
Principal component analysis (PCA) is always a good tool
for extracting signal from seismic section, especially for the
horizontal events. In details, for the matrix Ce with size of
N0×M (M = 2w+1), we assume that every column of it has
been subtracted from the mean of this column and divided by
√
N0 − 1, the covariance matrix can be written as:

CT
e Ce = QΣQT , (8)

where Q with size ofM ×M is an orthogonal matrix, Σ is a
diagonal matrix and its diagonal elements θi is a descending
sequence θ1 ≥ θ2 ≥ . . . ≥ θM . At the same time, the Ce can
also be decomposed as:

Ce = UDV T , (9)

where U with size of N0 × N0 and V with size of M × M
are orthogonal matrices, D is a diagonal matrix with size of
N0 × M and its diagonal elements σi is also a descending
sequence σ1 ≥ σ2 ≥ . . . ≥ σN0 . Further, we can have the
equation:

CT
e Ce = VDTUTUDV T

= VDTDV T , (10)

From the equations above, we find that:

V = Q,

θi = σ
2
i ,

Σ = DTD. (11)

FIGURE 5. (a) The amplitude spectrum of the noisy data before and after
the process of narrow-band filter. (b) The corresponding phase spectrum.

FIGURE 6. The distribution of diagonal elements in Fig. 3d. The first one
corresponds to the sinusoidal noise.

The large values of σi in the upper left of D indicate the most
correlative part of the matrix which can also be thought as the
sinusoidal cycles.

When we form a matrix of cycles after randomization,
the θi and Q can be obtained by computing eigenvalues of
CT
e Ce. Then, the σi and V will be calculated by equation 11

(U can be derived from CeCT
e ). Sinusoidal noise will be

represented by the first large value σ1. Sowe use thematrixD′

VOLUME 8, 2020 152135



H. Wang et al.: Sinusoidal Seismic Noise Suppression Using Randomized Principal Component Analysis

FIGURE 7. The diagram of resampling. (a) Estimated underlying signal
before the resampling. (b) Estimated underlying signal after the
resampling.

FIGURE 8. Example of synthetic trace. (a) Noisy data and original
noise-free data. (b) Log amplitude spectrum of the noisy data and the
noise-free data. (c) Phase spectrum of the noisy data and the noise-free
data.

(only contains the first diagonal element of D and the other
elements are zero) to get the estimation of sinusoidal noise:

C ′ = UD′V T ,

D′ =


σ1 . . . 0 . . . 0
0 . . . 0 . . . 0
... . . .

... . . .
...

0 . . . 0 . . . 0

 . (12)

FIGURE 9. Example of synthetic trace. (a) Denoised data by notch filter
and the original data. (b) Denoised data by RPCA and the original data.
(c) Error between estimation of notch filter and the original signal.
(d) Error between estimation of RPCA and the original signal.

In this case, we use PCA to keep the sinusoidal noise which
has the stable shape and filter the reflected signal which is
treated as the random noise. Then, we can get the matrix C ′

which stands for the sinusoidal noise.

Ce =


ci,1 . . . ci−w,1 . . . ci+w,1
ci+w,2 . . . ci,2 . . . ci−w,2
... . . .

... . . .
...

ci−w,N0 . . . ci+w,N0 . . . ci,N0

 ,
↓

C ′ =


c′i−w,1 . . . c′i,1 . . . c′i+w,1
c′i−w,2 . . . c′i,2 . . . c′i+w,2
... . . .

... . . .
...

c′i−w,N0
. . . c′i,N0

. . . c′i+w,N0

 . (13)

The procedure can be illustrated by the Figs. 3a-3f: we can
see that the waveforms of different cycles in Fig. 3a are not so
consistent because of the existence of the reflected signal (see
the red rectangles). The underlying signal and pure sinusoidal
noise of Fig. 3a are shown in the Figs. 3b and 3c. After
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FIGURE 10. Example of synthetic trace. (a) Log amplitude spectrum of
notch filter result and the original data. (b) Log amplitude spectrum of
RPCA result and the original data. (c) Phase spectrum of notch filter result
and the original data. (d) Phase spectrum of RPCA result and the original
data.

horizontal exchanging, there are many little spikes in the
white area of Fig. 3d which is the disturbed reflected signal.
If taking a look at the σi of Fig. 3d, we find that the first value
is far larger than the others (see Fig. 6). Therefore, we can
just pick the first one σ1 and get the estimation of the noise
(Fig. 3e).

Next, the noise cycles in the Fig. 3e separated by PCA
are averaged to form a new signal-free cycle as the final
noise estimate which will be put in the location of the cycle
ci mentioned above. By repeating these procedures, we can
calculate signal-free cycles c̃i in every place of the seismic
trace. At the last step, we subtract the formed noise trace n(t)
from original contaminated trace and resample the result to
make sure that the number of sample points is the same as the
original data. The final denoised result is s(t).
Fig. 3f is the comparison of the true signal (blue line),

denoised cycle of RPCA (red line) and denoised cycle of
notch filter (yellow line) in the location of ci. It is worth
mentioning again that although there are 2w+1 cycles in Figs.
3a-3e, they are used to estimate the sinusoidal noise and
signal only in ci. In Fig. 3f, we find that, compared to the

FIGURE 11. Example of synthetic section. (a) Original noise-free data.
(b) Noisy data.

FIGURE 12. Example of synthetic section. (a) Log amplitude spectrum of
the noisy data and the noise-free data in 10th trace. (b) Phase spectrum
of the noisy data and the noise-free data in 10th trace.

result of notch filter, the result of RPCA is closer to the
shape of the true underlying signal, which demonstrates the
superiority of the RPCA.
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FIGURE 13. Example of synthetic section. (a) Denoised data by notch
filter and the original data in 10th trace. (b) Denoised data by RPCA and
the original data in 10th trace.

FIGURE 14. Example of synthetic section. (a) Error between estimation of
notch filter and the original signal. (b) Error between estimation of RPCA
and the original signal.

As for the resampling process, we use Figs. 7a and 7b to
illustrate it. When we get the estimation of underlying signal
which contains the interpolated parts (red lines) in Fig. 7a,

FIGURE 15. Example of synthetic section. (a) Log amplitude spectrum of
notch filter result and the original data in 10th trace. (b) Log amplitude
spectrum of RPCA result and the original data in 10th trace. (c) Phase
spectrum of notch filter result and the original data in 10th trace.
(d) Phase spectrum of RPCA result and the original data in 10th trace.

resampling is to just discard the interpolated parts and obtain
the resampled underlying signal. The Algorithm 1 shows the
procedures of the proposed method.

III. EXAMPLES
A. SYNTHETIC SEISMIC DATA
Figs. 8a-10d show the difference between filtered result from
notch filter and that from RPCA for the same original data
(the blue line in Fig. 8a). It is added a 36.12 Hz sinusoidal
noise (See the red line in Fig. 8a). The log amplitude spectrum
and phase spectrum of them are shown in Figs. 8b and 8c.
We can clearly find that the notch filter result (the blue line
in Fig. 9a) has the larger distortion compared to the result
obtained by the RPCA (the blue line in Fig. 9b), which almost
coincides with the original data. The Figs. 9c and 9d are the
errors between their results and the real noise-free data. The
error of RPCA is obviously smaller than that of notch filter.
The signal to noise (S/N ) ratios for the input noisy data and
two denoised results are listed in Table 1. It is a proof that the
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Algorithm 1 Proposed Sinusoidal Noise Attenuation
Framework
Require: An input sequence x(t) denoting the noisy trace.
1: for fm = f1, . . . , fns do
2: spline interpolation (SP): xp(t) = SP(x(t))
3: narrow-band filter (NBF): xb(t) = NBF(xp(t))
4: frequency analysis (FA): f0 = FA(xb(t))
5: get precise period: N0 = 1/f0/dt0
6: form cycles: separate trace into cycles ci
7: for i = 1, . . . , n do
8: RPCA: c̃i = RPCA(ci)
9: end for

10: estimate noise: n(t) = [c̃T1 , . . . , c̃
T
n ]

11: subtract and resample (RS): s(t) = RS(xp(t)− n(t))

12: set new noisy trace: x(t) = s(t)
13: end for

TABLE 1. Comparison of S/N ratios for the original data and two
denoised results obtained by notch filter and the RPCA in Figs. 9a and 9b.

RPCA can generate a more clear result than the conventional
method. Figs. 10a and 10b show the comparison of the log
amplitude spectrum of original noise-free data, the results of
notch filter and RPCA. We can see that the notch filtering
provides a log spectrum which has bigger differences with
the original one. While, the spectrum obtained by the RPCA
are very similar to the original one with only little difference.
This phenomenon can also be observed in the phase spectrum
in Figs. 10c and 10d. Because the notch filter is a zero-phase
filter, the phase spectrum of it is nearly unchanged compared
to the phase spectrum of the noisy data.

Fig. 11a is a synthetic model which is masked by around
50 Hz sinusoidal noise (Fig. 11b). Figs. 12a and 12b are
the log amplitude spectrum and phase spectrum of them in
the 10th trace. The filtered result of the 10th trace shown
in Fig. 13b demonstrates that the RPCA can suppress the
sinusoidal noise effectively and preserve the signals well
even if the frequency is not precise 50 Hz. Respectively,
Fig. 13a is the denoised result of the 10th trace by notch
filter. It is obviously different from the noise-free data. Their
error sections are shown in Figs. 14a and 14b. It seems that
notch filter will do more harm to the original signal. There are
some leaked events in the red rectangle in Fig. 14a. The S/N
ratio for the noisy data and two denoised results are listed
in Table 2. Through the S/N ratio table, the validity of the

TABLE 2. Comparison of S/N ratios for the original section and two
denoised results from notch filter and RPCA.

RPCA can be confirmed again. Figs. 15a and 15b are the log
amplitude spectrum of the results of these two methods and
the noise-free data. The RPCA spectrum is still similar to the
true signal while the notch filter is not. In the phase spectrum
of them (Figs. 15c and 15d), the error of RPCA is also far
smaller than the notch filter, which shows that the RPCA has
a good performance on keeping the fidelity of signal.

In order to test the effectiveness of RPCA for different
noise strength, we set the initial S/N ratios as a descending
sequence (which corresponds to the noise amplitude being
0.2,0.5,1,10,50 and 100 times of the signal maximum ampli-
tude) and calculate the denoised results respectively. Table 3
and Fig. 16 are the comparison of output S/N ratios obtained

TABLE 3. The S/N ratios of denoised results by these two methods under
different original S/N ratios.

FIGURE 16. The S/N ratio comparison of the denoised results by the two
methods under different noise strengths.

FIGURE 17. The denoised waveforms of RPCA corresponding to the
2.79 dB and -51.21 dB input S/N ratios.
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by the two different methods. It is obvious that a low initial
S/N ratio will have a negative effect on the performance of
both two methods, and the RPCA is more stable than the
notch filter under all circumstances. Figs. 17a and 17b are the
denoised waveforms obtained by the RPCA corresponding to
the 0.2 and 100 times. Note that the low input S/N ratio will
cause distortion in Fig. 17b.

B. SEISMIC FIELD DATA
Fig. 18a shows a pre-stack field data example. The
15-21 traces are masked by the 50 Hz sinusoidal noise, and
the reflected signals are much weaker than the noise, which
makes them not so clear. The noisy log amplitude spectrum
of 17th trace is shown in Fig. 18b. We can find an apparent
noisy spike near the 50 Hz. After applying the RPCA, we can
get a noise-free data (Fig. 19a) with the signal appearing
and sinusoidal noise suppressed. As a comparison, we also
calculate the notch filtering result (Fig. 19b) and put their log
amplitude spectrum (17th trace) together (Fig. 21). In real

FIGURE 18. Field data example with 50 Hz noise. (a) Original noisy data.
(b) Log amplitude spectrum of 17th trace.

FIGURE 19. Field data example with 50 Hz noise. (a) The denoised result
of the RPCA. (b) The denoised result of notch filter.

examples, because we do not have a true noise-free signal
as a reference, the phase is not so meaningful to illustrate
the superiority of RPCA, so we just show the amplitude
spectrum. From the above results, we can see that, though
notch filter and the RPCA both can suppress the sinusoidal
noise, the notch filter does more harm to the original signal
(the frequencies near 50 Hz in Fig. 21). The amplitude of
notch filter result in the red box in Fig. 19b is weaker than
that of RPCA, which indicates the loss of information. The
positions of events in the red box in Fig. 19b are not con-
sistent with those in the adjacent traces. However, the events
in Fig. 19a are perfectly recovered and have good consistency.
Besides, the removed noise in the 17th trace is displayed in
the Figs. 20a and 20b. The noise removed by the RPCA is
very close to the standard sinusoidal waveform while the one
removed by the notch filter is not.

Fig. 22a is another pre-stack field data example. The
29-31 traces of this section are masked by the 60 Hz sinu-
soidal noise. The log amplitude spectrum of 30th trace is
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FIGURE 20. Field data example with 50 Hz noise. (a) The removed noise
of the RPCA in 17th trace. (b) The removed noise of notch filter in
17th trace.

FIGURE 21. Field data example with 50 Hz noise. Denoised log amplitude
spectrum of 17th trace from notch filter and RPCA.

shown in Fig. 22b. We use the proposed method men-
tioned above to filter them and recover the noise-free traces
(Fig. 23a). We can see that the most energy of noise has
been suppressed effectively, and the reflected signals become
dominant again. The events in the red boxes are clear and
consistent. However, the notch filter dose not perform well
in the red boxes in Fig. 23b. The energy of events is weak
and not consistent. Their difference is also shown in the
log spectrum of the 30th trace (Fig. 25). The notch filter

FIGURE 22. Field data example with 60 Hz noise. (a) Original noisy data.
(b) Log amplitude spectrum of 30th trace.

obviously causes more damage to signal frequencies than the
RPCA,which illustrates that the RPCAoutperforms the notch
filter. Additionally, Figs. 24a and 24b are the removed noise
in the 30th trace by these two methods. It is obvious that the
removed noise by notch filter differs greatly from the standard
sinusoidal noise, which shows that it cannot suppress this
kind of noise as accurately as the RPCA.

IV. DISCUSSION
Sinusoidal noise has been always a common problem in
seismic data acquisition. Its large amplitude and the spec-
tral leakage it causes will mask the true features of signal.
Suppressing this kind of noise is very necessary. Of course,
if there is only one trace contaminated by the sinusoidal noise,
the simple stacking or some median filters will suppress the
interference. However, the sinusoidal noise sometimes covers
a large area due to the powerline system, which invalidates
the stacking method and the median filters because they are
only good at the single noise trace instead of continuous noisy
traces. The proposed method here can be applied to such
noisy traces one trace at a time and alleviates their impact
on final results.
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FIGURE 23. Field data example with 60 Hz noise. (a) The denoised result
of the RPCA. (b) The denoised result of notch filter.

The poor performance of a notch filter is mainly caused
by the frequency leakage. A tapered notch filter can mitigate
the effect but have no ability to eliminate it completely.
Additionally, simply notching the noisy amplitude spectrum
will undoubtedly harm the reflected signal. Compared to the
tapered notch filter, the RPCA can estimate the sinusoidal
noise precisely in both time and frequency domains, and can
handle the frequency leakage well. As a result, this method
can preserve the signal and get a better performance than the
notch filter.

In the RPCA, the number of interpolation factor n is a key
parameter which can affect the precision of noise estimation.
In detail, the smaller interpolation interval is, themore precise
denoised result is, but the computational cost is higher. It is
also the reason why the results degrade with the stronger
noise in Fig. 16. Although the interpolation can improve the
precision of noise period estimation, there is still little error
between the estimated period and the real period. When noise
become stronger, the error will be enlarged more seriously,
and the result will become worse (Fig. 17b).

Because of the computational complexity of the RPCA,
its computing cost is larger than that of notch filter and will

FIGURE 24. Field data example with 60 Hz noise. (a) The removed noise
of the RPCA in 30th trace. (b) The removed noise of notch filter in 30th
trace.

FIGURE 25. Field data example with 60 Hz noise. Denoised log amplitude
spectrum of 30th trace from notch filter and RPCA.

increase significantly when interpolation factor n is large.
Table 4 is the comparison of calculation time of these two
methods (interpolation factor n is 21,w = 13). We also
give the calculation costs of different interpolation factor n
in Table 5 (w = 13). When the n increases, the execution
time grows obviously. But note that, in the common seismic
data, by our many experiments, we find that a proper n that
is smaller than 80 can mostly meet the precision requirement
of the seismic industry. For example, the parameters n are
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TABLE 4. Comparison of the computing cost (interpolation factor n is 21,
w = 13). The RPCA is much slower than the notch filter.

TABLE 5. The computing costs of different interpolation factors n
(when w = 13).

TABLE 6. The computing costs of different parameters w (when n = 21).

FIGURE 26. Example of synthetic trace with 60 and 120 Hz noise.
(a) Noisy data and original noise-free data. (b) Log amplitude spectrum
of the noisy data and the noise-free data. (c) Phase spectrum of the noisy
data and the noise-free data.

set to 21 and 61 in this article. Additionally, the temporal
window parameter w is the other factor that affects the size
and computing speed of SVD input matrix. However, due
to the strong lateral coherency of the sinusoidal noise itself,
the w does not need to be very big and can be set to the range
10-20 by our experience. In this article, all examples share the
same w (w = 13). Table 6 is the computing time of different
w (n = 21). It shows that the cost does not change much in
this range. Thus, the parameter n is themain factor that has the
impact on the computing costs. Wewill focus on accelerating
this algorithm in the future.

When there are many harmonics in the noisy data, and
their frequencies are exact multiples of the fundamental fre-
quency, we can suppress them simultaneously (by skipping
the procedure of narrow-band-pass filter) because they share
a common period. But when the assumption about frequency
multiplicity is not valid, it is necessary to suppress them
separately. Fig. 26a is an example that contains not only 60Hz
but also 120Hz sinusoidal noise. Figs. 26b and 26c are the
corresponding log amplitude and phase spectrum. The two
noise spikes are obvious in the log amplitude spectrum, and
the phase spectrum has the big distortion due to the existence
of the sinusoidal noise. Figs. 27a and 27b are the denoised
results of the notch filter and RPCA. Figs. 27c and 27d
are their corresponding error sequences. These results show
that the proposed method can separate the sinusoidal noise
more precisely than the notch filter since the denoised results
of it contain less distortion and its error energy is smaller
than the later one. Figs. 28a-28d are the corresponding log
amplitude and phase spectrum of the denoised results from
the notch filter and the proposed method. We can find that,
in the Fourier domain, the denoised results of the proposed
method are much closer to the true signals than the notch
filter. The later one is greatly different from the true signal

FIGURE 27. Example of synthetic trace with 60 and 120 Hz noise.
(a) Denoised data by notch filter and the original data. (b) Denoised data
by RPCA and the original data. (c) Error between estimation of notch filter
and the original signal. (d) Error between estimation of RPCA and the
original signal.
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FIGURE 28. Example of synthetic trace with 60 and 120 Hz noise.
(a) Log amplitude spectrum of notch filter result and the original data.
(b) Log amplitude spectrum of RPCA result and the original data.
(c) Phase spectrum of notch filter result and the original data. (d) Phase
spectrum of RPCA result and the original data.

FIGURE 29. The details of Fig. 15b.

at 60 and 120 Hz in the log amplitude spectrum, and its phase
spectrum is still seriously influenced by the noise. All the
results shown above demonstrate that the proposed method
can also handle the multiple harmonics well.

Note that the input sinusoidal noisy traces are not manually
picked. We have an another work to automatically pick these
noisy traces, and these noisy traces will be the input of the
RPCA.

It is also worth mentioning that, although the RPCA has
advantage over the notch filter, there are still some differences
between the signal spectrum and spectrum of the denoised
result (see Fig. 29, the detail of Fig. 15b). In the future
research, we will concentrate on fixing this problem.

V. CONCLUSION
We propose a new strategy for sinusoidal noise attenuation
which can automatically estimate the noise waveform and
avoid complicate estimation of noise amplitude and phase by
using the procedures of randomization and PCA. In detail,
we first refine the time sample interval by using spline inter-
polation. A narrow-band-pass filter will be used to separate
the rough noise out in the frequency domain. Analyzing its
precise frequency is also needed by the subsequent procedure
for constructing the suitable cycles. After the preprocessing,
we use randomization and PCA to obtain the estimation of
noise trace and subtract it from the original trace. In the
synthetic and real examples, we find that this method can
get better and less distorted results than the notch filter since
it will estimate the noise properly and solve the frequency
leakage problem. When the S/N ratio is higher than−30 dB,
this method keeps stable and can generate a clear trace.
Application on synthetic model and real pre-stack data indi-
cates that this method can output a seismic section with a high
S/N ratio and causes no damages to the reflected signals.
In the future research, we will focus on speeding up this
method to make it more affordable for the sinusoidal noise
suppression.
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