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ABSTRACT Medical research confirms that eye movement abnormalities are related to a variety of
psychological activities, mental disorders and physical diseases. However, as the specific manifestations
of various diseases in terms of eye movement disorders remain unclear, the accurate diagnosis of diseases
according to eye movement is difficult. In this paper, a deep neural network (DNN) method is employed
to establish a disease discrimination model according to eye movement. First, multiple eye-tracking exper-
iments are designed to obtain eye images. Second, pupil characteristics, including position and size, are
extracted, and the feature vectors of eye movement are obtained from the normalized pupil information.
Based on a long short-term memory (LSTM) network, a classifier that corresponds to each feature,
which is referred to as a weak classifier, is built. The experimental samples are preclassified, and the
classification ability of each weak classifier for different diseases is also calculated. Last, a strong classifier is
achieved for disease discrimination by synthesizing all the weak classifiers and their classification abilities.
By classification testing for three categories of healthy controls, brain injury patients and vertigo patients,
the experimental results demonstrated the efficiency of this method. With the deep learning method, more
medical information can be excavated from eye movement to improve the values in disease diagnosis.

INDEX TERMS Eye movement, disease discrimination, deep learning, long short-term memory network,
classifier.

I. INTRODUCTION
Human eyes are extensions of the brain, and eye movements
are dominated by abundant nerves. The measurement and
precise analysis of various parameters of eye movements
can be an effective method for the diagnosis of various psy-
chological activities, mental disorders and physical diseases.
Eye movement deficits have been established as biomarker
across brain injure, schizophrenia, autism, Parkinson’s dis-
ease, Alzheimer’s disease and multiple sclerosis [1], [6],
[7], [15], [18], [20], [24], [25], [30]. In terms of existing
research results throughout the world, research on congenital
nystagmus is the most in-depth research [2]–[5]; it focuses on
the treatment of nystagmus and its related diseases. In paper
[6]–[10], eye-tracking technologies were applied to research
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in children with autism spectrum disorder (ASD). Natalia I.
Vargas-Cuentas et al. [8] developed an eye-tracking algo-
rithm as a potential tool for early diagnosis of ASD in
children. Since changes in people’s psychological and phys-
iological statuses are likely to be reflected in pupil size,
Antoinette et al. [9] applied the pupil adaptation ability as
a quantitative test method for children with autism. They
captured their pupils’ adaptation modes in continuous stages
of darkness and light and explored the quantitative measuring
method of autism. Typical applications of eye movement
information in the diagnosis of depression were described in
paper [11]–[14]. Shengfu Lu et al. had patients with major
depressive disorder (MDD) and nondepressed controls com-
plete eye-tracking tasks and analyzed their attention pref-
erence to positive, negative, and neutral expressions [11].
According to the results of their study, age can also affect eye
performance in free observation tasks.
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Some scholars conducted research on brain injury and
mental disorders via eye movement analysis [15]–[18].
Chao Liu et al. [16] applied eye-tracking methods and
their tracking parameters to assess the conditions of patients
with mental disorders caused by brain injury. Jagla [17]
discussed that saccadic eye movements could be utilized
as a marker of mental disorders. Research on the diag-
nosis of schizophrenia also involved eye movement anal-
ysis [19]–[23]. Kentaro Morita et al. [20] considered eye
movements as a biomarker of schizophrenia. They recruited
85 schizophrenia patients and 252 healthy controls to perform
free fixation, stable fixation and smooth tracking tasks and
employed an integrated eye movement score to distinguish
patients with schizophrenia from healthy controls.

Some scholars have applied eye movement information
to Alzheimer’s disease (AD) research [24]–[26].
Jeremiah K. H. Lim et al. [24] analyzed the defects of
cerebrospinal fluid analysis, brain imaging and postmortem,
which are commonly applied methods for detecting AD
pathological biomarkers, presented the evidence of ocular
biomarkers in AD and explored potential future research
approaches of eye movement analysis for AD diagnosis.
Eye tracking technology can also be useful in the diagnosis
of Parkinson’s disease (PD) [27]–[30]. Lemos et al. [27] used
eye-tracking technology to explore the functional differences
between PD patients and healthy people in horizontal and
vertical saccades and provided evidence of the distinction
in functional cortical asymmetries between vertical saccades
and horizontal saccades in PD patients and healthy controls
for the first time.

The literature [31]–[34] showed how eye movement and
nystagmus videos can be utilized in dizziness diagnosis.
Theekapun Charoenpong et al. [32] proposed a method to
diagnose vertigo by measuring the eye movement velocity
of nystagmus. Videos of eye performance were recorded by
infrared cameras, and diagnostic information was obtained
in three steps: pupil extraction, eye movement velocity cal-
culation and nystagmus detection. Wang Haowei et al. [33]
investigated the performance of patients with posterior circu-
lation ischemia vertigo (PCIV), who complained of vertigo
and imbalance with PCI in videonystagmography (VNG).
VNG tests were performed on 50 patients. The results showed
that a vestibular central system and peripheral system could
be involved in PCIV, and VNG tests had clinical significance
in differential diagnosis and localization of the lesions.

A scientific basis has been established for the application
of eye movements in the diagnosis and assessment of mental
and physical diseases. Although some progress has been
made in relevant research, it remains relatively weak in gen-
eral. Current research is mainly aimed at a single disease with
a unitary test method, and comprehensive analysis is lacking.
On the other hand, traditional methods are employed in infor-
mation processing, which is not conducive to the deep mining
of the hidden features of eye movement information. Thus,
reliability and versatility are limited. Two key problems need
to be solved in the application of eye movement information

in medical research. The first problem is to design target-
tracking experiments based on the research of medical theory
to induce and stimulate the appearance of eye movement dis-
orders to ensure that the acquired eye movement information
has greater diagnostic value. The second problem is to extract
and quantify eye information and medical characteristics to
obtain digitized data, and then explore the inner relation-
ship between sys data and disease types. In recent years,
the tremendous progress in artificial intelligence (AI) and
deep learning technology can have great benefit to medical
feature extraction and disease discrimination of eye images.

In this paper, experiments are designed to obtain eye
videos, and then multiple features are extracted for analysis,
which involves deep neural networks and machine learning
algorithms. Based on the detected pupil area, we calcu-
late 9 parameters as optional features. With the eye move-
ment features, weak classifiers are established using a long
short-term memory (LSTM) network [35], [36], and their
weights are associated with their classifying performance on
different diseases. Thus, a unified classification model for
the diagnosis of multiple diseases and evaluation of curative
effects are established. The original intention of this paper
is to use advanced AI technology to extract more valuable
eye movement features by supervised learning method. This
study shows that the application of advanced AI technology
in the pathological analysis of eye movement has obvious
advantages and good prospects.

II. MATERIALS AND METHODS
A. EYE TRACKER AND EXPERIMENTAL DESIGN
To employ eye activities for scientific research, the first
step is to record and extract eye movement information.
Previously, electronystagmography (ENG) was performed.
The physiological basis of ENG was to record the potential
changes between the cornea and the retina using electronic
instruments. The potential changes caused by eye movement
can be recorded by attaching electrodes around the eyeball.
This bioelectric signal is collected and amplified and then
displayed as graph, which is referred to as ENG. The accuracy
of ENG is susceptible to many external factors, including
recent medications taken by the patient, the state of arousal
during the test, interference with other biological signals and
the experience of the operators et al. ENG is also complicated
and expensive. With the development of computer video
technology in recent years, VNG, where camera video is used
to record the entire process of eye movement, has become the
main way to obtain eye movement information.

Our laboratory has developed an infrared video eye tracker
according to the application requirements of eye movement
research, as shown in FIGURE 1. Its core components include
CMOS cameras with infrared LED lighting, a wireless video
transmission module based on WIFI, a battery, and a helmet
device. The software that runs on the host computer provides
the user interface for the control of the eye tracker and data
reception and saving. On the interfacemenu, users can choose
different experiments according to the experimental scheme.
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FIGURE 1. The eye tracker developed by our team.

FIGURE 2. Moving trajectory of spots in these two experiments.

Thus, corresponding images can be represented successively
on display devices, which enables subjects to track specific
targets or browse interesting areas on the image. Eye videos
can be obtained, and pupil information can be extracted for
further study in this paper. The technical parameters of the
eye tracker are described as follows:

Image resolution: 320 ∗ 240 ∼ 640 ∗ 480
Frame rate: 30 to 60 fps (adjustable)
Adjustable recording time
8 kinds of target-tracking experiments (expandable)
Extracted pupil features: position, area, shape, etc.
Maximum continuous battery supply time: 3 hours
A variety of experimental schemes are designed to generate

and display static or dynamic images on the screen. These
experimental schemes include the gaze test, saccade test,
ocular pursuit test, optokinetic test, positional test, and
positioning test.

In this study, we employ two experimental schemes: the
optokinetic test and the ocular pursuit test, as shown in
FIGURE 2. In these two experiments, a red light spot moves
along the set trajectory, and subjects are told to gaze at the
point and then follow it as it changes its position. In the first
experiment, the light spot circularly moves at uniform speed
from left to right along the horizontal median line of the
screen. In the second experiment, the light spot repeatedly
moves along a sinusoidal trajectory from left to right at
uniform speed.

The subjects are required to sit directly in front of the
screen while wearing an eye tracker. The experiment begins,
and the infrared camera records videos while the subjects
perform experiments. Eyemovement images are concurrently
transmitted to the host computer via the WIFI module of
the eye tracker. After recording a set number of frames,
the experiment and video recording stop.

FIGURE 3. Pupil extraction results.

B. EYE MOVEMENT FEATURE EXTRACTION
The use of infrared LED lighting in eye image acquisition
not only enhances the ability to resist light interference but
also makes the pupils more visible and facilitates extraction,
as shown in FIGURE 3. The pixels that correspond to the
pupil area in each video frame can be obtained by conven-
tional image analysis methods. Therefore, the pupil param-
eters, including position, range, size of its circumscribed
rectangle, circumscribed rectangle aspect ratio, angle of the
smallest circumscribed rectangle, symmetry, shape, etc., can
be calculated. These parameters are the feature parameters in
this paper.

Because subjects’ pupils may vary in size, initial position,
and FOV, the feature parameters need to be normalized. The
normalized features are given by Equation (1).

gi =
(
fi − min

i=1∼M
(fi)
)
/

(
max
i=1∼M

(fi)− min
i=1∼M

(fi)
)

(1)

where M is the total frame number in a video, fi and gi are
certain feature parameters obtained from the i-th frame before
normalization and after normalization, respectively.

After the processing, all feature parameters will be in the
range 0∼ 1, and g = [g1, g2, . . . , gM ] forms a feature vector,
which corresponds to a certain parameter of a subject’s pupil
in a specific experimental scheme. For a subject to partici-
pate in p experimental schemes with q parameters extracted
from each scheme, p ∗ q feature vectors exist for subsequent
classification.

C. WEAK CLASSIFIER BUILDING BASED ON LSTM
1) LSTM NETWORK FOR CLASSIFICATION
The information contained in feature vectors is time-varying,
and some symptoms may be hidden at special time points.
Therefore, the use of recurrent neural network (RNN), which
is a class of artificial neural network, is suitable. In an RNN,
the connections among units form a directed cycle to create
an internal state of the network, which enables it to exhibit
dynamic temporal behavior. RNNs can utilize their internal
memory to process arbitrary sequences of inputs. RNNs have
repeating neuron-like blocks, and each unit has a simple
structure, such as a tanh activation layer, so can neither handle
long-term memory problems nor evaluate the importance of
memory content for selection.

Long short-term memory (LSTM) is a special deep
learning RNN, and an LSTM network is well-suited for
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FIGURE 4. LSTM blocks with input, output, and forget gates.

learning from experience to classify, process and predict
time series when very long time lags of unknown size exist
between important events.

LSTM blocks contain three or four ‘‘gates’’, which are
used to control the flow of information into or out of
their memory; refer to FIGURE 4. These gates are imple-
mented using a logistic function to compute a value between
0 and 1. Multiplication is applied with this value to partially
allow or deny information to flow into or out of the memory.
Specifically, an ‘‘input gate’’ controls the extent to which a
new value flows into thememory; a ‘‘forget gate’’ controls the
extent to which a value remains in memory; and an ‘‘output
gate’’ controls the extent to which the value inmemory is used
to compute the output activation of the block.

In FIGURE 4, Ct is the cell state vector for carrying his-
torical memory and then adding to new output. The specific
processing algorithm of the cell is described in Equation (2).

ft = σ (Wf [ht−1, xt ]+ bf )
it = σ (Wi[ht−1, xt ]+ bi)
C̃t = tanh(Wc[ht−1, xt ]+ bc)
Ct = f ∗t Ct−1 + i

∗
t C̃t

ot = σ (Wo[ht−1, xt ]+ bo)
ht = o∗t tanh(Ct )

(2)

where σ is a sigmoid function. When using the LSTM
network for classification, the first step is to determine
h_num, which is the number of neurons in the hidden layer
of the cell. The input of each cell is the feature data of a time
slice; assume that it is a one-dimensional vector that contains
x_num elements. The dimensions of the weight matrices
Wf , Wi, Wc, and Wo are h_num rows and h_num + x_num
columns. The forget gate vector ft , which represents the
weight of remembering old information, has the dimensions
of h_num row and 1 column.

2) WEAK CLASSIFIERS BUILDING BASED ON
SINGLE FEATURE
An LSTM network is used to classify the eye movement
features in this paper. Based on the eye-tracking experimental
scheme, the time-series feature vectors obtained from an eye
video are divided into equal-length time slices, and then input
to each cell. After the input is completed, the output infor-
mation that is obtained will be input into a fully connected
network, whichwill output the classification results, as shown
in FIGURE 5.

FIGURE 5. Technical solution of LSTM network for time-varying eye
feature classification.

Dividing the video involves dividing M frames into t
time slices. For each feature, the input of a cell is a
one-dimensional vector that contains x_num= M /t elements.
After inputting all of the vectors, the output classification
result will be calculated via the fully connected network.
The training is performed on the labeled samples to obtain
the weights and bias parameters of this LSTM-based weak
classifier.

D. STRONG CLASSIFIER CONSTRUCTION
The classifiers established using the LSTM network are
referred to as weak classifiers since they are aimed at a single
feature vector. The number of feature vectors is given by
m = p∗q, where p is the number of experiments, and q is the
number of features that need to be extracted. In the process
of multiclassification based on eye features, some features are
helpless in diseases classification. Thus, an evaluation of the
classification ability of weak classifiers for better fusion is
necessary to obtain a strong classifier.

1) CLASSIFICATION ABILITY EVALUATION OF
WEAK CLASSIFIERS
A classifier with better classification ability not only has
higher accuracy but can also distinguish positive samples
more clearly.

Set the number of labeled sample categories to k . The
output of a LSTM weak classifier is c = [c1, c2, . . . , ck ],
where ci represents the probability that the input sample
belongs to the i-th category calculated by this classifier.
Consider N as the total number of samples and Ni as the

number of samples in the i-th category. Thus,

N = N1 + N2 + ...+ Nk (3)

Subsequently, m weak classifiers are constructed for m
feature vectors. Pj,li is defined as the probability that the l-
th sample belongs to the j-th category calculated by the i-th
weak classifier, as shown by Equation (4).

Pj,li = cj

∣∣∣∣ sample l l = 1, 2, · · ·,N
classifier i i = 1, 2, . . . ,m

j = 1, 2, . . . , k (4)

sj,li is defined as the risk of obtaining inaccurate
classification results when classifying the l-th sample,
which effectively belongs to the j-th category using the
i-th classifier. The definition of sj,li is the relative value of
the difference between the maximum probability value of the
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correct class and the incorrect class, as given by Equation (5).

sj,li =

Pj,li − max
r=1∼k
r 6=j

Pr,li

 /( max
r=1∼k

Pr,li − min
r=1∼k

Pr,li

)
(5)

The classification result is correct when sj,li ≥ 0, and the
larger is the value of sj,li , the lower is the risk of obtaining
inaccurate classification results. The mean value of risk sj,li
among the examples in the j-th category can be obtained by
Equation (6).

C j
i =

Nj∑
l=1

sj,li /Nj (6)

C j
i is used to calculate the i-th classifier’s classification

ability for the j-th class.
To facilitate subsequent processing, the sigmoid function

is used to transform C j
i intoW

j
i , as shown in Equation (7).

W j
i = 1/

(
1+ e−C

j
i

)
(7)

where the value of W j
i is between 0 and 1 to represent

the normalized value of the classification ability of the i-th
classifier for the j-th category.

2) STRONG CLASSIFIER CONSTRUCTION METHOD
The weak classifiers are combined to obtain a more efficient
multiclassifier. After each weak classifier classifies the input
samples, the final classification result can be acquired by the
combination of results obtained from the weak classifiers.
The probability of a test sample to be classified into the j-th
category is given by Equation (8).

Pj =

(
m∑
i=1

W j
i P

j
i

)
/

(
m∑
i=1

W j
i

)
(8)

The maximum value in Pj, j = 1, . . . , k corresponds to the
classification result of the input test sample.

III. RESULTS
A. PARTICIPANT RECRUITING AND GROUPING
The optokinetic test and ocular pursuit test are carried out in
this research. Subjects with eye trackers are instructed to gaze
at a dynamic point on a screen and track its moving trajectory,
while the camera on the eye tracker records 250 frames of
images at a frame rate of 30 fps.

The pupil information is extracted for each frame of
an image, and the abscissa x, ordinate y, and area s of
the pupil are employed as eye movement features. Set
fi, i = 1, 2, . . . , 6 as one-dimensional feature vectors with
250 elements, which correspond to 250 frames in a video.
The normalized feature vector gi(gi ∈ R250) can be obtained
according to formula (1). Six kinds of features exist, as listed
in TABLE 1.

We cooperate with medical institutions and invite
98 subjects to participate in the experiment, including
34 healthy volunteers, 34 patients with brain injury (including

TABLE 1. Definition of 6 eye movement feature vectors gi .

TABLE 2. Constitution of three sample sets.

cerebral infarction), and 30 patients with vertigo, which are
marked as category 1, category 2 and category 3, respectively.
All 98 samples were divided stochastically into 3 groups,
of which 2 groups (32 subjects in each group) are for training
the weak classifiers and computing the classification capa-
bilities and 1 group (34 subjects) is for testing the strong
classifier. The distribution of the three category samples in
the three groups is shown in TABLE 2.

We performed eye-tracking experiments on all 98
participants, and for each subject, 6 feature vectors exist.
One sample is randomly selected from each of the three
categories of samples, and the same feature of the three sam-
ples are described in a diagram. The 6 diagrams are shown
in FIGURE 6.

According to the diagrams, intuitively distinguishing the
differences among different categories of samples or to know
which feature is the most valuable for each category of sam-
ples is challenging. Thus, the construction of a classifier is
necessary to effectively perform the classification.

B. CLASSIFICATION ABILITY OF WEAK CLASSIFIERS
Six 250-element feature vectors exist for six features of
each sample in all 3 types of 98 samples. For each feature,
an LSTM classifier is constructed using the same structure.
Divide the 250 elements in each feature vector into 10 time
slices in order, with 25 elements for each slice. Thus, the num-
ber of input nodes is x_num = M /t = 250/10 = 25. The
number of hidden layer neurons, h_num is 64, and the number
of output nodes is 3.

Thirty-two samples from training group 1 are used to
train an LSTM classifier for each of the 6 features, and
Python+TensorFlow is applied for the network construction.
FIGURE 7 shows the change in classification accuracy of the
six classifiers with an increase in the number of iterations
during the training process.

As shown in FIGURE 7, the convergence rates of the six
classifiers vary. However, the classifiers can correctly classify
all training samples in less than 60 iterations. Thus, 6 weak
classifiers are obtained based on the samples in training
group 1.

We utilize these 6 weak classifiers to classify the samples
in training group 2 and evaluate the classifiers’ classification
ability. The feature vectors of the samples in training group
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FIGURE 6. Feature diagrams of subjects from 3 classes.

TABLE 3. Recall of the six weak classifiers for each category of samples in training group 2 and the total accuracy.

FIGURE 7. Change in the classification accuracy during the process of
training.

2 are input into their corresponding weak classifiers. The
recall of the six weak classifiers for the 3 categories of
samples in training group 2 and the total accuracy for each
classifier to training group 2 are shown in TABLE 3.

To construct a strong classifier using weak classifiers, their
classification ability needs to be calculated. Although the
recall of each weak classifier can reflect the classification

ability in a certain category, the reflection is not detailed
enough and has only the judgment results. No specific
probability value exists for a sample that belongs to
a class.

According to the definition of W j
i in Equation (7), the

output results of the fully connected layers after the LSTM
networks can be used to calculate W j

i , which represents
the normalized value of the classification ability of the i-th
classifier for the samples in category j. The classification
ability calculated by W j

i is shown in FIGURE 8, which is
not the same as the previously calculated recall. Use of the
classification abilityW j

i to construct of the strong classifier is
helpful in solving the overfitting problem caused by a small
sample size.

C. CLASSIFICATION RESULTS OF THE STRONG CLASSIFIER
After calculating the classification ability of each weak
classifier, the strong classifier is constructed according to
Equation (8) to calculatePj, j = 1, 2, 3, which is the probabil-
ity that a test sample will be classified into a specific class and
the class with the maximum probability value is the ultimate
classification result.
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FIGURE 8. Classification ability of 6 weak classifiers for the three categories of samples.

TABLE 4. The key indicators of six weak classifiers and strong classifier testing with the samples in test group.

In order to verify the effectiveness of our method, we com-
pute four key indicators of precision, recall, Fscore, and
total accuracy to evaluate the performances of the classifiers.
By verifying the six weak classifiers and one strong classifier
with thirty-four samples of the test group, the precision, recall
and Fscore indicators corresponding to each category and the
total accuracy are obtained and presented in TABLE 4.

As shown in TABLE 4, the six weak classifiers have
different classification performances to the three sample
categories, which indicates that the correlation strength of
eye movement features to specific diseases is different. For
example, weak classifier 2 has a good classification effect
for category 3, weak classifier 4 for category 1, and weak
classifier 3 for both category 1 and 2. In terms of recall, weak
classifier 1 performs best on category 2, while weak classifier
6 on category 1. Overall, among the sixweak classifiers, weak
classifier 3 has the highest total accuracy, reaching 82.35%.
Due to the classification abilities of each weak classifier for
different categories being considered, the strong classifier
gains the best performances among all indicators. Of the 34
test samples, 32 samples are classified correctly, and the total
accuracy is 94.12%. This result verified the effectiveness of
our classification method.

In addition, we draw the ROC curves and calculate the
AUC values for each classifier to compare and analyze the
performance in detail, as shown in FIGURE 9. Because
the experiment includes three categories, but these perfor-
mance indicators are only defined for binary classification,
we convert the 3 categories into a 3 binary classification
problems by selecting one category and evaluating it against
the remaining two categories to calculate the parameters.
Figures 9(a)∼ (f) respectively correspond to six weak classi-
fiers, each showing 5 curves. Three of them are ROC curves

relating to the above 3 binary classification problems, and
the other two are the average values obtained by adopting
macro and micro methods from the three curves. Meanwhile,
the AUC values were calculated for each of the 5 curves,
which also represent the classification performance.

From these figures, we can see that the performance of
the weak classifier is not stable. The performance of differ-
ent classifiers is very different, and the classification per-
formance of the same classifier for different categories is
also very different. Because the weak classifier comes from
different features, and some features are not related to some
diseases, it has no classification value. As can be seen from
the FIGURE 9, weak classifier 3 has the best performance
and weak classifier 5 has the worst performance, which are
consistent with the parameters listed in the TABLE 4.

In order to further evaluate the disease classification ability
of the strong classifier, we analyze the details of the wrongly
classified samples. As shown in TABLE 5, there is one sam-
ple in category 1 is classified into category 3 and another
in category 3 is classified into category 2. Although the
two samples are wrongly classified, the differences between
the probabilities corresponding to the real category and the
classification category is low (≈8%). Similarly, we compute
and present ROC curves and AUC values in FIGURE 10. All
the AUC values towards the three categories are close to 1,
showing better performance than that of other classifiers. It is
verified that the strong classifier has high effectiveness and
reliability in classifying these diseases.

IV. DISCUSSION
Medical research has confirmed that eye movement is related
to a variety of psychological and physical diseases. However,
due to an unclear mechanism, obtaining a direct correlation
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FIGURE 9. The ROC curves and AUC values of six LSTM classifiers (a) Weak classifier 1 (b) Weak classifier 2 (c) Weak classifier 3 (d) Weak
classifier 4 (e) Weak classifier 5 (f) Weak classifier 6.

TABLE 5. The details of the two samples wrongly classified by strong
classifier.

FIGURE 10. The ROC curves and AUC values of strong classifier.

between eye movement characteristics and disease discrimi-
nation is difficult. Thus, medical diagnosis research usually
focuses on a single disease because distinguishing among
multiple diseases is especially difficult.

Our research intends to take advantage of AI technology
and apply deep neural networks to classify diseases according
to eye movement information. During training, the effec-
tiveness of each classifier is evaluated and calculated to
automatically design the weights of these weak classifiers,
and then a strong classifier can be obtained by their weighted
combination. The strong classifier is able to classify multiple
diseases with high accuracy and can be more practical than
diagnosis methods for a single disease.

The key point of research in this paper is to design multiple
experimental schemes in the absence of prior pathological
knowledge and extract multiple features to build a classifier.
By training with two groups of training samples, the eval-
uation and selection of weak classifiers are realized, which
is helpful for the application of multiple eye information in
medical diagnosis.

The drawbacks of our study lie in several aspects: First,
during the test, the subjects are required to stay awake,
participate in the test as required, and try to keep their
heads still, which limits the scope of use. Second,there are
too few samples, resulting in the classifier not being suf-
ficiently robust. Third, the algorithm should be optimized
to reduce the calculation complexity and shorten the time
consumption. Future work focuses on designing more effec-
tive experimental schemes for specific diseases based on
the investigation of a medical mechanism to extract more
valuable features and improve the ability of classifiers to dis-
tinguish specific diseases. Additional experimental samples
should be collected to ensure the reliability of data collec-
tion and improve the robustness of the classifiers. Currently,
we are cooperating with relevant medical institutions to
design experimental schemes and conduct relevant research
on Alzheimer’s disease, Parkinson’s disease, depression, etc.

V. CONCLUSION
To deep mine eye information for maximum utilization in
medical diagnosis, AI technology is applied for self-learning
and diagnosis. A variety of eye-tracking experiments are
designed to obtain eye images, and after image processing,
pupil information is excavated and normalized feature vectors
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are formed. For each feature, a weak classifier is constructed
using an LSTM network. The ability of each weak classi-
fier is evaluated by a self-learning method to obtain their
weights, and then a strong classifier for multiple diseases is
obtained by synthesizing the weak classifiers. The effective-
ness of this method, which is validated by experiments, can
be helpful for future diagnosis of multiple diseases or other
applications.
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