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ABSTRACT Parafoil systems are unique steerable decelerator systems. However, due to the strong
nonlinearity caused by the flexibility of the canopy and the suspension lines, the existing dynamic models of
parafoil systems are not sufficiently accurate enough; and hence, existing model-dependent control methods
are not suitable for practical applications. To effectively eliminate the influence of inaccurate models on
trajectory tracking, this paper introduces a novel real-time model-independent control method named the
model-free adaptive control (MFAC) method. The stability of the MFAC method is theoretically deduced,
and the robustness of this approach is analyzed and demonstrated by the Monte Carlo method. To assess the
performance of the MFACmethod, a six-degree-of-freedom (DOF) dynamic model is built, and then a series
of simulations are performed under different conditions. The simulation results demonstrate the effectiveness
of the proposed MFAC method in trajectory tracking. Compared with the proportional/integral/derivative
(PID) control method and the active disturbance rejection control (ADRC) method, the MFAC method has
higher precision and lower energy consumption, especially under complex disturbance conditions.

INDEX TERMS Parafoil system, dynamics, model-free adaptive control, robustness.

I. INTRODUCTION
The parafoil system is a type of flexible air vehicle consisting
of a canopy, suspension lines, a payload, and an airborne
guidance unit (AGU), as shown in Fig. 1. The canopy pro-
vides lift and drag for the vehicle, and the suspension lines
connect the canopy to the payload. Actuators, sensors, com-
puters, and complementary components are housed in the
AGU, which is strapped in between the parafoil and the pay-
load or atop the payload. The lateral and longitudinal control
of the parafoil system is achieved through the deflection of the
steering lines attached to the left and right trailing edge (TE)
of the canopy [1]. Asymmetric deflection leads to a turning
maneuver, and symmetric deflection provides speed control
of impact on the ground. These controls allow the parafoil
systems to steer in a horizontal direction during descent [2].

Parafoil systems have been applied for decades to improve
the accuracy of the point of impact (PI) [3]. Many researchers
have studied some aspects of parafoil systems, such as
dynamic modeling [4]–[6], flight testing [7], [8] and control.
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FIGURE 1. Parafoil system.

Nathan Slegers and Mark Costello introduced a model
predictive control method for a parafoil system. This method
needs a precise mathematical model to project future states
and subsequently use these states to determine control
actions [9]. Tao and Sun proposed another accurate trajectory
tracking control method based on active disturbance rejec-
tion control (ADRC). This method could be used without
having a precise dynamic model of the parafoil system and
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accounted for external disturbances by utilizing disturbance
estimations from an extended state observer (ESO) [10].
Carter et al. implemented a proportional/integral/derivative
(PID)-based control method for parafoil systems, which had
added features to address system constraints and used feed-
forward logic to improve response time. The simulations and
hardware-in-the-loop flight tests showed that the system
achieved an expected delivery accuracy [11].

Most of the abovementioned control methods were not
based on parafoil models but simulations or experimental
data. The factors contributing to the accuracy of the model
are inherent uncertainties in parafoil systems, such as strongly
nonlinear systems. For example, the canopy is made of a flex-
ible fabric, which makes it challenging to construct a precise
dynamic model. In practical applications, small disturbances
could cause changes in the structural shape of the canopy,
not to mention the disturbances caused by gusts and control
inputs. Structural changes cause changes in aerodynamic
forces, which are difficult to simulate through modeling and
simulation. Moreover, aerodynamic parameters are not accu-
rate for most parafoil systems, and the computed coefficients
should only be used as estimations rather than precise val-
ues. Precise aerodynamic parameters are generally obtained
from wind tunnel tests, but they are still different from those
obtained in real flight tests. Furthermore, the suspension lines
attached to the canopy and payload are not always in tension.
This phenomenon is difficult to consider in existing dynamic
models.

More factors are needed to account for the position and
shifting of the pressure center of the flexible canopy, the sep-
aration of flow, the forces resulting from flexible TE deflec-
tion, the role of derivatives, and a variety of unsteady effects.
Hence, a model-independent control method is suitable for
parafoil systems.

This paper introduces a new trajectory tracking method
for parafoil systems named the model-free adaptive con-
trol (MFAC) method, which can be constructed only using
input/output (I/O) data. The MFAC method is a data-driven
control (DDC) method that was developed by Hou in the
1990s for a discrete-time nonlinear single-input/single-output
(SISO) system [12]. TheMFACmethod relies only on on-line
measurement data of a parafoil system and does not depend
on any model information or any external test signals. The
applicability and effectiveness of this method have been ver-
ified through rigorous mathematical analyses and extensive
simulations [13]. In 2019, this method was improved and
introduced to a category of nonlinearmultiple-input/multiple-
output (MIMO) systems.

As a representative DDC algorithm, the MFAC algorithm
has become a popular research topic in recent years and has
been applied in several industrial control fields [14]–[16],
such as transportation, oil refining, and chemical process-
ing [19]. In addition, it has been used in vehicle control,
such as launch vehicle control and unmanned surface heading
control [17] - [19]. The MFAC method controls the attitudes
of launch vehicles, and simulations have demonstrated the

effectiveness of this control method by comparing it with
the traditional PID control method [17]. In reference [18],
the improved MFAC method based on iterative feedback
tuning (IFT-MFAC) was applied to control three channels
of a launch vehicle. In contrast with the PID method, the
MFAC method was not sensitive to system time delay or
model destabilization in the heading control of an unmanned
surface vehicle [19].

This paper applies the MFAC method to parafoil sys-
tems, utilizing nothing but real-time I/O data. Hence, this
work represents a new solution for parafoil system control
and a novel application of the MFAC method. A controller
is established for the MFAC method, and its stability and
robustness are verified. In addition, using the Monte Carlo
method, the robustness of this controller is analyzed through
thousands of simulations that imitate real flight situations.
To provide corresponding flight data and assess the control
performance of the MFAC method, a six-degree-of-freedom
(DOF) dynamic model is built, and a series of simulation
tests are performed. The results from this method are then
comparedwith those from the PID control method andADRC
method.

II. PARAFOIL SYSTEM DYNAMICS
No dynamic models are required to establish the MFAC algo-
rithm. However, as an on-line control approach, the MFAC
method needs real-time system status data to iteratively calcu-
late the value of the control input in simulations. In addition,
the control performance of the MFAC controller should be
evaluated by a simulated dynamic model. Therefore, a six-
DOF dynamic model of the parafoil system is established in
this section. This model transmits the system status data to the
controller module and receives the value of the control input.

With the exception of movable parafoil brakes, the parafoil
canopy is considered to be a fixed shape once it has com-
pletely inflated with the suspension lines in tension. The
whole system is considered a rigid body in the simula-
tions, which is the fundamental hypothesis adopted by most
researchers. The dynamic system used in this work has six
DOFs. As shown in Fig. 2, three coordinate systems are used:
the body-fixed frame {b}, the wind frame {w}, and the initial
frame {i} [20].

The body-fixed frame is fixed to the center of mass of the
system and comprises the following axes:

• xb: positive direction is forward along the longitudinal
axis of the system in the plane of symmetry of the
system;

• zb: positive direction points down in the plane of sym-
metry of the system, perpendicular to the xb axis;

• yb: perpendicular to the xb -zb plane, wherein the positive
direction is determined by the right-hand rule.

The wind frame {w} is originally at the center of gravity
of the system and comprises the following axes:

• xw: positive direction is forward along the direction of
the velocity vector relative to the air;
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FIGURE 2. Dynamic model of the parafoil system.

• zw: positive direction points down in the plane of sym-
metry of the system, perpendicular to the xw axis;

• yw: perpendicular to the xw-zw plane, wherein the posi-
tive direction is determined by the right-hand rule.

The initial frame {i} is fixed relative to the surface of the
Earth and comprises the following axes:
• xi: positive direction is true North;
• yi: positive direction is to the East;
• zi: positive direction is towards the center of the Earth.
According to Newton’s second law and rotational dynam-

ics, dynamic equations are formed by summing the forces and
moments about the center of mass of the system and equating
them to the time derivations of the linear and angular velocity.
The dynamic functions of the parafoil system are expressed
as follows:

(m+ mapp)

 u̇
v̇
ẇ

 = Fb − mS (ω)

 u
v
w

+ Fapp
=

b
gR · G+

b
aR · Fa − mS (ω)

 u
v
w

+ Fapp (1)

(I + Iapp)

 ṗq̇
ṙ

 = Mb − S (ω) I

 pq
r

+Mapp (2)

where [u v w]T is the velocity of the system in trame {b}; [p q
r]T is the angular velocity of the system in frame {b};m
and I are the mass and inertial mass of the system, respec-
tively; F,G andM represent the force, gravity, and moment,
respectively, for which the subscript indicates the frame;mapp
represents the apparent mass; and Fapp and Mapp represent
the mean force and moment about the apparent mass. The
apparent mass of the system is ignored to simplify the model
simulation.

b
i R is the transformation matrix from the initial frame to the

body frame, which is expressed as follows:

b
i R =

 cψcθ sψcθ −sθ
cψ sθ sφ − sψcφ sψ sθ sφ + cψcφ cθ sφ
cψ sθcφ + sψ sφ sψ sθcφ − cψ sφ cθcφ

 (3)

where ϕ, θ , andψ are the roll, pitch and yaw, respectively, and
c and s are sine and cosine functions, respectively, as shown
in the following expression:

c ≡ cos, s ≡ sin .

b
wR is the transformation matrix from the wind frame {w}

to the body frame {b}, which is expressed as follows:

b
wR =

 cαcβ cαsβ −sα
−sβ cβ 0
sαcβ sαsβ cα

 (4)

The angle of attack α and angle of sideslip β are deter-
mined by the components of the airspeed vector Va in the {b}
coordination system, [vx , vy, vz], as shown in the following
equation:

α = tan−1
(
vz
vx

)
, β = tan−1

 vy√
v2x + v2z

 . (5)

The dynamics equations are established in body-fixed
frame which is non-inertial frame, therefore, a skew-
symmetric matrix, S(ω), is used which is expressed as
follows:

S (ω) =

 0 −r q
r 0 −p
−q p 0

 . (6)

Fa is the aerodynamic force in the {w} frame, which can
be expressed as follows:

Fa =
1
2
ρV 2

a S

CD0 + CDα2α2 + CDδsδsCYββ
CL0 + CLαα + CLδsδs

 , (7)

Mb =
ρV 2

a S
2


b
(
Clββ + b

2Va
Clpp+ b

2Va
Clrr + Clδaδa

)
c
(
Cm0 + Cmαα + c

2Va
Cmqq

)
b
(
Cnββ + b

2Va
Cnpp+ b

2Va
Cnrr + Cnδaδa

)


(8)

where CD0, CDα2, CDδs, CYβ , CL0, CLα , CLδs Clβ , Clp, Clr ,
Clδa, Cm0, Cmα , Cmq, Cnβ , Cnp, Cnr , and Cnδa are aerody-
namic coefficients, S is the area of the canopy, ρ is the
density of the environment, δs is symmetric TE deflection,
δa is asymmetric TE deflection, and δl and δr represent the
left-side and right-side TE deflection, respectively. Accord-
ingly, the symmetric and asymmetric TE deflection can be
expressed as follows:

δa = δl − δr , δs = min(δl, δr ) (9)

The kinematic equations of the parafoil system are as
follows and each part has been mentioned above. The wind
velocity is expressed in inertial frame. vxvy

vz

 =
 u
v
w

− b
i R

windxwindy
windz

 (10)
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 φ̇θ̇
ψ̇

 =
 1 sφsθ/cθ cφsθ/cθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 pq
r

 (11)

III. CONTROLLER CONSTRUCTION
The model-free control method—a typical DDC method—
was first proposed by Hou in 1994 for a class of discrete-time
nonlinear systems. In this method, only the measured I/O data
from the controlled closed-loop system are used for controller
design and stability analysis, without any model dynamics.
The stability and convergence of the MFAC scheme for a
regulation problem were proposed in 2011 by Pro. Hou [21].

The essential idea of the MFAC method is to use an equiv-
alent linearized dynamic model and a novel pseudopartial
derivative (PPD) at the current operation point to represent
the general discrete-time nonlinear system [21]. The MFAC
controller design process is detailed hereafter.

For a nonlinear discrete-time system, the following expres-
sion can be obtained:

yk+1 = f (yk , yk−1, · · · , yk−ny , uk , uk−1, · · · , uk−nu ) (12)

where uk ∈ Rm and yk ∈ Rm are the system input and output
at time k , respectively, and ny and nu are integers.
The nonlinear system (12) satisfies the Lipschitz condition,

except for finite moments [22]. Hence,for ∀ k1 6= k2, k1,
k2 ≥ 0 and uk1 6= uk2, the system obeys the following
inequality: ∥∥yk1+1 − yk2+1∥∥ ≤ b ∥∥uk1 − uk2∥∥ (13)

where b is a constant and b > 0.
There exists a time-varying parameter �k , named the

PPD, and the system can be described with the following
expression:

yk+1 = yk +�k1uk , (14)

1yk+1 = �k1uk (15)

The estimation algorithm for the time-varying parameter
should be considered to design an optimal controller. The
criterion function of the control input is established as shown
in (16).

R(uk ) =
∥∥∥ydk+1 − yk+1∥∥∥2 + α ‖uk − uk−1‖2 (16)

where α >0 is the weighting factor for penalizing drastic
input changes and ydk+1 is the desired output.
By taking a derivative with respect to uk and substitut-

ing (14) into the function, the following expression can be
obtained:
∂R(uk )
∂uk

= −2�k

[
ydk+1 − yk−�k (uk−uk−1)

]
uk+2α(uk−uk−1)

(17)

Then, by setting the function equal to zero and simplifying,
the following expression is obtained:

uk = uk−1 +
�k

α + (�k )2
(ydk+1 − yk ) (18)

Similar to the estimated input function, the PPD criterion
function should be constructed as follows:

R(�k ) = |1yk −�k1uk−1|2 + τ |�k −�k−1|
2 (19)

where τ > 0 is the weighting factor for penalizing drastic
changes in the PPD values.

By taking a derivative with respect to�k , setting the func-
tion equal to zero and simplifying, the following expression
is obtained:

∂R(�k )
�k
= −2(1yk −�k1uk−1)1uk−1 + 2τ (�k −�k−1) = 0

(20)

Then, the PPD estimation function is expressed as follows:

�̂k =
τ

τ +1u2k−1
�̂k−1 +

1y1uk−1
τ +1u2k−1

= �̂k−1 +
1uk−1

τ +1u2k−1
(1yk − �̂k−11uk−1) (21)

where �̂ is an estimation of the system PPD �.
Hence, the control strategy has been proposed and

expressed as follows:

�̂k = �̂k−1 +
κ1uk−1
τ +1u2k−1

(1yk − �̂k−11uk−1) (22)

uk = uk−1 +
β�̂k (ydk+1 − yk )

α +
(
�̂k

)2 (23)

where β ∈(0,1] and κ ∈(0,1] are stepping factors and τ > 0
and α > 0 are weighting factors.
β and κ are substituted into the control functions to make

themmore universal and control the convergence speed of the
estimated PPD or control value.

A resetting algorithm is proposed to strengthen the control-
ling effect of the time-varying system.

If
∣∣∣�̂k

∣∣∣ ≤ ε, |1uk−1| ≤ ε or sign(�̂k ) 6= sign(�̂1),

then �̂k = �̂1, where ε is a small positive real number.
The final MFAC functions of the discrete-time nonlinear

system are given as shown in (18) and (20). A process flow
diagram of the MFAC method is presented in Fig. 3.

IV. STABILITY AND ROBUSTNESS ANALYSIS
Having proposed theMFAC controller functions, the stability
and robustness of this method must be analyzed. Two steps
are performed to analyze the stability of the MFAC method:
the first step is to analyze the stability of the estimated PPD,
whereas the second step is to analyze the stability of the
MFAC method. The approach to the robustness analysis is
similar to that used for the stability analysis.
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FIGURE 3. Process flow diagram of the MFAC method.

A. STABILITY ANALYSIS OF THE ESTIMATED PPD
In this section, the stability of the estimated PPD is analyzed
briefly.

First, a nonlinear system should be described in mathe-
matical form. For a nonlinear system that satisfies (13)-(15),
|�k| ≤ b is reasonable.

If �̂k satisfies the following conditions, it has obvious
bounds:∣∣∣�̂k

∣∣∣ ≤ ε, |1uk−1| ≤ ε or sign(�̂k ) 6= sign(�̂1)

In other conditions, the error in the estimated PPD is
defined as follows:

�̄k = �̂k −�k (24)

By combining (22) and (24), the following equation is
obtained:

�̄k = �̂k−1 +
κ1uk−1
τ +1u2k−1

(1yk − �̂k−11uk−1)−�k (25)

This function can be rearranged as follows:

�̄k = (1−
κ1u2k−1
τ +1u2k−1

)�̂k−1 +
κ1uk−1
τ +1u2k−1

1yk −�k

= (1−
κ1u2k−1
τ +1u2k−1

)(�̄k−1 +�k−1)

+
κ1uk−1
τ +1u2k−1

1yk −�k (26)

After additional rearrangement, the following expression
can be obtained:

�̄k = (1−
κ1u2k−1
τ +1u2k−1

)�̄k−1 +�k−1 −�k

+
κ1uk−1
τ +1u2k−1

(1yk −�k−11uk−1) (27)

The last part of the function satisfies the nonlinear system
definition and is equal to zero. Thus, the function takes the
following form:

�̄k = (1−
κ1u2k−1
τ +1u2k−1

)�̄k−1 +�k−1 −�k . (28)

Then, take the absolute value of this function as follows:

∣∣�̄k
∣∣ = ∣∣∣∣∣(1− κ1u2k−1

τ +1u2k−1
)�̄k−1 +�k−1 −�k

∣∣∣∣∣
≤

∣∣∣∣∣(1− κ1u2k−1
τ +1u2k−1

)

∣∣∣∣∣ ∣∣�̄k−1
∣∣+ |�k−1 −�k | (29)

The triangle inequality is used in this equation and is
expressed as follows:

|a+ b| ≤ |a| + |b| .

Part of the function, κ1u2k−1/(τ +1u
2
k−1), is a monoton-

ically increasing function about 1u2k−1, and the minimum
value of1uk−1 is ε. Thus, this part of the function is not less
than κε2/(τ + ε2). Moreover, the coefficient of

∣∣�̄k−1
∣∣ has

the following bounds:

0 ≤

∣∣∣∣∣1− κ1u2k−1
τ +1u2k−1

∣∣∣∣∣ ≤
∣∣∣∣1− κε2

τ + ε2

∣∣∣∣ = D1 < 1 (30)

After simplification, (30) reduces to the following
expression: ∣∣�̄k

∣∣ ≤ D1
∣∣�̄k−1

∣∣+ |�k−1 −�k | (31)

As previously mentioned, |�k| ≤ b. Hence, the second part
of (29) can be expressed as follows:

|�k−1 −�k | ≤ 2b (32)

Furthermore, the bounds of the error in the estimated PPD
can be expressed as follows:∣∣�̄k

∣∣ ≤ D1
∣∣�̄k−1

∣∣+ 2b ≤ D2
1

∣∣�̄k−2
∣∣+ 2bD1 + 2b

≤ · · · ≤ Dk−11

∣∣�̄1
∣∣+ 2b(1− Dk−11 )1

1− D1
(33)

Through this deduction,
∣∣�̄k

∣∣ is shown to have the same

bounds as
∣∣∣�̂k

∣∣∣, the estimated PPD.

B. STABILITY ANALYSIS OF THE CONTROL SYSTEM
The tracking error of the nonlinear system is defined as
follows:

Ek+1 = yd − yk+1 (34)

where yd is the desired trajectory, which remains constant.
By substituting (14) into (34), the following expression can
be obtained:

Ek+1 = yd − yk −�k1uk (35)
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According to (24), 1uk can be expressed as follows:

1uk =
β�̂k (yd − yk )

α +
(
�̂k

)2 = β�̂kEk

α +
(
�̂k

)2 (36)

Hence, the tracking error can be transformed into the follow-
ing expression:

Ek+1 = (1−
β�̂k�k

α +
(
�̂k

)2 )Ek (37)

Considering the resetting algorithm, �̂k and �k remain
positive or negative, and �̂k�k is positive. Thus, the follow-
ing expression is correct:

0 < M1 ≤
�̂k�k

α + (�̂k )2
≤

b�̂kk

α + (�̂k )2
(38)

The fundamental inequality, shown hereafter, helps to sim-
plify this function:

a2 + b2 ≥ 2ab

where a and b are real numbers.
Thus, (38) can be transformed into the following

expression:

0 < M1 ≤
b�̂k

α + (�̂k )2
≤

b�̂k

2
√
α�̂k

=
b

2
√
α

(39)

Since α > αmin = b2/4, the bounds in (39) can be
expressed as 0 < M1 < 1. Thus, the first part of the tracking
error can be expressed as follows:

1−
β�̂k�k

α +
(
�̂k

)2 ≤ 1− βM1 = D2 < 1 (40)

Now, reconsider the tracking error and take its absolute
value as follows:

|Ek+1| =

∣∣∣∣∣∣∣(1−
β�̂k�k

α +
(
�̂k

)2 )Ek
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣1−
β�̂k�k

α +
(
�̂k

)2
∣∣∣∣∣∣∣ |Ek |

≤ D2 |Ek | (41)

Through the iteration algorithm, the astringency of Ek will
be verified:

|Ek+1| ≤ D2 |Ek | ≤ · · · ≤ Dk2 |E1| (42)

lim
k→∞
|Ek+1| = 0 (43)

The increment of the control value is expressed as shown
in (36). By taking the absolute value and combining it
with (42), the following useful expression can be obtained:

|1uk | =

∣∣∣∣∣∣∣
β�̂k

α +
(
�̂k

)2
∣∣∣∣∣∣∣ |Ek | ≤

∣∣∣∣∣ β�̂k

2
√
α�̂k

∣∣∣∣∣ |Ek |
<

∣∣∣∣βb
∣∣∣∣ |Ek | = M2 |Ek | (44)

lim
k→∞
|1uk | = 0 (45)

whereM2 is a limited number.
Considering the control value function and the iteration

method, the control system stability analysis is expressed as
follows, which verifies that the control value is bounded.

|uk | = |uk − uk−1 + uk−1| ≤ |uk − uk−1| + |uk−1|

≤ · · · ≤ |uk − uk−1| + |uk−1 − uk−2|

+ · · · + |u2 − u1| + |u1|

= |1uk | + |1uk−1| + · · · + |1u2| + |u1|

< M2(|Ek | + |Ek−1| + · · · + |E2|)+ |u1|

≤ M2
d2

1− d2
|E1| + |u1| (46)

As shown in the process above, the estimated PPD and the
control value of the MFAC method are both bounded and
stable.

C. ROBUSTNESS ANALYSIS
In real flight circumstances, system status data are mixed
with disturbances. Hence, ymk is remarked as measured status
data, which contains the real status and measurement error as
follows:

ymk = yk + ςk (47)

where ςk is the measurement error, which has the following
bounds:

|ςk | ≤ bm (48)

The function of the MFAC method takes the following
form, whereas the resetting algorithm remains the same.

�̂k = �̂k−1 +
κ1uk−1
τ +1u2k−1

(1ymk − �̂k−11uk−1) (49)

uk = uk−1 +
β�̂k (ydk+1 − y

m
k )

α +
(
�̂k

)2 (50)

Moreover, (25) transforms as follows:

�̄k=�̂k−1+
κ1uk−1
τ+1u2k−1

(1ymk −�̂k−11uk−1)−�k (51)

According to the definition of ymk , the following expression
can be obtained:

1ymk = 1yk +1ςk (52)

By combining (51) and (52), the following expression can
be obtained:

�̄k = (1−
κ1u2k−1
τ +1u2k−1

)�̄k−1

+
κ1uk−1
τ +1u2k−1

1ςk +�k−1 −�k (53)
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If |1uk−1| 6= 0, then the following expression is correct:

κ |1uk−1|

τ +1u2k−1
=

κ
τ

|1uk−1|
+ |1uk−1|

≤
κ

2
√
τ

(54)

Then, after taking the absolute value of the second part
of (53), the following expression can be obtained:∣∣∣∣∣ κ1uk−1τ +1u2k−1

1ςk +�k−1 −�k

∣∣∣∣∣
≤

∣∣∣∣∣ κ1uk−1τ +1u2k−1

∣∣∣∣∣ |1ςk | + |�k−1 −�k |

≤
κbm
τ
+ 2b (55)

Note that λ and µ are defined as follows, wherein (58) is
derived from (53).

λ =
κbm
τ
+ 2b (56)

µ = 1−
κε2

τ + ε2
(57)∣∣�̄k

∣∣ ≤ µ ∣∣�̄k−1
∣∣+ λ ≤ µ2 ∣∣�̄k−2

∣∣+ λµ+ λ
≤ · · · ≤ µk−1

∣∣�̄1
∣∣+ λ

1− µ
(58)

Thus, the PPD is still bounded even with the disturbance.
The control value should be verified to have bounds.

Note that the definition in (36) transforms as follows:

Emk+1 = yd − ymk+1 = Ek+1 − ςk+1 (59)

Moreover, the control value calculating function can be
expressed as follows:

uk = uk−1 +
β�̂kEmk

α +
(
�̂k

)2 = uk−1 +
β�̂k (Ek − ςk )

α +
(
�̂k

)2 (60)

The PPD and estimated PPD have the following bounds:

ε̂ ≤ |�k | ≤ b1 and ε ≤
∣∣∣�̂k

∣∣∣ ≤ b.
Hence, the following expression can be deduced:

0 < D3 =
βεε̂

α + b2
≤

β�̂k�k

α +
(
�̂k

)2 ≤ βb1
2
√
α
= D4 < 1 (61)

Furthermore, (59) can be transformed as follows:

Emk+1 = yd − ymk+1 = yd − ymk −�k1uk = Emk −�k1uk
(62)

By combining (62) with (60), the following expression is
obtained:

∣∣Emk+1∣∣ =
∣∣∣∣∣∣∣(1−

β�̂k�k

α +
(
�̂k

)2 )Emk + β�̂k�k

α +
(
�̂k

)2 ςk
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣1−
β�̂k�k

α +
(
�̂k

)2
∣∣∣∣∣∣∣
∣∣Emk ∣∣+

∣∣∣∣∣∣∣
β�̂k�k

α +
(
�̂k

)2
∣∣∣∣∣∣∣ |ςk |

≤ (1− D3)
∣∣Emk ∣∣+ D4bm

≤ · · · ≤ (1− D3)k
∣∣Em1 ∣∣+ D4bm

D3
(63)

lim
k→∞

∣∣Emk+1∣∣ = 0 (64)

Therefore, Emk has bounds. Similar to (44), the control
value of the MFAC method has bounds.

According to this discussion, the MFAC method is robust
to disturbances.

D. SIMULATIONS OF ROBUSTNESS
The robustness of the MFAC method has been analyzed in
theory and is verified by the Monte Carlo method in this
section. The disturbances, which fit a normal distribution, are
listed in Table 1 [24]. Six parameters are used in the error
calculation. Note that all of the standard deviations have been
magnified by several times than their actual values and those
in the reference. One thousand simulations are carried out.

TABLE 1. Disturbances in the status of the parafoil system.

The control performance from the simulations is shown
in Fig. 4, which illustrates that the MFAC controller works
well in all situations. The maximum distance errors (MDEs)
are shown in Fig. 5, wherein the results are taken from every
10 simulations. As shown in this figure, the average value of
the MDE in the 1000 simulations is 10.08 m, wherein 90% of

FIGURE 4. Control performance in 1000 simulations.
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FIGURE 5. Distribution of the MDE in 1000 simulations.

the MDE ranges from 9 m to 11.2 m and the mean square
error (MSE) is 0.68. The average distance errors (ADEs)
are shown in Fig. 6. The average value of the ADE in the
1000 simulations is 2.26 m, wherein 90% of the ADE ranges
from 2 m to 2.5 m and the MSE is 0.127.

FIGURE 6. Distribution of the ADE in 1000 simulations.

The average control input values in 1000 simulations are
also analyzed, and the results are shown in Fig. 7. The average
value in this figure is 23.6%, wherein 90% of the results range
from 22% to 25% and the MSE is less than 0.01.

These simulations verified that the MFAC method has
strong robustness and stability.

V. SIMULATION
A simulation scheme is designed in this section to verify the
performance of the proposed MFAC controller.

A. SIMULATION SCHEME
In this paper, the parafoil system is regarded as an SISO
system, wherein the input is the asymmetric deflection of the
steering lines and the output is the combination of the distance
error and the heading angle error.

FIGURE 7. Distribution of the average control input value in 1000
simulations.

The framework of the simulation scheme is shown
in Fig. 8. The real-time position and attitude data of the
parafoil system are obtained by the dynamic model. The sys-
tem error is composed of the distance error and the heading
angle error integrated with the desired trajectory. In addi-
tion, considering the stall margin in the real control system,
the maximum control deflection is limited to 80% [7]. The
geometric parameters of the parafoil system in the simulation
are listed in Table 2, and the aerodynamic coefficients are
selected according to the data in Ref. [23].

FIGURE 8. Simulation process.

TABLE 2. Geometric parameters of the parafoil system.

B. SIMULATION CONDITIONS
During the simulation, three desired trajectories and three
flight conditions are set. The three trajectories are a straight-
line trajectory, a polyline trajectory composed of four straight
line segments, and a circular trajectory with a straight-line
segment. The three flight conditions are no disturbances,

VOLUME 8, 2020 152627



L. Zhao et al.: Trajectory Tracking Control for Parafoil Systems Based on the MFAC Method

gusty wind disturbances, and random disturbances, wherein
the random disturbances include random disturbances in
the wind field and random disturbances in the flight data,
as shown in Table 1.

The control performance of the MFAC method is assessed
and compared with that of the PID and ADRC methods.
The designed controller parameters for each control method,
which are shown in Table 3, remain the same during the
following simulations.

TABLE 3. Control parameters for the different methods.

VI. RESULTS
A. NO DISTURBANCES CONDITION
1) STRAIGHT-LINE TRAJECTORY
A straight-line trajectory is a basic and classical path to
verify the performance of a controller. In this simulation,
the expression of the segment is a positive linear function
with a range of 0 m to 200 m. Fig. 9 indicates that the three
controllers can control the parafoil system to accurately track
the desired trajectory.

FIGURE 9. Straight-line trajectory control performance (no disturbances).

The corresponding distance error is shown in Fig. 10.
All controllers can gradually control the distance error to
approximately 0 m; the peak value of the distance error is
approximately 10 m, which reduces to 1 m within 20 s.
As shown in this figure, the MFAC controller has a slightly
larger distance error and a higher convergence speed than
the other controllers. In addition, the input process of the
controllers is also analyzed, which reflects the control energy
of the system to a certain extent, as shown in Fig. 11.

FIGURE 10. Distance error for the straight-line trajectory (no
disturbances).

FIGURE 11. Control input value for the straight-line trajectory (no
disturbances).

Fig. 11 shows that the value of the control input for the
three controllers reaches 0% after 20 s and that the peak
values of the control input occur at the same time as the
peak values of the distance error. The maximum overshoot
value of the control input and the average value of the MFAC
controller are smaller than those of the other two controllers.
The average input value of the MFAC controller is 91% of
that of the PID controller and 89% of that of the ADRC con-
troller, whereas the maximum overshoot value of the MFAC
controller is only half of that of the other two controllers.
Moreover, the standard deviations of the control input in this
condition are 0.1896, 0.1935, and 0.1746 for the PID, ADRC,
and MFAC controllers, respectively. Hence, the MFAC con-
troller achieves the smallest standard deviation and the most
stable control effect.

2) POLYLINE TRAJECTORY
In this section, a polyline trajectory composed of four straight
lines is designed to verify the control performance in turning
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points. Fig. 12 shows that the three controllers can control the
parafoil system to accurately track the desired trajectory.

FIGURE 12. Control performance for the polyline trajectory (no
disturbances).

As shown in Fig. 13, the peak values of the distance
error occur at the three turning points and the starting point.
A certain distance threshold (14.14 m in this case) is set to
determine whether the parafoil has reached the turning point,
which is the same time as the peak value of the distance error.
The three controllers perform similarly in this condition with
a similar average value of distance error.

FIGURE 13. Distance error for the polyline trajectory (no disturbances).

Fig. 14 shows the control input value in this situation.
The average value of the MFAC controller is less than that
of the other two controllers. According to the established
bounds, the control input reaches 80% at each turning point.
The magnified parts in this figure show the value of the
control input in detail at the second turning point. Obvi-
ously, the overshoot value of the MFAC controller is much
smaller than those of the PID and ADRC controllers. From
the entire control process, the average control input value of
the MFAC controller is 90% of that of the PID controller and

FIGURE 14. Control input value for the polyline trajectory (no
disturbances).

86% of that of the ADRC controller. The standard deviations
of the control input are 0.1106, 0.1118, and 0.1041 in the
polyline trajectory situation for the PID, ADRC, and MFAC
controllers, respectively.

3) CIRCULAR TRAJECTORY
A circular trajectory with a radius of 500 m is used to further
verify the effectiveness of the MFAC controller. The initial
position of the parafoil system is [-600 0] m. The entire cir-
cular trajectory is spit into 72 sections, wherein each section
is treated as a segment during the simulation.

Fig. 15 shows that the three different controllers can make
the parafoil system accurately track the circular trajectory.
The magnified part in this figure is the turning point from the
line segment to the circular path, where a substantial distance
error occurs because the turning angle at this moment is the
largest. In addition, as shown in Fig. 16, the distance error
of the MFAC controller is smaller than those of the PID and
ADRC controllers.

FIGURE 15. Control performance for the circular trajectory
(no disturbances).

VOLUME 8, 2020 152629



L. Zhao et al.: Trajectory Tracking Control for Parafoil Systems Based on the MFAC Method

FIGURE 16. Distance error for the circular trajectory (no disturbances).

Similarly, the value of the control input of the MFAC
controller is slightly less than that of the PID and ADRC con-
trollers, as shown in Fig. 17. The MFAC controller achieves
more stable control input with a standard deviation of 0.0749;
in contrast, the standard deviation of the PID and ADRC
controllers are 0.082 and 0.0821, respectively.

FIGURE 17. Control input value for the circular trajectory (no
disturbances).

In the circular trajectory simulation, the MFAC controller
performs better than the other controllers, as it has a smaller
distance error, a lower average control input value, and amore
stable control value.

According to the three simulations of various trajectories in
the no disturbances condition, the performance of the MFAC
controller is the best in most evaluation criteria, especially the
average value and standard deviations of the control input.

B. GUSTY WIND DISTURBANCES CONDITION
Under this condition, simulations of gusty wind disturbances
are carried out on three different trajectories to verify the
robustness of the controllers. A gusty wind disturbance with

a value of [−4,0,0]T m/s is added to the wind field once or
twice during the simulations.

1) STRAIGHT-LINE TRAJECTORY
The control performance of the controllers in the straight-
line trajectory is shown in Fig. 18, wherein the gusty wind
disturbances are added to the wind field at 10–15 s. As shown
in this figure, there is a sudden change during the track-
ing process, which is obviously different from the response
in Fig. 9. Although the gusty wind changes twice, the three
controllers drive the parafoil system to accurately match the
polyline trajectory.

FIGURE 18. Control performance for the straight-line trajectory (gusty
wind disturbances).

Fig. 19 shows the distance error in this trajectory, wherein
the average value of the MFAC controller is slightly worse
than that of the other controllers. As shown in Fig. 20,
the average control input value of the MFAC controller is
smaller than those of the PID and ADRC controllers. Addi-
tionally, the overshoot of the control input of the MFAC con-
troller is much smaller than those of the other two controllers

FIGURE 19. Distance error for the straight-line trajectory (gusty wind
disturbances).
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FIGURE 20. Control input value for the straight-line trajectory (gusty
wind disturbances).

at the point of the gusty wind disturbance. The standard devi-
ations of the PID ADRC, and MFAC controllers are 0.2232,
0.2294, and 0.2038, respectively, whichmeans that theMFAC
controller is the most stable.

2) POLYLINE TRAJECTORY
In the polyline trajectory simulations, the gusty wind dis-
turbances are added to the wind field at 300–320 s and
500–520 s. The control performance in this simulation is
shown in Fig. 21, wherein the disturbance points are mag-
nified. The control performance of the parafoil system at
the turning points is the same as that under no disturbances.
As shown in this figure, the three controllers can drive the
system to accurately track the desired trajectory.

FIGURE 21. Control performance for the polyline trajectory (gusty wind
disturbances).

Fig. 22 shows the distance error of the parafoil system from
the desired trajectory. The ADEs of the three controllers are
similar, and the most significant distance error is less than
5 m, which occurs at the gusty wind disturbance points.

FIGURE 22. Distance error for the polyline trajectory (gusty wind
disturbances).

Fig. 23 shows the value of the control input in the simu-
lations, wherein the average value of the MFAC controller
is 85% of that of the PID controller and 82% of that of
the ADRC controller. The magnified part in this figure is
the second disturbance point, which shows that the overshoot
of the control input of the MFAC controller is much smaller
and smoother than that of the other two controllers, which
is the same as the results at the other disturbance point. The
standard deviations of the control input are 0.1236, 0.1260,
and 0.1128 for the PID, ADRC, and MFAC controllers,
respectively.

FIGURE 23. Control input value for the polyline trajectory (gusty wind
disturbances).

3) CIRCULAR TRAJECTORY
Two gusty wind disturbances are added to the wind field
at 100–120 s and 300–320 s in the circular trajectory sim-
ulations. As shown in Fig. 24, the control performance of
the three controllers is good, even at the wind disturbance
points. To clearly observe the performance at the disturbance
points, two magnified parts are emphasized in this figure.
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FIGURE 24. Control performance for the circular trajectory (gusty wind
disturbances).

The distance error for the circular trajectory is shown
in Fig. 25. During the entire simulation process, the ADE of
the MFAC controller is less than 1 m, and the value is less
than 2 m after the parafoil enters the circular path (except for
the two disturbance points).

FIGURE 25. Distance error for the circular trajectory (gusty wind
disturbances).

There are two points where the distance error substantially
increases in this simulation, as shown in Fig. 25; these two
points are the disturbance points, and the distance error at
the second disturbance point is much larger than that at the
first one. The gusty wind disturbance at the second point is
in the same direction as the parafoil system heading, which
results in a dramatic increase in the speed of the parafoil; the
opposite scenario occurs at the first point. The ground speed
of the parafoil system is shown in Fig. 26, wherein there is
little difference in the results of the three different control
methods.

The control input value in this simulation is shown
in Fig. 27, which—similar to the distance error response
plot—contained two notable changes. The average control

FIGURE 26. Ground speed (gusty wind disturbances).

FIGURE 27. Control input value for the circular trajectory (gusty wind
disturbances).

input value of the MFAC controller during this simulation
is smaller than those of the PID and ADRC controllers. In
addition, at the gusty wind points, the control input value of
the MFAC controller is far less than those of the other two
controllers, which means that the MFAC method has better
robustness.

The standard deviations of the control input for the PID,
ADRC, andMFAC controllers are 0.089, 0.0913, and 0.0808,
respectively; hence, the MFAC controller is the most stable.

In the gusty wind situation, the three controllers can control
the parafoil system to accurately track the desired trajectories.
The MFAC method is superior to the other control methods
in some indexes, especially the value of the control input,
including the average value and the standard deviation.

C. RANDOM DISTURBANCES CONDITION
In a real flight environment, the wind field is not constant, and
disturbances are mixed in the status data. To imitate a com-
plicated real flight environment, disturbances are added to the
wind field and parafoil system status data in the simulations.
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The disturbances in the system status are listed in Table 1.
The simulations show that the three controllers can drive the
parafoil system along the desired trajectories, but the distance
error and control input value are much larger than those in the
other conditions.

In addition to the status data disturbances, the randomwind
is added to the constant wind field, wherein the constant wind
is [−4,0,0]T m/s. The randomwind fits a normal distribution,
having a mean value of 0 m/s, and a standard deviation of 1.
Hence, the random wind is different in every simulation,
among which one of the possibilities is shown in Fig. 28.

FIGURE 28. Random wind field.

1) STRAIGHT-LINE TRAJECTORY
As shown in Fig. 29, the three controllers drive the parafoil
system to generally track the trajectory under the random
disturbances situation. However, the control performance for
the straight-line trajectory under these conditions is worse
than that under the last two conditions. The distance error
from the straight-line trajectory is shown in Fig. 30. This

FIGURE 29. Control performance for the straight-line trajectory (random
disturbances).

FIGURE 30. Distance error for the straight-line trajectory (random
disturbances).

figure shows that the ADE of the MFAC controller is 0.96 m,
which is the smallest value among all three controllers; note
that this value is only 56.5% of that of the ADRC controller.

The control input value in this simulation is far greater
than that in the simulations without disturbances, as shown
in Fig. 31, wherein the points are shown at 0.5 s intervals.
The average values of the control input for the PID, ADRC,
and MFAC controllers are 35.0%, 43.7%, and 33.7%, respec-
tively. Moreover, the standard deviations of the control input
for these three controllers are 0.2469, 0.2693, and 0.2421,
respectively. Hence, the MFAC controller achieves the small-
est distance error with the least energy consumption in this
simulation.

FIGURE 31. Control input value for the straight-line trajectory (random
disturbances).

2) POLYLINE TRAJECTORY
The polyline trajectory is simulated in the random distur-
bances condition, for which the control performance is shown
in Fig. 32. This figure shows that the three controllers drive
the parafoil system to accurately track the polyline trajectory.
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FIGURE 32. Control performance for the polyline trajectory (random
disturbances).

Moreover, the turning points are magnified in this figure to
show additional details.

Fig. 33 shows the distance error for the polyline trajectory,
which more directly illustrates the control performance. The
notable points in this plot are the turning points, which are
approximately 14 m, which is the same as the threshold
setting. The ADEs of each control method are less than 1 m,
and the ADE of the MFAC controller is the smallest.

FIGURE 33. Distance error for the polyline trajectory (random
disturbances).

The value of the control input is shown in Fig. 34, wherein
the data are shown at 20 s intervals because the disturbances
lead to sharp changes in the control input during the simula-
tion. The average values of the control input for the MFAC,
ADRC, and PID controllers are 32.9%, 43.5%, and 33.9%,
respectively. Hence, theMFAC controller performswell com-
pared with the other two methods and has the advantages of
less energy consumption and higher precision. The standard
deviations of these three controllers are 0.2393, 0.2703, and
0.2379, respectively. Thus, the PID control method and the
MFAC method have similar stability.

FIGURE 34. Control input value for the polyline trajectory (random
disturbances).

3) CIRCULAR TRAJECTORY
The circular trajectory is simulated in the random distur-
bances condition, for which the control performance is shown
in Fig. 35. This figure shows that the parafoil system accu-
rately follows the trajectory under the three controllers in this
simulation, wherein the maximum error occurs at the entry
point from the line segment to the circle.

FIGURE 35. Control performance for the circular trajectory (random
disturbances).

Fig. 36 shows the distance error from the trajectory,
wherein the ADEs for the PID, ADRC, andMFAC controllers
are 1.19 m, 1.25 m, and 1.14 m, respectively. Hence, the PID
and the MFAC controller have similar values.

The value of the control input in this simulation is shown
in Fig. 37. The average values of the control input for the PID,
ADRC, andMFAC controllers are 30.0%, 39.5%, and 29.6%,
respectively. Moreover, the standard deviations of these three
controllers are 0.2356, 0.2676, and 0.2337, respectively.

In the circular trajectory simulation, the MFAC controller
achieves a higher precision and a smaller and more stable
control input than the other two controllers.
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FIGURE 36. Distance error for the circular trajectory (random
disturbances).

FIGURE 37. Control input value for the circular trajectory (random
disturbances).

In this section, a random wind field and status data dis-
turbances are added to the simulations to imitate real flight
conditions, and the results showed that the three controllers
can generally drive the parafoil system to accurately track
the desired trajectories. TheMFAC controller performs better
than the other controllers with less energy consumption and
higher precision.

VII. CONCLUSION
This paper introduces a novel real-time model-independent
trajectory control method for parafoil systems, which is called
the MFAC method. The stability of the MFAC method is
theoretically verified, and the robustness of this approach
is analyzed and demonstrated by the Monte Carlo method.
To further evaluate the control performance, a six-DOFmodel
of the parafoil system is built, and a series of simulation tests
are performed under various conditions: no disturbances,
gusty wind disturbances, and random disturbances. This pro-
posed method can eliminate the influences of inaccurate

models and external disturbances and enables the parafoil
system to track desired trajectories.

The simulation results for the MFAC controller are com-
pared with those of the PID and ADRC controllers commonly
used in parafoil systems. These comparisons demonstrated
that theMFAC controller is as effective as the PID and ADRC
controllers. All three control controllers canmake the parafoil
system accurately track the desired paths. Additionally, the
ADE and the standard deviation of the control input value
for the MFAC controller are mostly smaller than those for
the PID and ADRC controllers, especially under disturbance
conditions. The MFAC controller also has the smallest over-
shoot of the control input value among the three controllers.
Hence, the proposed control method has advantages in terms
of control precision and energy consumption.

In this paper, a theoretical proof and numerical simulation
of the MFAC controller for parafoil systems are presented.
The following studywill apply theMFACmethod to an actual
parafoil system and verify the control performance of this
method through flight tests.
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