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ABSTRACT In a data set with many categorical variables and several continuous valuables, the relationship
between continuous random variables may differ from category to category for a given categorical variable.
To study how categorical variables may affect the dependent structure of continuous variables, we proposed
two splitting criteria constructed based on copula entropy to build decision trees serving for different
purposes. One type of tree can be used to identify the attributes or combinations of them under which
the continuous variables have a strong relationship. The other type of tree is used to classify regions with
different strength of relationship. Applying these methods to the survey data on the status of poor families
of Sichuan province, it is found that the method successfully evaluated the effectiveness of the poverty
alleviation policies.

INDEX TERMS Copula, dependence structure, decision trees, entropy.

I. INTRODUCTION AND MOTIVATION
In 2018, the Chinese government launched a survey on the
status of poor households after getting rid of poverty. On the
one hand, the purpose of the survey is to understand the cur-
rent living conditions of those families who have been lifted
out of poverty with the help of poverty alleviation policies.
On the other hand, it is also hoped that the survey can lead
to future policy formulation. The survey is very extensive,
involving more than a dozen provinces in the country. This
article only takes Sichuan Province as an example.

The survey was conducted by questionnaire. To get the
data, instead of sampling, commissioners were sent to con-
duct a household-by-household survey, with a total of 11,329
households surveyed. There are about 180 questions in the
questionnaire, which not only cover all aspects of poor family
life: housing, diet, children’s schooling, medical care and
work, but also include many questions about whether they are
satisfied with various policies. For example, one question is
whether attending employment training is helpful to increase
income. Another question is whether the industrial poverty
alleviation policy is helpful to increase income. This kind
of question usually only needs to answer ‘‘yes’’ or ‘‘no’’.
The questionnaire investigated the income of each family in
detail. Under normal circumstances, family income includes
three sources: wage income, operational income and state
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subsidies, as well as transfer income from relatives, friends.
Since themain sources of household income are wage income
and operational income, we only consider these two items in
the following analysis.

One of the purposes of the paper is to figure out how much
effective these policies are in improving family income and
how to evaluate the roles of the policies. The difficulty is that
without historical data, quantifying the changes of incomes
caused by policies will not be possible. In this article, we will
try to evaluate the policies through people’s answers and rank
them in the order of importance from the questions asking
whether a policy is helpful.

Let X and Y be the two sources of incomes and questions
are called attributes. Then the questionnaire can be abstracted
into a data set with two objective continuous randomvariables
and some categorical attributes, which is shown in table 1.

TABLE 1. Sample data.

Some of these questions are targeted. For example, when
asked whether the industrial poverty alleviation policy is
helpful, it is aimed at operational income. Whether the
employment poverty alleviation policy is helpful is aimed at
wage income. Other questions, such as whether have loan
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or not, do not target any specific source of income. For the
questions, which have specific target income, one typical
way of analyzing the effectiveness of these policies is to
take one attribute and divide the population into groups with
positive answers (who think the policy is helpful in improving
income) and negative answers (who think the policy is not
helpful ), then compare the difference in median of incomes
of the two groups. There are two issues we need to consider
for this method. First, this method works well for a single
attribute. When considering a combination of questions, the
number of groups will increase exponentially. For example,
a combination of 3 questions will generate 23 = 8 subgroups.
As the number of questions increase, the calculation burden
will increase rapidly. Second, this method is not suitable for
studying the relationship between random variables, which
should be taken into account in our case.

FIGURE 1. The distributions of household income of different
respondents to the question ‘‘Is employment poverty alleviation policies
helpful?’’.

We will next make a comparison of the effects of the two
policies with relatively clear pertinency on wage income and
operational income, that are, employment poverty alleviation
policy and industry poverty alleviation policy. The first step is
to divide all families into two categories based on the criteria
of whether employment poverty reduction policy helps or not
and compare the difference of wage income and operational
income between the two categories of families. Figure 1
shows the distribution curves about the two answers whether
employment poverty reduction policy helps or not of all the
incomes estimated by nonparametric kernel method. Figure 2
shows the density function curve of each income under the
answers of whether industry poverty alleviation is helpful.
Both figures showed that the families which answered that
industry poverty alleviation is helpless (red) are with rel-
atively low income. But this positive relationship between
income and answers does not simply implies the effectiveness
of policies. There are two possibilities. First, the policies are
effective, so people answered ‘‘helpful’’, in the meanwhile
the effective policies raised people’s income. Second, people
with high income tend to answer ‘‘helpful’’, while people
with low income tend to answer ‘‘not’’. Of course, it might
be a mixture of the above two reasons. For the second case,
if we assume the tendency for different questions are the

FIGURE 2. The distributions of household income of different
respondents to the question ‘‘Is industrial poverty alleviation policies
helpful?’’.

same, then we can compare the effectiveness of policies by
comparing the changes of incomes under different questions.
Next, we will elaborate the method.

Since the distributions are highly skewed, to quantify the
difference between two categories, we use Wilcoxon test to
test the differences of the medians of two categories. More
specifically, letX be the operational income of families which
answered employment poverty reduction policy helps, Y be
the operational income of families which answered employ-
ment poverty reduction policy not helpful. MX and MY are
the medians of X and Y respectively. We then construct 95%
confidence interval for MX − MY . We do the same calcu-
lation for operational income of the families that answered
whether industry poverty alleviation helps, as well as the
wage income, so that a total of four confidence intervals are
obtained and listed in table 2.

TABLE 2. Confidence intervals for the increase of incomes under
different policies.

Here we use the median number of the groups that hold
the industry poverty alleviation is helpful minus the median
number of the groups who hold it unhelpful, thus the received
positive value can be used to measure the effectiveness of a
policy. On the main diagonal of the matrix formed by two sets
of confidence intervals, it is not surprisingly to see that the
employment poverty alleviation raises the wage income and
the industry poverty alleviation raises the operational income.
The interesting thing is that the vice diagonal is not only non-
zero, whose value is relatively large instead. The confidence
interval of the 95% of the income difference between oper-
ational incomes under the different answers about employ-
ment poverty alleviation in Table 2 is (2460,3000), while the
95% of the income difference between operational incomes
under the different answers about industry poverty alle-
viation (1500,2200). In other words, the industry poverty
alleviation policy does not increase more operational income

150990 VOLUME 8, 2020



Q. Shan, Q. Liu: Binary Trees for Dependence Structure

than the employment poverty alleviation does operational
income. This is clearly against common sense. Some plau-
sible explanations to this may include: first, the information
is inaccurate. For example, the responses from respondents
were affected, resulting in responses not reflecting the truth.
Second, there is an integrated effect between policies and
incomes. For example, when employment alleviation policies
work better, there may be a shift of family members from
originally being engaged in business activities to obtaining
employment, which can lead to a decrease in household
industrial income, or a significant difference in the effects
of policies within different groups of people. Here, we make
reason two the focus of our study, that is, the interaction
among policies.

As can be seen from the above analysis, even when con-
sidering the effect of policies generally considered more
targeted, such as industry poverty alleviation aimed at oper-
ational income and employment poverty alleviation aimed at
wage income, it cannot be limited to one kind of income.
Therefore, when analyzing the policies involved in the sur-
vey, it cannot and there is no way for it to be analyzed
separately which must be considered in a comprehensive
manner. Below, we consider the impact of each policy on
operational income and wage income as a whole. We take
the employment poverty alleviation policy as an example, the
employment poverty alleviation policy may have influence
on wage income or operational income (the effect of which
may not be direct or positive, as in the previous case of a
career shift leading to reduced operational income). When
both effects exist, the relationship between wage income and
operational income will change. Below we will focus on the
impact of policies on the relationship between wage income
and operational income.

To study relationship between two random variables, cop-
ula is a powerful tool. Since they are not affected by marginal
distribution so that we can focus on the dependence structure
between random variables. We will consider how the copulas
between X and Y will be affected by different combinations
of attributes. The method we proposed is similar to a decision
tree, but the difference is that this time the target variable
is copulas or relationship between random variables, not a
single variable.

The first difficulty of this procedure is about estimating
copula functions. Considering the fact that usually people
have almost no knowledge about the relationship between
two sources of incomes, nonparametric estimation of copulas
is a reasonable choice. Generally speaking, there are two
types of methods: empirical method and smoothing method.
The empirical method was introduced by [1]. Then [2],
[3] proved the consistency of empirical copula process for
copulas with continuous partial derivatives. This method is
robust, but it cannot be used straightforwardly to derive an
estimate of the copula density. Various smoothing methods
have been provided. [4] suggested to use kernel methods to
estimate copula densities, which was further discussed in [2]
and [5]. After that, various modern smoothing techniques was

applied to the estimation of copulas, e.g. beta kernel method
was introduced by [6] to remedy boundary bias, wavelet
based estimation was suggested by [7] for copula estimation
and [8] for copula density estimation, Bernsein polynomials
studied by [9], [10] and [11], B-splines studied by [12], [13]
claimed that using penalized hierarchical B-spline together
with sparse grids can weaken the curse of dimensionality.
In this article, we will adopt the transformation method,
which was introduced to kernel copula density estimation by
[6], since [14] has shown that this estimator outperforms other
estimators.

Due to the simplicity and flexibility in handling both
real-valued and categorical features, tree-based methods have
been used in a broad range of areas including machine
learning, engineering, finance and business. A key step in
the process of constructing a decision tree is to choose a
split criterion. Some classic split criteria are: ID3 [15], C4.5
[16], and CART [17]. The selection and construction of split
criteria is always a hot topic. [18] built a decision tree based
on Pearson correlation coefficient. Deng entropy was used as
a measure of splitting rules to construct a decision tree for
fuzzy data set classification [19]. Both articles used relation-
based measures as the splitting criteria. Compared with other
measures, copula entropy is amore general measure of depen-
dence [20]–[24], which makes it an ideal tool in studying
relationship. Besides the different choice of the measures
used in constructing the splitting criteria, the main difference
between this article and the other two is the research object.
In those two articles, the authors creatively constructed two
splitting criteria to improve classification accuracy. The two
split criteria constructed in this article are both used to study
the relationship between variables.

FIGURE 3. A circular data set with changing variance.

II. DECISION TREE FOR RELATIONSHIP
To illustrate the idea, let’s consider a sample of 2000 points
randomly spread on a circle of radius 2 with changing vari-
ance as is shown in Figure 3. Three factors A, B and C split
the data with x = 0, y = 0 and x2 + y2 = 4, respectively.
Denote A1 = {(x, y)|x 6 0}, A2 = {(x, y)|x > 0},
B1 = {(x, y)|y 6 0}, B2 = {(x, y)|y > 0}, C1 = {(x, y)|x2 +
y2 6 4}, C2 = {x2+ y2 > 4}. Points in the third quadrant has
constant variance 0.1, then variance will gradually increase
anticlockwise, until it reaches its maximum 0.6 on the second
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FIGURE 4. Scatterplot of subsets split by the three attributes.

FIGURE 5. Copulas for each subset.

quadrant. Scatterplot of subsets split by the three factors
are shown in Figure 4, their corresponding copulas are in
Figure 5.

As we can see from Figure 5, different ways of splitting
generate subsets with different copulas, in other words, split-
ting changes relationship, not only in terms of structure but
also in strength. To quantify the difference between copulas,
we will use copula entropy.
Definition 1: Let x ∈ RN be random variables with

marginal functions (F1, · · · ,FN ) and copula density c(u).
Copula entropy (CE) of c is defined as:

CE(c) = −
∫
u
c(u) log c(u)du.

Entropy measures uncertainty of a random variable. For a
discrete probability distribution p, the entropy of p is non-
negative, and it equals 0 if and only if the random variable
is deterministic, but this property generally not hold for con-
tinuous distributions. So how about copula entropy? It has
been proved that copula entropy is negative mutual informa-
tion [25]. Therefore, copula entropy inherits the same prop-
erties of mutual information. Copula entropy is considered
to be the most general measure of the statistical dependence
between two random variables [24]. The range of copula
entropy is given in the following theorem.

Theorem 1: CE(c) 6 0 with equality if and only if
c(u, v) = 1.
The proof of the theorem is a direct consequence of the

theorem 1 in [25]. Similar to mutual information, we can
think of CE(c) as a KL distance from any given copula c(u, v)
to the independent copula.

To use copula entropy as a splitting criterion, an estima-
tor from sample data is needed. Since copula entropy and
mutual information are essentially the same, we will briefly
introduce the estimation of mutual information. One popu-
lar class of estimators of mutual information are based on
the k-nearest neighbor (k-NN) [26]–[29]. These approaches
require number of samples scales exponentially with the
value of mutual information [30]. [31] gave a comprehensive
review of entropy, mutual information and their estimations.
Our mutual information estimator is based on a recently
developed nonparametric copula density estimating method.
The usual nonparametric smoothing methods suffered from
boundary problems not only because the method itself but
also because the transformation from joint distribution to
copulas will magnify small fluctuations on the boundaries.
The remedy proposed by [32], [33] is called probit trans-
formation which transforms the support of a copula into
unbounded space, such that usual smoothing methods can be
applied without causing any boundary issues. [14] compared
the performance of different estimators in different scenarios
and found that the transformation local polynomial estimator
using nearest-neighbor bandwidths outperform other esti-
mators in mean integrated absolute error. [32] claimed this
estimator is accurate and robust to changes of the marginal
distributions. So, we will use this estimator as a splitting cri-
terion to construct decision trees. Two splitting criteria serv-
ing different purposes will be provided in the next section.

III. TWO TYPES OF TREES
Splitting the data set in different ways may generate subsets
with different strength of dependence. The number of sub-
sets will increase exponentially as the number of attributes
increases. Consider each possible combination of subsets will
dramatically increase calculation burden. We introduce two
algorithms used to generate combinations of subsets serving
different purposes.

A. REGRESSION TREES
1) METHODOLOGY
Copula entropy can measure the strength of both linear and
nonlinear relationship. We will use this property to find the
regions where the variables have a strong linear or non-linear
relationship. More specifically, the goal is to find regions
R1, · · · ,RJ that minimize the RSS, given by

J∑
j=1

∑
i∈Rj

(yi − ŷRj )
2,

where ŷRj is the predicted value of non-parametric regression
for the training observations within the jth region.
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The two main differences between the problem addressed
here and a typical regression tree are: 1. For a regression
tree, ŷRj is the mean response, which is only determined by
the region Rj. In our case, different regression methods will
produce different ŷRj , therefore we stick on local polynomial
regression (LOESS) in this article. 2. The attributes, which
are used to divide the predictor space, are given, so that we
only need to find the ‘‘best’’ combinations of those attributes.
Nevertheless, as the number of feature increases, it is still
computationally expensive. So, we take a greedy approach
that is known as recursive binary splitting.

For a given set S, attribute A, with two classes a1 and
a2, splits S into S1 and S2. The corresponding copulas asso-
ciated with sets are denoted by c, c1 and c2, respectively.
We define copula entropy for the level split by attribute A
to be

∑
|Si|
|S| CE(ci), where CE(ci) is the entropy of copula

ci associated with set Si. The information gain (InfGain) is
defined as:

InfGain(A, S) = CE(c) −
∑
i

|Si|
|S|

CE(ci).

A higher InfGain indicates a higher reduction in copula
entropy, so the attribute with highest InfGain will be chosen
at every splitting. By doing this recursively, we get a combi-
nation of attributes which have stronger dependent structure
than the original data set.

To control the tree size, we could set a threshold for Inf-
Gain. The tree will stop growing when the InfGain reaches
the threshold. To avoid short-sighted splitting, tree pruning
methods can also be adopted by choosing the best λ in the
following sequence of trees

J∑
j=1

∑
i∈Rj

(yi − ŷRj )
2
+ λ| nodes |,

where λ is a nonnegative tuning parameter, | nodes | is the
number of terminal nodes of the tree. The difference between
this method and the usual cost complexity pruning is that the
region Rj is a region divided by combinations of attributes.
Therefore, these regions can be of any shape, not just
rectangular.

2) SIMULATION RESULTS
To apply the method to the circular data set, we first calculate
InfGain for each attribute. The values of the three attributes
A, B and C are -0.07, 0.14 and 0.2 respectively. Attribute C
was chosen to split the data since it has the biggest InfGain.
Then calculate the InfGain of the remaining two attributes for
the subsets where the attribute C is true and false, and select
the largest one as the split attribute of the subset. By doing this
recursively, we end up with a tree in Figure 6. Attribute A did
not participate in splitting on each leaf because its InfGain is
negligible or even negative. When an attribute has a positive
InfGain, it means that using this attribute to split the data set
will make the correlation stronger after the split. Therefore,

the correlation of the data set on the leaves is stronger than
the original set.

FIGURE 6. The regression tree for the circular data set.

FIGURE 7. The four-region partition of the data set with LOESS smoothing
from the regression tree illustrated in Figure 6.

The leaves of the tree in Figure 6 stratify the data set
into four regions marked with different colors in Figure 7.
For each region, a local polynomial regression (LOESS) was
fitted into the data. As a comparison, the LOESS model and
the random forest (RF) regression were constructed, and the
results are shown in Figure 8 and 9. As can be seen, the
models in Figure 7 fit the data much better than the other
twomodels for the whole data set. We conducted a simulation
to evaluate the performance of different models for different
sample sizes. The MSE of each model was estimated using
10-fold cross-validation in Table 3, where the four regions
were represented by numbers from 1 to 4. In each region,
we used both LOESS and RF regression to fit the data,
which are represented by ‘‘Tree+ LOESS’’ and ‘‘Tree+ RF
regression’’, respectively. The model ‘‘tree + LOESS’’ has
the best performance. Notice that RF regression takes cate-
gorical variables into account, so it outperforms LOESS for
the whole data set, but dividing the data into several regions
can still improve the accuracy. If we take the attributes as
auxiliary variables, then in the situations where the interest
is to predict y values, we can get more accurate estimation by
dividing the regions according to the leaves of the tree.

One question raised is whether it will help improve the
accuracy of the estimation if we use all possible attribute
combinations to divide the entire area to the smallest extent.
Table 4 showed the estimated MSE of both models by using
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TABLE 3. Estimated MSE using 10-fold cross validation for different
models.

TABLE 4. Estimated MSE of regression models on the smallest sets.

FIGURE 8. LOESS regression for all points.

10-fold cross-validation. As can be seen, the improvement is
negligible.

B. CLUSTERING TREES
In this section, we introduce another splitting criterion which
choose most ‘‘suitable’’ combination of subsets and rank
them in an order from strongest relationship to weakest rela-
tionship. Recall that in the example of introduction, people
are interested in which attribute plays more important role
in changing the relationship of two incomes. For example,
if the dependence structure between two incomes of the
families which think one particular policy is not helpful is
significantly different from the dependence structure of the
families who think the policy is helpful. Then we will think
the policy is effective. So, the purpose of this section will

FIGURE 9. Random forest regression (blue dots).

Algorithm 1 A Splitting Criterion for Regression Trees
Input Data:Attribute1, · · · ,AttributeN ,X ,Y
Output: Best feature
for i = 1 to N do

Split the data set into subseti1 and subseti2 according to
Attributei

Estimate copula: copulai,copulai1 and copulai2
Estimate copula entropy: CEi,CEi1 and CEi2
Compute InfGaini for Attributei

Best feature← argmaxi InfGaini

be quantifying the ‘‘changes’’ of the relationship caused by
attributes and rank them. There are several measures can be
used for quantifying the difference between copula densities,
i.e. integrated absolute deviation, integrated squared devi-
ation or KL divergence. Since we are not only interesting
measuring the similarity of copula densities but also like to
rank the copulas according to their strength of dependence,
we will construct a quantity based on copula entropy.

By looking at the shape of copulas in figure 5, we noticed
that the pair of copulas for attribute B has the ‘‘biggest’’
difference among all three pairs. To quantify the difference
between each pair of copulas, wewould like to use the follow-
ing transformation to ‘‘normalize’’ copula entropy (NCE):

NCE(x) = 1− ex ,

in which x is a given copula entropy. After standardization,
NCE has range [0, 1]. Then for a given attribute A with
categories A1 and A2, the quantity measures the difference
between the dependence structure of subsets associated with
attribute A is defined by

DNCE(A) = |NCE(CE(A1))− NCE(CE(A2))|.

Table 5 shows the NCE and DNCE for each subset.
As expected, the pair of copulas split by B has biggest dif-

ference in NCE among all three factors. So, in the procedure
of constructing a decision tree, attribute B will be the root
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TABLE 5. NCE and DNCE for each attribute.

node of the tree. Then calculate the DNCE of the remaining
two attributes for the subsets where the attribute B is true and
false, and select the largest one as the split attribute of the
subset. By recursively repeating this strategy, we end up with
a decision tree in Figure 10. There are two ways to interpret
the tree:

FIGURE 10. The clustering tree for the circular data.

1. The more obvious discriminations between subsets are
done first, and the more subtle distinctions are postponed
to lower levels. As we can see from Figure 3, the upper
semicircle has larger variance than the lower half, which
makes the difference between this pair larger than the other
two pairs. This indicates attribute B plays the most important
role in changing the relationship. Attribute C split the data
into inner circle and outer circle, which didn’t change much
in either the shape or the variance. This explains why it caused
the least difference. To determine the children node for the
lower semicircle, attribute A causes much larger difference
in NCE than attribute C, because when splitting by circle
(attribute C), the change of variance is not much different,
while left half has constant variance, which is smaller than
the variance of right half. So, the lower semicircle should by
split by attribute A. For the upper semicircle, the differences
are not obvious, so we leave it to DNCE to decide.

2. Each branch of the tree suggests a combination of the
attributes, which divide the data into four subsets. The sub-
sets and their corresponding copula functions are shown in
Figure 11. This splitting method suggest a way to divide the
data set into regions with significant difference in depen-
dence. Further, we can rank them in order.

Note that whether the tree can be constructed depends
strongly on the properties of the attributes. For example,
if the data set contains only two factors A and C, then
|NCEA1 −NCEA2 | = 0.05 and |NCEC1 −NCEC2 | = 0.03,
then neither will be selected for splitting. If it is so, we can
conclude that splitting will not change the relationship.

For the stopping criterion, we should take into account both
a threshold of |NCEC1 −NCEC2 | and minimum sample size
in each node. Because too few points will lead to inaccu-
rate estimation of copula density. According our experience,
200 is the minimum number of points needed for a steady

FIGURE 11. A partition suggested by leaves and their corresponding
copulas.

Algorithm 2 A Splitting Criterion for Clustering Trees
Input Data:Attribute1, · · · ,AttributeN ,X ,Y
Output: Best feature
for i = 1 to N do

Split the data set into subseti1 and subseti2 according to
Attributei

Estimate copula: copulai1 and copulai2
Estimate copula entropy: CEi1 and CEi2
Normalize copula entropy: NCEi1 and NCEi2
DNCEi← |NCEi1 − NCEi2|

The best splitting feature← argmaxi DNCEi

estimation. Note that if we grow a full tree with n attributes,
which will generate 2n subsets, then prune it back. For each
subset, there corresponds an NCE value, then grouping these
NCE values is essentially hierarchical clustering, so some
typical clustering algorithms, e.g. k-mean clustering, can be
used to prune the tree.

One main difference between the two types of trees is
that a regression tree will split only when the weighted
sum of copula entropy increases, so it will find the
attributes with stronger relationship in a general manner.
While a clustering tree is clustering the regions according
to the strength of relationship. So, the set of points on
leaves are arranged in order of correlation from strong to
weak.
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C. REAL DATA EXAMPLE
Let’s go back to the Sichuan data. The data contains some
questions about whether a specific policy is helpful. The
answer is either ‘‘yes’’ or ‘‘no’’. Aswe have discussed earlier,
even policies targeting one source of income may have an
impact on another source of income. Therefore, these policies
are likely to have an impact on the correlation or related
structure between the two sources of income. Next, we will
divide the population into subgroups according to people’s
answer to each question, then apply the above two methods.

We are interested in the effectiveness of policies, so the
tree size is controlled so that only policies concerning income
improvingwill be included. The questions, whichwill be used
later, are represented by letters in Table 3.

TABLE 6. Questions represented by letters.

The purpose of the first method is to find the question
which can ‘‘improve’’ the strength of relationship between
two incomes. The InfGain for some attributes are listed on
Table 7. After calculating InfGain for all attributes, none of
them are high enough, there is no need to proceed to the next
level. Therefore, we can conclude that none attributes or any
combinations of them have strong relationship between two
sources of incomes.

TABLE 7. InfGain for some of attributes.

Applying the second method to SiChuan data, we got the
following decision tree in Figure 12.
Notice that among all the attributes, the three policies of

poverty alleviation through employment, the largest source of
new income and whether havingmortgage loan have a greater
impact on the structure of family income, of which the effect
of employment assistance measures is the most significant.
The leaves are labeled as leaf one to leaf five from left to right.
Besides comparing various policies, leaves of tree also depict
the income structure of several types of families. Of the five
leaves, leaf three and leaf five have higher CE values of−0.49
and −0.86 respectively. Let’s look at what kind of family
these two leaves depict. For families in leaf five, employment
assistance has no effect on them, and the largest part of new
income in the family is transfer income. For families in leaf

FIGURE 12. Clustering tree for Sichuan data.

FIGURE 13. Contour plot of joint density of two incomes of the families
in each leaf.

three, employment assistance has an effect on them, but this
effect seems to be limited, because the largest part of the new
income in the family is still transfer income, and the family
does not have loans (no loans are not necessarily a good thing,
according a survey in 2018 80.8% of the loan families use
loans for business activities). To compare joint distributions
of two incomes of different leaves, we make nonparametric
estimation of the joint density of operational income and
wage income of the families in each leaf in Figure 13. Notice
that sample sizes of the leaves have no big difference except
leaf one (n = 7515), but their distributions are significantly
different, especially leaf five, which has highly concentrated
points.

Next, we perform a hypothesis test for the difference of
the joint distributions. The usual KS test is only suitable for
single variable. Since no pre knowledge should be assumed
for the joint distributions, we adopt the nonparametric testing
method for joint density proposed by [34]. Let f1 and f2 be
two d-dimensional densities. The hypothesis are H0 : f1 = f2
vs H1 : f1 6= f2. The test result is shown in Figure 8, the
difference between joint distributions are significant.
The decision tree ranks the variables in top-down order

according to their importance. This gives us a way to compare
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TABLE 8. P-values for pair wise comparison of leaves of Sichuan data.

policies. For example, as far as this decision-making tree is
concerned, the distinction of employment poverty alleviation
policies is clearer than whether they are transfer income
or not. Even in all cases, employment poverty alleviation
policies are the most effective in changing household income
relationships.

The several policy combinations formed by this decision-
making tree show significant differences in household
income and income structure. This on one hand gives us away
to evaluate the effectiveness of the policy combination. On
the other hand, it tells us about some of the common features
of extremely poor families. The decision-making tree finds
that the most effective way to distinguish the extremely poor
families is those who answered that the maximum increase
income is transfer income and employment poverty allevia-
tion does not help. This is a reflection of the importance of
these two policies for extremely poor families.

IV. CONCLUSION
Compared with the traditional decision tree with single vari-
able as its analysis object, the analysis object in this article is
the relationship between variables. By using copula entropy
as a measure for the strength of relationship, we constructed
two decision trees to serve different purposes. The regression
tree is designed to select the attributes or their combinations
of which the variables have strong relationship. Note that
the relationship is ‘‘strong’’ in a general manner, not for any
particular subsets. It is possible that a subset with variables
having strong relationship may not show its strength after
weighted averaging. The clustering tree selects attributes
based on the degree of change of each attribute to relationship,
thus the space of targeting variables is divided into several
regions according to the strength of relationship.

Applying the regression tree method to the analysis of
Sichuan Province data, we found that no matter the data is
divided according to what kind of attributes or combinations
of attributes, there is no strong correlation between oper-
ational income and wage income. Applying the clustering
tree method to the data in Sichuan Province, we evaluate the
effects of multiple policies. This evaluation is not achieved by
comparing household incomes with their historical data, but
by comparing different policies with each other. This is an
effective way to measure policy effectiveness in the absence
of historical data. Further, policy combinations with signif-
icant difference in distributions are formed by constructing
decision trees. On the other hand, the significant difference
in distributions also shows that policies are effective which
will be more effective when it comes to policy combination.

In this article, we only considered the relationship between
two random variables. This idea can be easily extended to
three or more random variables. For more than three random
variables, the estimation of copula entropy will suffer from
the curse of dimensionality, then some other estimation meth-
ods e.g. [35]–[37] should be considered. One thing worth to
mention is that using copula entropy to construct a splitting
criterion is just one of many possible choices, because copula
entropy is a general measure of dependence, but not the only
choice. In fact, copula entropy also has its limitations, for
example, it can only detect the strength of relationship not
types, so different types of relationship may have the same
copula entropy. Some important information may be ignored
when using copula entropy to summarize the copula function.
Decision trees for dependence based on other quantities or
even multiple quantities will be a possible future direction.
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