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ABSTRACT This article addresses the problem of fault estimation for a quadrotor unmanned aircraft
vehicle (UAV). A robust H∞ observer is proposed to achieve fault and state estimation of a quadrotor UAV
with actuator fault in the presence of external disturbances, parameter uncertainties and nonlinear terms. The
observer can observe the system state and actuator fault simultaneously. The actuator fault estimation error
is taken as an auxiliary state to transform the original system into an augmented generalized system, and
a nonlinear robust H∞ observer is designed. Based on the Lyapunov stability theory, stability analysis was
carried out and a sufficient condition for the stability of the observer was established, which is expressed
as an LMI optimization problem to satisfy H∞ performance. Finally, the typical faults of two actuators of
a quadrotor UAV are given, and the faults and states can be estimated by using the method proposed in this
article. The results show that the proposed observer can accurately observe the system state and actuator
fault before and after the occurrence of two typical faults.

INDEX TERMS Fault estimation, observer, quadrotor, H∞.

I. INTRODUCTION
Quadrotor UAVs have the advantageous characteristics of a
simple mechanical structure, low cost, vertical take-off and
landing, and stable hovering, thereby providing a well-suited
mission platform for a wide range of military and civil-
ian applications [1]–[3]. In military applications, quadrotor
UAVs carry out detection in restricted terrains, sample col-
lection, military surveillance, and search and destroy mis-
sions. In the civilian applications, the quadrotor can be used
for image recognition, environmental monitoring, reconnais-
sance and mapping after disasters, volcanic activity monitor-
ing, and atmospheric sampling. With the further development
of the quadrotor UAVs, they will inevitably be used to per-
form an increasing range of tasks [4]–[6].

The range of tasks performed by quadrotor aircraft has
increased over the past three decades with the more in-depth
research on quadrotor aircraft. The increasing demand for
reliability, availability, safety and performance stability of
a quadrotor UAV systems has encouraged the develop-
ment of research on fault detection and isolation (FDI) and
fault-tolerant control (FTC). A key feature of this approach is
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that it aims to prevent a simple fault evolving into a serious
failure [7].

Fault-tolerant control systems may be grouped into two
main families: passive fault-tolerant control systems and
active fault-tolerant systems [8], [9].

In a passive fault-tolerant control system, deviations of
the plant parameters from their true values or deviations of
the actuators from their expected position may be efficiently
compensated by a fixed robust feedback controller [10]. How-
ever, if these deviations become excessively large and exceed
the robustness bound, some actions must be taken. Therefore,
an active fault-tolerant control architecture is needed in order
to achieve extended fault-tolerance capability.

In an active fault-tolerant control system, faults are
detected and isolated by an FDI scheme, and the controllers
are reconfigured accordingly online in real time. Accurate
fault estimation is critical for designing high-performance
active fault-tolerant control systems [11].

In recent years, with the development of system identi-
fication technology, the model-based FDI method has been
widely investigated. In this approach, a residual signal is
generated and then processed to detect the occurrence of the
fault, and then to determine the type, location and severity of
the fault [11]–[14].
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In [11], an active fault-tolerant flight control system for
sensor/actuator failures of unmanned aerial vehicles (UAVs)
is proposed. An adaptive two-stage linear Kalman filtering
algorithm is used to isolate the sensor and actuator faults and
to estimate the loss of control effectiveness and the severity
of the stuck faults in a UAV model.

Reference [12] presents a fault detection, isolation, and
accommodation algorithm for quadrotor actuator faults using
nonlinear adaptive estimation techniques. The fault diagnosis
architecture consists of a nonlinear fault detection estimator
and an array of nonlinear adaptive fault isolation estimators
designed based on the functional structures of the faults under
consideration. Adaptive thresholds for fault detection and iso-
lation are systematically designed to enhance the robustness
and fault sensitivity of the diagnostic algorithm.

In [13], a robust model-based observer for actuators fault
detection and diagnosis (FDD) is proposed and applied to a
quadrotor unmanned aerial vehicle. The observer is designed
to maximize the residual sensitivity to a fault by using theH−
index properties, and minimizing theH∞ norm for worst case
exogenous signal attenuation. Fault detection is formulated
as a Linear matrix inequality (LMI) feasibility problem for
minimizing a cost function based on a trade-off between fault
sensitivity and robustness against disturbances.

In [14], a design method based on the H−/L∞ fault
detection observer is proposed. The H− index in the finite
frequency domain is used to describe the minimum fault
sensitivity of the residual generated by the observer, and the
L∞ norm from unknown disturbance to residual is used to
describe the robust performance of the residual to distur-
bance.

However, this method cannot provide accurate information
for fault magnitude. Accurate fault estimation is also an
important basis for fault-tolerant control (FTC) tasks.

References [15] and [16] address the problem of fault esti-
mation for quadrotor UAV. A robust fault estimation observe
is proposed to achieve fault estimation of quadrotor. In both
works, observers are designed based on a linear system.

References [17] and [18] propose a novel fault estimation
observer for nonlinear and normal systems that are simultane-
ously subjected to actuator faults, sensor faults and unstruc-
tured non-parametric uncertainties. Sufficient conditions for
the existence of the proposed observer with an H∞ perfor-
mance have been derived based on the Lyapunov stability
theory. However, the parameter uncertainty of the system is
not considered.

In [19], an estimation method for actuator failure is
proposed. A parallel bank of recurrent neural network is
designed. With the trained network, the severity of actuator
failure can be accurately estimated. However, external distur-
bances have not yet been addressed in the design.

In this work, we will investigate the fault and state
estimation problems of quadrotor system with parameter
uncertainties and external disturbances. The actuator fault
estimation error is taken as an auxiliary state to transform the
original system into an augmented generalized system, and

a nonlinear robust H∞ observer is designed. Based on the
Lyapunov stability theory, a sufficient condition for the sta-
bility of the observer is established, and is expressed as an
LMI optimization problem to satisfy H∞ performance. Sim-
ulation results demonstrate the effectiveness of the proposed
method.

The main contributions of the paper are summarized as
follows:

a. Themethod proposed in this article can estimate the state
of the system and the fault of the actuator at the same time,
and can give accurate fault information when the actuator
fault occurs.

b. For the fault and state estimation of quadrotor UAV,
the parameter uncertainty, nonlinear term and external dis-
turbance are considered simultaneously.

The rest of this article is organized as follows. In Section II,
the quadrotor UAV dynamics and problem formulation are
addressed. In Section III, the proposed observer is presented.
Simulations results are presented in section VI. Finally, con-
clusions are drawn in section V.

II. MATHEMATICAL MODEL OF UAV DYNAMICS
The dynamic characteristics of an aircraft must be known
in order to estimate the state and fault of the system. The
equations governing the motion of a quadrotor are derived
in this section [20]–[22].

FIGURE 1. Quadrotor aircraft.

The derivation of nonlinear dynamics is carried out in the
ground coordinate system {xE , yE , zE } and the body coordi-
nate system {xB, yB, zB} as defined in Fig. 1. The Euler angles
of the body axes are 8 = [ϕ, θ, ψ]T with respect to the xE ,
yE and zE axes, respectively, and are referred to as roll, pitch
and yaw. Five forces act on the vehicle: the weight mg, and
the four propeller forces of magnitude Fi that act in the body
fixed direction zB = (0, 0, 1) as defined in the figure. (i = 1,
2, 3, 4 to represent four propellers respectively). Boldface
symbols are used throughout this section to denote vectors
and matrices, while non-boldface symbols such as m will
generally be used for scalars, unless specified otherwise.
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Six rigid body equations consisting of three force and three
moment equations are obtained for the UAV. The following
assumptions are made [11]:
• The aircraft is a rigid body;
• The mass of the aircraft remains constant for a relatively

short duration; and
• The xz plane of the aircraft is the plane of symmetry.
Based on the above assumptions, according to the Newton-

Euler formula, the dynamic model of a quadrotor UAV is
established as follows

Ṗ = v (1)

mv̇ = RzB
∑4

i=1
Fi − mg+ Fd (2)

8̇ = Tω (3)

J ω̇ = −ω×Jω +M f +Mg +Md (4)

where m is the mass of the aircraft, P = [x, y, z]T is
the position in the ground coordinates, v= [u, v,w]T is the
velocity vector of the quadrotor in the ground coordinate
system, g = (0, 0, g)T is the acceleration due to gravity,
ω = (p, q, r)T is the angular velocity in the body-coordinate
system, J = diag

(
Ix , Iy, Iz

)
is the moment of inertia matrix;

The transformation matrix R from the body coordinate sys-
tem to the ground coordinate system is given by

R =

 cθcψ sϕsθcψ−cϕsψ Cϕsθcψ + sϕsψ
cθ sψ sϕsθ sψ + cϕcψ cϕsθ sψ − sϕcψ
−sθ sϕcθ cϕcθ

 (5)

The transformation matrix from the triaxial angular veloc-
ity to the Euler angular velocity is given by

T =

 1 sϕ tθ cϕ tθ
0 cϕ −sϕ
0 sϕ/cθ cϕ/cθ

 (6)

where s(·) , sin (·), c(·) , cos (·), t(·) , tan (·).
The aircraft is generally in a small angle and low speed

flight state, so the relationship between the attitude angle and
angular velocity can be simplified as follows:

8̇ = ω (7)

The control torque generated by the four rotorsM f is given
by

M f =

 L (F4 − F2)
L (F3 − F1)

kg
(
ω2
1 − ω

2
2 + ω

2
3 − ω

2
4

)
 (8)

where Fi = ktω2
i ; kt and kg are the lift and drag coefficients,

respectively, and L is the distance between the aircraft axis
and the rotor axis.

The vector Mg contains the gyroscopic torques due to the
combination of the rotation of the airframe and the four rotors,
and is given by

Mg =
∑4

i=1
Ir (ω × ez) (−1)i+1 ωi (9)

where ez = (0, 0, 1)T is the unit vector in the ground coor-
dinate system, and Ir represents the moment of inertia of the
rotor;

Mg = Ir (ω1 − ω2 + ω3 − ω4)

 q
−p
0

 (10)

−ω× Jω is the gyro moment that can be expressed as

−ω× Jω =

 (Iy − Iz) qr(Iz − Ix) pr(
Ix − Iy

)
pq

 (11)

Considering the external disturbance force (moment) and
system modeling uncertainty of a quadrotor UAV system,
the sum of disturbances Fd andMd is considered:

Fd =
[
dx , dy, dz

]T (12)

Md =
[
dp, dq, dr

]T (13)

Based on the above analysis, the dynamic equations of a
quadrotor UAV are established as follows:

u̇ =
U1

m

(
CϕSθCψ + SϕSψ

)
+dx

v̇ =
U1

m

(
CϕSθSψ − SϕCψ

)
+ dy

ẇ =
U1

m
CϕCθ − g+ dz

ṗ =
1
Ix

[
LU2 +

(
Iy − Iz

)
qr
]
−
Ir
Ix
q · γ + dϕ

q̇ =
1
Iy

[LU3 + (Iz − Ix) pr]+
Ir
Iy
p · γ + dθ

ṙ =
1
Iz

[
U4 +

(
Ix − Iy

)
pq
]
+ dψ

(14)

where γ = −ω1 + ω2 − ω3 + ω4, u = [U1,U2,U3,U4]T is
the control vector.

u = Dτ (15)

D =


kt kt kt kt
0 −kt 0 kt
−kt 0 kt 0
−kg kg −kg kg

 (16)

where kt and kg are the lift and drag coefficients, respectively,
and τ = [τ1, τ2, τ3, τ4]T can be expressed as[
τ1 τ2 τ3 τ4

]T
=
[
ω2
1 ω2

2 ω2
3 ω2

4

]T (17)

III. DESIGN OF FAULT OBSERVER
The quadrotor is a typical underactuated system [23]. The
system states x and y are indirectly driven by θ and ϕ, and the
system states θ , ϕ,ψ , z are full drive subsystems. The control
structure of the aircraft is shown in Fig. 2 where (xd , yd , zd )
is the reference trajectory of the aircraft.

In this work, the problem of fault tolerance is studied by
taking the attitude control of aircraft as an example, so that
x = [ϕ, θ, ψ, p, q, r]T , and the dynamic model (14) of
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FIGURE 2. Structure of control system.

the quadrotor is written in the form of matrix that can be
expressed as:{

ẋ = Ax+ B1u+ f (x)+ Ed
y = Cx

(18)

where Ax is a linear term and A can be expressed as

A =
[
O3×3 I3×3
O3×3 O3×3

]
. (19)

B1 can be expressed as

B1 =



O3×4

0
L
Ix

0 0

0 0
L
Iy

0

0 0 0
1
Iz


. (20)

f (x) is the nonlinear term that can be expressed as

f (x) =



O3×1
1
Ix

[(
Iy − Iz

)
qr
]
−
Ir
Ix
q · γ

1
Iy

[(Iz − Ix) pr]+
Ir
Iy
p · γ

1
Iz

[(
Ix − Iy

)
pq
]


. (21)

E ∈ R6×6 is the uncertainty matrix, d ∈ R6 is the uncertainty
vector of the system, y ∈ R6 is the measurement output
vector, and C∈ R6×6 is the output matrix.
The aircraft model with actuator failure is represented as

follows: {
ẋ = Ax+ f (x)+ B

(
τ + f a

)
+ Ed

y = Cx
(22)

where B = B1D, f a ∈ R
4 denote the unknown actuator fault.

The fault observer of the system is designed based on the
following assumptions:
Assumption 1: the nonlinear term f (x) is assumed to

be known and Lipschitz about x uniformly [24], [25], i.e.,
∀x, x̂ ∈ R6, ∥∥f (x)− f (x̂)∥∥ ≤ Lf ∥∥x− x̂∥∥ (23)

where Lf is referred to as the Lipschitz constant and is inde-
pendent of x and t.

Assumption 2: when the actuator fails, the failure can be
identified, and ḟa ∈ L2 (0,∞)
For system (22), the following state observer and fault

observer are designed based on assumptions 1 and 2:
˙̂x = Ax̂+ B

(
τ + f̂ a

)
+ L

(
y− ŷ

)
+ f (x̂)

ŷ = Cx̂
˙̂f a = KCe

(24)

where x̂ ∈ R6 is the state estimation vector, f̂ a ∈ R4 is
the actuator fault deviation estimate, and L ∈ R6×6 and
K ∈ R4×6 are the observer proportional gain matrix to be
designed.

From (22) and (24), the estimation error equation can be
expressed as follows:{

ė = (A− LC) e+ Bef + f (x)− f (x̂)+ Ed
ėf = −KCe+ ḟ a

(25)

where ef = f a − f̂ a is the fault estimation error. e = x− x̂ is
the state estimation error.

Equation (25) can be represented in a more compact form
as

˙̃e = Ã̃e+ f̃ (x)+ Ẽd̃ (26)

where

ẽ =
[
e
ef

]T
(27)

Ã =
[
A− LC B
−KC O4×4

]
(28)

f̃ (x) =
[
f (x)− f

(
x̂
)

O4×4

]T
(29)

d̃ =
[
d
ḟ a

]T
(30)

Ẽ =
[

E O6×4
O4×6 I4×4

]
. (31)

The following theorem gives the existence condition of the
proposed observer satisfying the following: the observer error
dynamics (26) are asymptotically stable when d̃ = 0, namely,
there is no system uncertainty and fault, or the actuator fault
is time-invariant.
Theorem 1: Consider system (22) satisfying Assumptions

1 and 2, when d̃ = 0. If there exist positive definite matrices,
P,Q and matrices Y1, Y2 such that

� PB− CTYT2 P 0

BTP − Y2C L2f I 0 Q
P 0 −I 0
0 Q 0 −I

 < 0 (32)

where � = ATP + PA − CTYT1 − Y1C + L2f I , then the
observer error dynamics (26) are asymptotically stable.

Proof: Consider the Lyapunov function as

V (̃e) = ẽT P̃ẽ (33)
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where P̃ =
[
P 0
0 Q

]
, P ∈ R6×6 and Q ∈ R4×4 are symmetric

positive definite matrices.
Then, the time derivative of V (̃e) can be shown to be

V̇ (̃e) = ˙̃eT P̃ẽ+ ẽT P̃ ˙̃e

=

(̃
eT ÃT + f̃ T + d̃T ẼT

)
P̃ẽ+̃eT P̃

(
Ã̃e+ f̃ + Ẽd̃

)
(34)

when d̃ = 0, V̇ (̃e) can be expressed as

V̇ (̃e) = ẽT
(
ÃT P̃ + P̃Ã

)
ẽ+ f̃ T P̃ẽ+ ẽT P̃f̃

≤ ẽT
(
ÃT P̃ + P̃Ã

)
ẽ+ f̃ T f̃ + ẽT P̃P̃ẽ (35)

In this article, we agree that the vector norm is ‖X‖ =√
XTX

f̃ T f̃ =
∥∥̃f ∥∥2 = ∥∥f (x)− f (x̂)∥∥2

≤ L2f
∥∥x− x̂∥∥2 = L2f ‖̃e‖

2
= L2f ẽ

T ẽ (36)

V̇ (̃e) ≤ ẽT
(
ÃT P̃ + P̃Ã

)
ẽ+ L2f ẽ

T ẽ+ ẽT P̃P̃ẽ

≤ ẽT (ÃT P̃ + P̃Ã+ L2f I + P̃P̃ )̃e (37)

Substituting Ã =
[
A− LC B
−KC 0

]
, P̃ =

[
P 0
0 Q

]
into (37),

we obtain

V̇ (̃e) ≤ ẽT
[

�+ PP PB− CTKTQ
BTP − QKC L2f I C QQ

]
ẽ (38)

where � = ATP + PA− CTLTP − PLC + L2f I
Let Y1 = PL, Y2 = QK , then (38) can be expressed

as

V̇ (̃e) ≤ ẽT
[

�+ PP PB− CTYT2
BTP − Y2C L2f I + QQ

]
ẽ (39)

where � = ATP + PA− CTYT1 − Y1C + L2f I
Using the Schur complement, condition (32) is equivalent

to [
�+ PP PB− CTYT2

BTP − Y2C L2f I + QQ

]
< 0 (40)

substituting (40) into (39), we obtain

V̇ (̃e) < 0. (41)

Thus, ẽ→ 0 as t → 0. This completes the proof.
The following theorem gives the existence condition of

the proposed observer when the external disturbance and the
actuator fault exist.
Theorem 2: Consider system (22) satisfying Assump-

tions 1 and 2. Given a positive scalar, if there exist positive
definite matrices P,Q and matrices Y1, Y2 such that

�+ I PB− CTYT2 P 0 PE 0

BTP − Y2C
(
L2f + 1

)
I 0 Q 0 Q

P 0 −I 0 0 0
0 Q 0 −I 0 0

ETP 0 0 0 −γ2I 0

0 Q 0 0 0 −γ2I


< 0 (42)

then the observer error dynamics (26) are asymptotically
stable and satisfy H∞ performance ‖̃e‖∞ ≤ γ

∥∥̃d∥∥∞,
Proof. By using (34) and (39), V̇ (̃e) can be

derived as

V̇ (̃e) ≤ ẽT
[

�+ PP PB− CTYT
2

BTP − Y2C L2f I + QQ

]
ẽ

+ ẽT P̃Ẽd̃ + d̃T ẼT P̃ẽ (43)

Let

H = V̇ (̃e)+ ẽT ẽ− γ 2d̃T d̃ (44)

Then, we have

H ≤ ẽT
[
�+ PP + I PB− CTYT

2
BTP − Y2C L2f I + QQ+ I

]
ẽ

+ ẽT P̃Ẽd̃ + d̃T ẼT P̃ẽ− γ 2d̃T d̃

=

[
ẽT d̃T

] [ �2 P̃Ẽ
ẼT P̃ −γ 2I

][
ẽ
d̃

]
(45)

where

�2 =

[
�+ PP + I PB− CTYT

2
BTP − Y2C L2f I + QQ+ I

]
(46)

Write condition (42) as �1 P̃ P̃Ẽ
P̃ −I 0
ẽT P̃ 0 −γ 2I

 < 0 (47)

where

�1 =

[
�+ I PB− CTYT

2

BTP − Y2C
(
L2f + 1

)
I

]
(48)

Using the Schur complement, (47) is equivalent to

�1 + P̃P̃ +
1

γ 2
P̃ẼẼT P̃ < 0 (49)

Because �2 = �1 + P̃P̃, (49) can be written as

�2 +
1

γ 2
P̃ẼẼT P̃ < 0 (50)

Using the Schur complement, condition (50) is
equivalent to [

�2 P̃Ẽ
ẼT P̃ −γ 2I

]
< 0 (51)

(51) indicates that H in (45) is negative definite.
As a result, under zero initial conditions, we have

J =
∫
∞

0

(̃
eT ẽ− γ 2d̃T d̃

)
dt

=

∫
∞

0

(̃
eT ẽ− γ 2d̃T d̃ + V̇

)
dt −

∫
∞

0
V̇dt

=

∫
∞

0

(̃
eT ẽ− γ 2d̃T d̃ + V̇

)
dt − (V (∞)− V (0))
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≤

∫
∞

0

(̃
eT ẽ− γ 2d̃T d̃ + V̇

)
dt

=

∫
∞

0
Hdt < 0 (52)

which means∫
∞

0

(̃
eT ẽ

)
dt ≤ γ 2

∫
∞

0

(
d̃T d̃

)
dt (53)

Therefore, the H∞ performance ‖̃e‖∞ ≤ γ
∥∥̃d∥∥∞ has been

established and the proof is complete.
The following theorem gives the conditions for the exis-

tence of the observer when the system has parameter uncer-
tainty.
Lemma 1: LetU,W,V be any given real matrixes that have

the corresponding dimensions. For a given symmetric matrix
M , the following statements are equivalent.

(a) For any given matrix V that meets VTV ≤ I , U,W,V
andM satisfy

M + UVW +WTVTUT < 0 (54)

(b) There exists a real number ε > 0 that makes

M + ε−1UUT
+ εWTW < 0 (55)

Theorem 3: Consider system (22) satisfying Assumptions
1 and 2. The parameter uncertainty satisfies the conditions(

1A 1B
)
= HF(E1 E2 ) (56)

where H,E1,E2 are constant matrices with the correspond-
ing dimensions, and F is an unknown matrix and satisfies
FTF≤I , Given a positive scalar γ , if there exist positive
definite matrices P,Q, matrices Y1, Y2 and positive scalar
ε, such that (57) then the observer error dynamics (26) are
asymptotically stable and satisfy H∞ performance ‖̃e‖∞ ≤
γ
∥∥̃d∥∥
∞
. Furthermore, the proportional gains L and K can be

computed respectively as L = P−1Y1, K = Q−1Y2



�+ I PB− CTYT2 P 0 PE 0 ET1 PH

BTP − Y2C
(
L2f + 1

)
I 0 Q 0 Q ET2 0

P 0 − I 0 0 0 0 0
0 Q 0 − I 0 0 0 0

ETP 0 0 0 − γ2I 0 0 0

0 Q 0 0 0 − γ2I 0 0
E1 E2 0 0 0 0 0 0

HTP 0 0 0 0 0 0 0

 < 0

(57)

Proof: Let

Z =



�+ I PB− CTYT2 P 0 PE 0

BTP − Y2C
(
L2f + 1

)
I 0 Q 0 Q

P 0 −I 0 0 0
0 Q 0 −I 0 0

ETP 0 0 0 −γ2I 0

0 Q 0 0 0 −γ2I


(58)

Substituting A and B in (42) with A+1A and B+1B, and
at the same time substituting (56) into (42) as follows,

Z+M1FM2 +MT
2F

TMT
1 < 0 (59)

FIGURE 3. Fault estimation of the actuator for a proportional fault.

FIGURE 4. Attitude estimation of actuator for a proportional failure.

whereM1 =


PH
0
0
0
0
0

,M2 =
[
E1 E2 0 0 0 0

]
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TABLE 1. Main parameters of the Quadrotor UAV.

FIGURE 5. Failure estimation of the actuator for a time varying fault.

According to lemma 1, (59) is equivalent to

Z+ εM1MT
1 + ε

−1MT
2M2 < 0 (60)

Using the Schur complement, (60) is equivalent to Z MT
2 M1

M2 −εI 0
MT

1 0 −ε−1I

 < 0 (61)

Multiply (61) both on the left-hand and right-hand sides by I 0 0
0 I 0
0 0 εI


The proof is completed.
The variables in the linear matrix (57) are P, Q, ε, Y1, Y2,

so that the controller design finds the feasible solution of the
linear matrix inequality.
To obtain a robust fault estimation observer for the sys-

tem (22), using the LMI toolbox in MATLAB, the convex
optimization problem with LMI constraints is solved.

IV. SIMULATION RESULT
To verify the correctness and effectiveness of the proposed
robust fault estimation observer design in quadrotor aircraft,
the method proposed in this article is compared to the results
of reference [15], and the following two kinds of actuator
faults are simulated and analyzed. The failure is expressed as
τi (t) = (1− λi) τdi (t) , t ≥ ti, i = 1, 2, 3, 4, τi (t) , τdi (t)
represents the actual input and design input of the ith rotor of

FIGURE 6. Attitude estimation for a time varying fault.

the system, and ti represents the time of failure. λi represents
the severity of the ith rotor fault, and the larger λi, the more
serious the fault. Table 1 lists the parameters of the quadrotor
model. The desired attitude trajectories in the following
simulations are chosen as ϕd = 10 sin (0.2t) deg, θd =
0, ψd = 0. Considering the imbalance of the body
counterweight [20], the constant disturbance added to the
attitude loop is

[
dϕ, dθ , dψ

]
= [0.5,−0.5, 0.5]. The

uncertain parameter can be expressed asH = [1, 1, 1, 1, 1, 1],
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E1 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T ,F = sin(t), E2 =
10−5 × [0.3, 0.3, 0.3, 0.3, 0.3, 0.3], Lf = 0.3

A. PROPORTIONAL FAULT SIMULATION
Proportional fault means that the lift and torque moment of
the propeller decrease at the same rotation speed, but the lift
and the square of speed, the torque moment torque and the
square of speed still meet the linear relationship. Proportional
fault means λi = constant. The loss of propeller blades is an
example of such a fault [26].

For example, regarding the first rotor of the aircraft, it is
assumed that there is a proportional failure with a failure
factor of 0.3. The fault occurred at 40 s. The method of fault
estimation is used to estimate the fault. The results of fault
estimation are illustrated in Figs. 3 and 4.

These figures show that when the actuator has a propor-
tional fault, the proposed observer can accurately estimate the
state before and after the actuator failure, and can success-
fully estimate the actuator fault. Compared to the method in
reference [15], the proposed observer has a higher estimation
speed and higher estimation accuracy.

B. TIME VARYING FAULT SIMULATION
For a time-varying failure such as rotor speed instability, the
failure loss ratio changes with time. The time varying fault
is expressed as λi = 0.02 sin (0.5(t − 10))+ 0.002 (t − 10).
The fault occurred at 10 s.

Fig. 5 shows the estimation results of a time-varying fault.
Clearly, the proposed method is also valid for time-varying
faults. Fig. 6 shows the attitude estimation under a time
varying-fault. It is observed that the proposedmethod has bet-
ter estimation performance than the method of reference [15].

V. CONCLUSION
In this article, the problem of fault estimation of an actuator
of a quadrotor UAV with parameter uncertainty and external
disturbance is studied. A new method for the simultaneous
estimation of the system state and actuator fault is proposed.
Specifically, the actuator fault estimation error is taken as
an auxiliary state to transform the original system into an
augmented generalized system, and nonlinear robust H∞
observer is designed. Based on the Lyapunov stability theory,
a sufficient condition for the observer stability is established,
and is expressed as an LMI optimization problem to satisfy
H∞ performance. Comparison of the simulations under dif-
ferent actuator fault scenarios demonstrate that the proposed
observer can effectively estimate the system state and actuator
fault simultaneously. In the future, we will make further
improvements and verify the effectiveness of the proposed
observer through real-time flight experiments on a quadrotor
UAV.
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