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ABSTRACT Railway plug defects impact the safety of a railway system. To detect railway plug defects,
we establish the framework of a visual inspection system (VIS), which is the first system that can perform
railway plug inspection automatically and intelligently. Using the idea of change detection, the framework
includes three algorithm modules, which are named the object location, image alignment and similarity
measurement modules. After the image acquisition system captures a rail image as the input, the three
algorithm modules process the image in order. First, in the object location module, a deep convolutional
neural network is used to perform plug location. Second, in the image alignment module, a simple and fast
method is designed to align key images using histogram of oriented gradients features. Third, in the similarity
measurement module, the χ2 distance is used to compute the similarity between the two plug regions in an
inspection image and in an aligned ground-truth image. The results of the similarity measurement are sorted
when all inspection images are processed. Therefore, the inspection images with smaller similarity values
are ranked higher and the plugs in the images have larger probabilities of defects. The framework has passed
the practice tests, and the visual inspection system using this framework has already been authorized by
the China Railway Corporation and will be equipped in many inspection trains belonging to local railway
corporations.

INDEX TERMS Visual inspection system, image processing, railway engineering.

I. INTRODUCTION
In recent years, high speed railway (HSR) transportation has
become more important and the length of the HSR in China
is increasing greatly. Hence, the demands of HSR mainte-
nance have also rapidly increased and become urgent. For
HSR maintenance, inspection is an important and necessary
preliminary task to look for and confirm defects in the tracks,
catenaries, tunnels, subgrades and various equipment in or
by railway lines. However, traditional inspection, depending
on contact measurement techniques and human patrolling
detection, is slow, subjective, dangerous, and inefficient.
Therefore, automatic and noncontact measurement systems
are being proposed to overcome the limitations of human
inspection.

Since there are many different kinds of inspection targets,
many different kinds of methods are used in automatic and

The associate editor coordinating the review of this manuscript and

approving it for publication was Min Xia .

noncontact measurement systems. For example, rail inter-
nal cracks can detected by ultrasonic techniques [1]–[3],
eddy current testing methods have been proposed to con-
firm railroad damage [4], [5], and acoustic emissions and
signal processing techniques have also been used in rail
inspection [6]. In addition to all of those, visual inspection
systems (VISs) are used more widely, including to detect
track surface defects [7], [8], fasteners [9]–[11], bolts [12],
slabs [13], squats [14], and catenary geometry parameters and
units [15]–[18].

A plug is an important component that is used to transmit
control information signals when a train is moving, and its
defects may cause very severe incidents, such as rear-end or
head-on collisions. Figure 1 shows the appearance of two
plugs. Different from the inspections for the track infrastruc-
ture and catenaries mentioned above, there are some speci-
ficities and challenges for the inspection of railway plugs.
First, plug shapes vary because their tail cables are not rigid;
therefore, normal plugs (samples) have various appearances
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FIGURE 1. Plugs: (a) as the lead wire for the track current, and (b) as the
lead wire for the compensation capacitor.

when being assessed using a machine. Second, since the
installation sites of plugs are nonuniform and discrete along
railways, locating plugs precisely becomes very difficult.
According to our rough statistics, approximately 0.5% of
inspection images contain plugs. Third, series of images that
may contain plugs captured by the same camera look almost
the same because the installation sites and angles of those
cameras are fixed. At last, there are fewer plugs than other
inspection targets, such as tracks and catenaries; therefore,
the number of abnormal samples of plugs is lower than that
of others and traditional machine learning methods cannot be
used directly and practically in an automatic plug inspection
system. Therefore, unlike track and catenary inspections,
plug inspections always depend on human patrolling detec-
tion before our VIS is used. To solve those problems with
plug inspection, we design a VIS using a change detection
framework. Although the concept of change detection is
already used in the fields of remote sensing [19, 20], video
surveillance [21], and medical diagnosis and treatment [22],
the change detection framework proposed in this paper
is designed especially for railways. Because the detected
objects vary based on the application, it is difficult to compare
algorithms using the change detection framework [23]. It is
applied to solve the plug inspection problem for the first time,
and the VIS we designed is the first automatic and intelligent
plug inspection system. Among our early works, paper [24]
presented our earliest work on an objection location module,
a small part of the whole VIS, for plug location. The object
location methods used in this work are traditional machine
learning algorithms. Then, in paper [25], we designed a kind

of deep neural network for the plug location module, and it
performed better. However, both papers focus only on the
object location module. In this paper, we greatly advance the
previous work, and detail the whole inspection system for
plug defects, including the hardware for image acquisition
and the software for the change detection framework that
contains three algorithm modules.

The rest of this paper is organized as follows. Section II
introduces the overview of the VIS for plug defects.
Section III describes the change detection framework.
Section IV presents the field experiment results. Finally,
section V provides some discussions and conclusions.

II. SYSTEM OVERVIEW
We design a VIS for railway plug defects. The VIS is com-
posed of a hardware and a software part. The hardware part
includes two high-speed digital cameras (named the inboard
cameras) installed under a test train, as displayed in figure 2.
Those cameras are used to capture series of images that may
contain plugs when the train runs. This is named the image
acquisition subsystem (IAS) in this paper.

Then, the obtained images are analyzed intelligently using
a series of image processing and machine learning algorithms
in the software part of the system. Those algorithms constitute
the change detection framework in our work. Briefly, the core
idea of change detection is the following: how to find plugs
that contain appearance changes between two inspections.
More changes mean greater probabilities of plug defects in
one inspection compared to the ground-truth, which con-
sists of nondefective plugs recorded just after the railroad
was constructed or that were confirmed via manual inspec-
tion. In other words, the ground-truth means that plugs are
undamaged in the inspection. In addition, the ground-truth
dataset includes serial images captured by the IAS and their
locations. The locations of these images are provided by the
vehicle positioning system (VPS) that is standard equipment
for the test trains used in China and it is not the theme of this
paper. It is noted that the image location is presented in the
form of kilometers plusmeters and all images in this paper are
equipped with location information. Using image processing
software, the change detection framework is embedded in our
VIS for railway plug defects.

A. HARDWARE: IAS
The IAS is composed of some commercially available com-
ponents, such as cameras, light sources, etc. As shown
in figure 2, two Dalsa Spyder 2 line-scan cameras installed
under the test train are used to capture the plug images of
the left and right tracks. Using those cameras, the maximum
line rate is 65 000 lines/s and the images have a resolu-
tion of 1024 pixels. The protocol of those cameras is the
Cameralink protocol and those images are captured by a
IPC(Industrial Personal Computer)-CamLink frame grabber.
An illumination setup equipped with a line array of LED
light sources is installed under the test train near the line-scan
cameras to reduce the effect of natural light. In addition,
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FIGURE 2. The high-speed digital cameras are shown in the following: (a) the real installation picture, and (b) the design drawing.

a wheel encoder is used to trigger the inboard, outboard, and
central cameras to synchronize their data acquisition every
twometers. The images captured by these cameras were taken
synchronously at the same location of the rail, and can be
stitched into a complete picture of the tracks and accessories.
Equipped with those components, the IAS can capture high-
resolution images for the VIS.

B. SOFTWARE: CHANGE DETECTION FRAMEWORK
The VIS in this study includes the IAS and change detection
modules for plug inspection. The IAS is described in the pre-
vious section. In this section, the change detection modules
are introduced.

Concretely speaking, the change detection framework is
composed of three algorithm modules, which are named the
object location, image alignment and similarity computation
modules, respectively. It is noted that the input images are
all preprocessed using histogram equalization and median
filtering for enhancement and denoising, respectively. Since
the two preprocessing algorithms are classical operations and
commonly used in image processing systems, we do not
describe them below. The diagram of the framework is shown
in figure 3.

1) OBJECT LOCATION
After an image is captured by the IAS, it is processed by the
object location module that is used to locate plugs precisely
by providing their rectangular coordinates in the image. The
algorithm in this module is ‘‘object detection’’ algorithm
from the field of computer vision [26]. Here, we use it
to meet the second challenge of plug inspection mentioned
in section I. As displayed in the first module of figure 3,
the located plug (shown in figure 4(a)) is surrounded by a
white rectangle denoted with coordinates in the image plane.
In the object location module, an object detection algorithm

using a Convolutional Neural Network (CNN) is proposed to
locate plugs. The algorithm is presented in section III.A.

2) IMAGE ALIGNMENT
Then, the image alignment module is used to align the images
containing plugs in one inspection with the images containing
the same plugs in the ground-truth dataset. It is necessary
to perform image alignment considered the VPS’s precision.
The images with the same location denoted by the VPS
during two inspections may contain different objects. Sim-
ilarly, images containing the same objects may be denoted
with different locations by the VPS during two inspections.
As shown in figure 4, the left image (figure 4(a)) was captured
during one inspection and it was denoted by the VPS as 130
kilometers plus 219meters on the railway from Jinshan North
to Haining West. The middle image (figure 4(b)) with the
red border was the image denoted by the VPS as from the
same location in the ground-truth dataset. Obviously, the two
images denoted by the VPS as the same location are differ-
ent images that contain different objects. The right image
(figure 4(c)) with the green border was the aligned image
that contains the same objects in the ground-truth dataset,
but its location was 130 kilometers plus 226 meters. Hence,
to ensure the applicability of the next module, an image
alignment algorithm must be executed. The module can align
images with pixel-level precision because the plugs belong-
ing to some railways must be periodically detected according
to the maintenance plans and the IAS captures images with
almost the same shooting angles and distances. Therefore,
although the inspections for the plugs of the same railway
are scheduled at different times, similar images are obtained.
Although there are many image alignment algorithms in the
field of machine learning [27], the algorithm used in this
module is designed according to the characteristics of plug
images. The algorithm of this module can match the image
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FIGURE 3. The change detection framework. The input image Is containing a located plug (denoted as 240 kilometers plus
610 meters) is shown in (a) and the image with the same location in the ground-truth dataset is shown in (b). Obviously, those
images do not present the same scene. The fragment of joined image Ij is shown in (c). Some images in the series of In are shown in
(d). The resulting image Ia aligned to the input image Is is shown in (e). A part of the database is shown in (f). The location of Ia can
be considered to be 240 kilometers plus 614 meters. This is detailed in section III.B.

captured during an inspection to the image of the ground-
truth dataset with pixel-level precision. Figure 4 shows that
the plug image is precisely matched to the image in the
plug ground-truth dataset. The algorithm will be presented
in section III.B.

3) SIMILARITY MEASUREMENT
The similarity computation module is used to compute the
similarity between the two plug regions in an inspection
image and an aligned ground-truth image. The similarity
measurement is conducted after all inspection images are
processed directly. The inspection image with a smaller sim-
ilarity value is ranked higher and the plugs in the image have
a larger probability of having a defect. The details of the
measurement are in section III.C.

4) GROUND-TRUTH DATASET
The plugs in the images contained in the ground-truth dataset
are all perfect. In other words, those images are standard
images. How can we build the dataset? There are two ways:
first, when a new railway is just finished and its suitability for
operation is tested, serial images could be taken and stored in
the dataset; and second, when all the plugs in a railway are
found to be perfect after manual inspection, the serial images

FIGURE 4. The necessity and feasibility of image alignment: (a) the image
that was captured during one inspection and it was denoted by the VPS
as 130 kilometers plus 219 meters; (b) the image with the red rectangle
was the image denoted by the VPS as the same location in the
ground-truth dataset; and (c) the image with the green rectangle was the
aligned image that contains the same objects in the ground-truth dataset,
but its location was 130 kilometers plus 226 meters.

containing those plugs in the railway could be stored in the
dataset. Obviously, those serial images are indispensable in
the image alignment and similarity measurement computa-
tion modules. As displayed in figure 3(c), some serial images
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in the ground-truth dataset are joined in succession and the
aligned segment is denoted with a green rectangle.

III. CHANGE DETECTION
A. OBJECT LOCATION
The object detection algorithm utilized in this module to
locate plugs has three steps: (1) ‘Region Proposal’ (RP) [28]
provides some possible rectangle regions that may contain a
plug, (2) a CNN is used to extract plug region features, and
(3) a support vector machine (SVM) is used as a classifier to
judge whether the region features represent a plug.

1) REGION PROPOSAL (RP)
The source image captured by the IAS is shown in figure 5(a).
The region of the rail waist structures, as the input image
for the object detection algorithm, is shown in figure 5(b).
Obviously, the plug looks small and salient in figure 5(b),
but the rest of the region looks smooth and monotonous.
In other words, if an input image contains a plug, the input
image should present a different texture. Because differ-
ent textures can be distinguished in the frequency domain,
the magnitude spectrum of the input image containing a
plug (figure 5(b)) can have the magnitude spectrum of the
average image subtracted from it, and the result is called the
spectrum residual. Figure 5(c) is the average image and its
pixel values are the mean pixel values of the 384956 rail
waist structure regions that do not contain plugs in this work.
Then, the spectrum residual is processed by the phase-holding
IFFT and the resulting image will distinctly show the salient
regions. Those salient regions are proposal regions where
plugs may be contained, as displayed in figure 5(d). In the
figure, the real region is denoted by an arrow. From the
above, the algorithm proposed to conduct RP is named
the spectrum residual region proposal (SRP) algorithm, and
figure 6 shows the flowchart. The outputs of the SRP are some

FIGURE 5. An example of an SRP: (a) source image, (b) the region of the
rail waist structures (the region in the yellow rectangle in (a)), (c) the
average image, and (d) the proposed regions.

FIGURE 6. The flowchart of spectrum residual region proposal (SRP).

proposal regions. Those proposal regions, which are encircled
by rectangular boxes, are then used as the input images to the
following CNN.

2) PLUG CNN
The CNN is designed for plug detection in this paper, and we
name it the plug CNN (pCNN). The function of the pCNN is
to extract the features of the input images, and its structure is
shown in figure 7. Above all, the terminology of the pCNN in
this paper is the same as those in the famous classical paper
about the CNN [29]. The pCNN includes four convolution
modules, and each module consists of a convolution layer,
a nonlinear activation layer, a normalization layer and a pool-
ing layer.

In detail, the input image is resized to 32∗32 pixels, and
2 pixels are padded to surround the resized image. This is
convenient for the convolution operation. Next, in the first
convolution layer named ‘conv1’, the size of the receptive
field, defined as the size of the region in the input that
produces the feature [26], is 5∗5, its dimension is 32 and
the step size is 1. As the nonlinear activated layer, to accel-
erate the convergence of the pCNN, the ‘relu1’ function is
used to get the maximum value of the convolution results.
Then, local response normalization is applied to the results
of relu1 to gain better generalization. The operation is named
‘norm1’ in the paper. Then, a pooling layer is used to get
the maximum values of the previous step’s results in a 3∗3
receptive field and a step size of 2. We name the layer
‘pool1’. In short, conv1, relu1, norm1 and pool1 build up
the first convolution module of the pCNN. It is noted that
the measurement unit is pixels in the description of the
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FIGURE 7. The structure of the pCNN.

pCNN. Similarly, the following second convolution module
of the pCNN can be described as follows: one convolution
layer named ‘conv2’, the size of the receptive field is 5∗5,
the dimension is 64, there are 2 padding pixels and the step
size is 1. Then, the ‘relu2’ function, which is the same as
‘relu1’, is used; local response normalization is applied to
the results of relu2 and the operation is named ‘norm2’.
Then, the pooling layer is the same as pool1 and is named
‘pool2’. Next, the following third convolution module of the
pCNN is described as follows: one convolution layer named
‘conv3’, the size of the receptive field is 5∗5, the dimension
is 256, 2 padding pixels are used and the step size is 1.
Then, the function ‘relu3’, which is the as same as ‘relu1’
and ‘relu2’, is used; local response normalization is applied
to the results of relu3 and the operation is named ‘norm3’.
Then, a pooling layer is used to get the maximum values of
the previous results in the 1∗1 receptive field and the step size
is 2. We name the layer ‘pool3’. Next, the following forth
convolution module of the pCNN is described as follows: one
convolution layer named ‘conv4’, the size of the receptive
field is 1∗1, the dimension is 1024 and the step size is 1. Then,
the ‘relu4’ function, which is as same as ‘relu1’, ‘relu2’ and
‘relu3’, is used; local response normalization is applied to the
results of relu4 and the operation is named ‘norm4’. Next, a
fully connected layer named ‘fc1’ is used to realize the inner
product of the previous results. Then, a dropout layer named
‘drop1’ is used to set the results of fc1 as 0 or 1 randomly.
It can also gain better generalization for the CNN. The output
of the pCNN in this work is the feature of the input image, and
the feature dimension is 4096. Finally, a fully connected layer
named ‘fc2’ is used to determine whether the input image
contains a plug. This layer is only used in the pCNN training.

In figure 8(a), the input image containing a plug is used to
illustrate the features extracted by the pCNN. The intermedi-
ate results are shown in figures 8 (b)∼(e). Those figures show
that as the result of SPR, the input image is processed by the
first to the fourth convolution modules in order and the results
of the 4096-dimension features are sparse, as displayed
in figure 8(f).

To train the pCNN, 6000 typical plug images are col-
lected and resized to 32∗32 as positive samples. In the
same way, 6000 typical nonplus images are collected
and resized to 32∗32 as negative samples. Those images

FIGURE 8. An example of feature extraction by the pCNN: (a) the input
image containing a plug, (b∼e) intermediate results from the first
convolution module to the fourth convolution module, and (f) the output
of fc1 for feature extraction by the pCNN.

constitute the training dataset, and some samples are dis-
played in figures 9 (a)∼(b). Then, another 3000 positive
samples and 3000 negative samples are collected similarly,
and those images constitute the validation dataset. The train-
ing parameters are configured as follows: base learning rate
of 0.01, momentum of 0.9, weight decay of 0.004, gamma
of 0.1, step size of 20000 and a maximum number of itera-
tions of 150000.
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FIGURE 9. Some samples for training the pCNN: (a) positive samples, and
(b) negative samples.

3) SVM
The SVM classification follows the pCNN. The input is the
features such as figure 8(f) and the result is 0 or 1, which rep-
resents whether the input image contains a plug. In addition,
the SVM is a linear classifier [30] realized using the libsvm
toolbox [31]. To train the linear SVM, the features of fc1 are
input after the pCNN is trained. In SVM training, 10-fold
cross-validation is adopted and the regularization factor C is
set as 2.

The experiments about the object location module are
shown in section IV.A.

B. IMAGE ALIGNMENT
Figure 10 shows the flow of the image alignment process.
At first, the location (denoted as kilometers plus meters) of
an image is provided by the VPS. The image is processed
by the previous module (object location module) to ascertain
whether a plug is contained in the image. The image is named
Is (shown in figure 3(a)). Second, series of images in the
ground-truth dataset are retrieved and joined to an image
named Ij (shown in figure 3(c)). Those series of images’
locations (also denoted as kilometers plus meters) are all
within a 20 meters range of the location of Is. The range
of 20 meters can be deemed to be the error of the VPS. In our
IAS, ten images can cover twenty meters of continuous track
without overlap. Therefore, Ij, the joined image, is 21 times
the height and the same width as Is. Third, the rectangular
window that is same size as Is moves pixel by pixel in the
joined image Ij from head to end (shown as the red rectangle
in figure 3(c)). During the moving, a new image named In is
created when the windowmoves a pixel. The new image is the
same as the region of Ij under the window. Obviously, we can
get a series of In (shown in figure 3(d)), when the window is
moving. Fourth, the histogram of oriented gradients (HOG)
features are extracted from In since In has more lines and
right angles [32]. In addition, the HOG features of Is are also
computed. HOG is a classical and stable feature descriptor
that is used for object detection in the field of computer
vision. It presents a normalized histogram that is obtained
by computing the histogram of oriented gradients in a local
image region. Fifth, the χ2 distances between Is and those
created images (the series of In) are computed [33] in the
space of the HOG histograms. The image in the series of

FIGURE 10. The flow of the image alignment algorithm.

In, named Ia, with the minimum distance to Is is the aligned
image in the ground-truth dataset.

The χ2 distance d(x, y) is the distance between two his-
tograms x = [x1, · · · , xn] and y = [y1, · · · , yn] with both
having n bins. Moreover, both histograms are normalized,
i.e., their entries sum up to one. The HOG features used in this
work are just normalized histograms, and so we can denote
the features of the two images as x and y. The distance d is
usually defined as

d(x, y) =
1
2

n∑
i=1

(xi − yi)2

xi + yi

It is often used in computer vision to compute the distances
between two images.

Figure 3 illustrates the plug image alignment algorithm.
The input image Is containing a located plug (denoted as
240 kilometers plus 610 meters) is shown in figure 3(a) and
the imagewith the same location in the ground-truth dataset is
shown in figure 3(b). Obviously, those images do not present
the same scene. The fragment of joined image Ij is shown
in figure 3(c). Some images in the series of In are shown
in figure 3(d). The resulting image Ia aligned to the input
image Is is shown in figure 3(e). The location of Ia can be
considered to be 240 kilometers plus 614 meters. The more
experiments about the image alignment module are shown
in section IV.B.

C. SIMILARITY MEASUREMENT
From the previous steps, the aligned images in the
ground-truth dataset are created and we get pairs of
images—inspection images containing plugs and their
aligned images in the ground-truth dataset. In this module,
the similarity measurements for same plug regions in those
pairs of images, as displayed in figure 3, are computed with
their local binary pattern (LBP) features [34]. The LBP is a
classical and stable operator to extract an image’s statistical
and structural features. It describes the statistical properties
and texture structure in the form of a normalized histogram.
That is, in figure 3, the white solid rectangular region in
the inspection image (shown in figure 3(a)) and the white
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dashed rectangular region in the aligned image (shown in fig-
ure 3(e)) are the corresponding area to be measured. In addi-
tion, the similarity measurement is also the χ2 distance in
the space of the LBP histograms. An example is shown
in Figure 11, where the LBP histograms of the images in
the ground-truth dataset and those captured during inspection
were calculated. The χ2 distance between (a) and (b) was
0.0248 and that between (c) and (d) was 0.0349. The image
with a defective plug has larger distance value. Obviously,
the similarity decreases as the distance becomes larger, and
we may replace the similarity with respect to the distance in
the following. Then, the values of the measurement metric,
the χ2 distances, are sorted from the largest to the small-
est. Obviously, a larger value means that it is more likely
that the inspection image contains defective plugs. Finally,
the inspection images containing defective plugs are sorted
according to the possibility that they contain a defect. Those
images are the results we wanted. The experiments of this
module are shown in section IV.C.

FIGURE 11. LBP histograms of plugs. (a) A plug in the ground-truth
dataset, (b) the plug in (a) with no defect captured during inspection,
(c) a plug in the ground-truth dataset, and (d) the plug in (c) with an
artificial defect.

IV. EXPERIMENTS
In this section, we illustrate some experiment results about
the change detection framework. The operating environ-
ment is a computing workstation that is equipped with dual
Intel Xeon E5-2680V4 (14 kernels, 2.4 GHz) CPUs and
256G DDR4 RAM.

A. OBJECTION LOCATION
We illustrate some typical experimental results for the objec-
tion location module in Figures 12∼13. The parameter set-
tings are the same as those described in section III.A.

Figure 12 shows some typical results. In figure 12(a),
the image containing no plug was captured in a nor-
mal environment and the location result shows that no
object was located. In figure 12(b), the image containing

FIGURE 12. Some typical results of our object location module: (a) the
image containing no plug was captured in a normal environment; (b) the
image containing no plug looks smudged due to corrosion and scratches;
(c) the image containing a plug was captured in a normal environment;
(d) the image containing a plug was captured in a complex environment,
such as a rail switch; (e) the image contains a half plug; (f) the image
containing a plug was captured in insufficient illumination and it looks
smudged due to corrosion and scratches; (g) the image contains a plug
that was also manually marked by trackwalkers; and (h) the image
containing a plug that looks a little motion blurred.

no plug looks smudged due to corrosion and scratches
and the location result shows that no object was located.
In figure 12(c), the image containing a plug was captured
in a normal environment and the location result shows that
the object enclosed by a rectangle was correctly located.
In figure 12(d), the image containing a plug was captured in a
complex environment, such as a rail switch, and the location
result shows that the object enclosed by a rectangle was
correctly located. In figure 12(e), the image contains a half
plug and the location result shows that the half plug enclosed
by a rectangle was correctly located. In figure 12(f), the image
containing a plug is captured in insufficient illumination and
it looks to be smudged due to corrosion and scratches. The
location result shows that the object enclosed by a rectangle
was correctly located. In figure 12(g), the image contains a
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FIGURE 13. Precision-recall curves.

plug that was also manually marked by trackwalkers and the
location result shows that the located enclosed by a rectangle
was correctly located. In figure 12(h), the image containing a
plug looks a littlemotion blurred and the location result shows
that the object enclosed by a rectangle was correctly located.
Moreover, the precision-recall curve also shows that the
object location module in this paper (SRP+pCNN+SVM)
gets better results than those in our previous work [24],
as represented by the curves denoted as LBP+SVM and
Haar+Adaboost, as displayed in figure 13. Our previous
article [25] presents more details about the object location
module in this paper (SRP+pCNN+SVM). Obviously, deep
learning results perform better than traditional machine learn-
ing results.

B. IMAGE ALIGNMENT
In this section, we illustrate the experimental results for the
image alignment module. As shown in figure 14, the upper-
left image (figure 14(a)) was captured during one inspec-
tion and it was denoted by the VPS as 239 kilometers plus
545meters on the railway fromChangzhou to Zhenjiang. The
upper-middle image (figure 14(b)) was the image denoted
by the VPS as the same location in the ground-truth dataset.
Obviously, the two images denoted by the VPS as the same
location are different images that contain different objects.
The upper-right image (figure 14(c)) was the aligned image
that contains the same objects in the ground-truth dataset,
but its location was 239 kilometers plus 541 meters. Sim-
ilarly, the bottom-left image (figure 14(d)) was captured
during one inspection and it was denoted by the VPS as
127 kilometers plus 710meters on the railway fromYuanping
to Xinzhou. The bottom-middle image (figure 14(e)) was
the image denoted by the VPS as the same location in the
ground-truth dataset. Obviously, the two images denoted by
the VPS as the same location are different images that con-
tain different objects. The bottom-right image (figure 14(f))
was the aligned image that contains the same objects in the
ground-truth dataset, but its location was 127 kilometers plus

FIGURE 14. Two experiments on the image alignment module: (a) the
image was captured during one inspection and it was denoted by the VPS
as 239 kilometers plus 545 meters; (b) the image denoted by the VPS as
the same location in the ground-truth dataset; (c) the image was the
aligned image that contains the same objects in the ground-truth dataset,
but its location was 239 kilometers plus 541 meters; (d) the image was
captured during one inspection and it was denoted by the VPS as 127
kilometers plus 710 meters; (e) the image denoted by the VPS as the
same location in the ground-truth dataset; and (f) the image was the
aligned image that contains the same objects in the ground-truth dataset,
but its location was 127 kilometers plus 712 meters.

712 meters. Using this method, we can get 100% alignment
accuracy.

C. SIMILARITY MEASUREMENT
In this section, we illustrate some experimental results about
the similarity measurement module. Those results are also
the final results for the plug inspections and the images were
captured along the Shanghai–Hangzhou high-speed railway
line. It is noteworthy that those experiments are processed
by the VIS installed on the inspection train owned by the
China Academy of Railway Sciences. We present the first
four results measured by the χ2 distances and sorted the
distances from the largest to smallest. Figure 15 shows the
plug inspection results. For example, figure 15(a) shows that
the plug cable wasmoved comparedwith the aligned image in
the ground-truth dataset, and this means that the plug may be
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FIGURE 15. The plug inspection results: (a)∼(d) show that the plug cable
was moved compared with the aligned image in the ground-truth dataset.

defective with the maximum possibility. It is also noted that
the aligned image in the ground-truth dataset is the left image
and the inspection image is the right one in figure 15(a).
Comparing the rectangles in above figures, the rectangles
surrounding the plugs in this figure are enlarged to avoid
missing some details of those plugs. This is the same with
figures 15(b)∼(d). Obviously, those plugs were all touched
by something or somebody, and this would very likely cause
some defects since plug tail cables could be broken off easily.
With those results, professional maintenance engineers can
judge whether the plugs need to be maintained. Using this
means, we also provide some possible defective plug posi-
tions when railway maintenance managers make a predictive
maintenance plan for the next maintenance period.

To evaluate the performance of the whole system, we chose
a ground-truth dataset with 191,530 images in which 9,276
included a plug. Since it is impossible to obtain defective
plugs via destructive tests on real railways, every time five
images were randomly picked from the 9,276 plug images,
defective plugs were imitated. The precision-recall curve of
the 10 training and calculation sessions of the Top-1 accuracy

and the Top-20 accuracy are shown in Figure 16. In the field
of machine learning, Top-N accuracy means that the correct
result gets to be in the Top-N probabilities for it to count as
‘‘correct’’. The processing time for one image using these
algorithm modules was approximately 0.1 second.

FIGURE 16. Precision-recall curve of the change detection framework.

In most cases, if a defective plug was found, it must be
replaced by a new one instantly. So, there will be no defective
plug in this railway section for a very long time. There-
fore, the experiment (Fig. 16) with imitated and augmented
defective plugs was designed to provide some statistical
results in normative rule of academic standard. As an industry
application in practical use, the top-20 results (those are the
first twenty plug images presented by our system), sorted
by defect probability from large to small, must include the
defective ones, if defective plugs exist in this railway section.
The top-1 result is not used in practice. In fact, the framework
has passed the practice tests of 1,1905.5 km and 150 hours.

V. DISCUSSION AND CONCLUSION
The VIS with the change detection framework is the first
visual system that can perform railway plug inspection auto-
matically and intelligently. Regarding the algorithm mod-
ules, the precision-recall curve of the object location module
looks better than those of the other methods that we used
before [24], and the image alignment module can also achieve
100% alignment accuracy in our experiments; however, the
series of inspection images look almost the same except for
those images containing plugs. In the last module experi-
ments, we find that plugs that are very likely to be defec-
tive can be selected from a large number of plug images
automatically and intelligently. Then, that small number of
selected plug images will be reviewed manually, and this
is practically easy work. It is also the reason why we do
not provide the final system accuracy because that small
number of recommended images should be reviewed by pro-
fessional maintenance engineers to finally confirm whether
those plugs are defective or not. In fact, during practical
inspection work, the speed of a test train may be 120 km/h
(kilometers/hour), and the run time is about three hours for
every inspection. Therefore, the total number of images is
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approximately 180,000 since one image can cover about two
meters of track. If the object location module is the only one
adopted to select plug images, and the states of those plug
images are then manually judged by maintenance engineers,
approximately 9,000 plug images will be reviewed manually
after every inspection. Using our system with the framework,
after a large number of experiments, we have determined that
the first twenty plug images, sorted by defect probability from
large to small, are enough to be reviewed manually. Thus,
the VIS with the change detection framework can tremen-
dously alleviate maintenance engineers’ work compared with
traditional manual detection.

The change detection framework can be implemented in
various ways according to significantly different applica-
tions, which sometimes makes it difficult to compare algo-
rithms directly [23]. Compared to the change detection in
other fields, our framework has the following characteristics.
(1) The specific image capture approach. In our system,
the image sensors were fixed on a moving train, and so
the captured images were spatially continuous and tempo-
rally discrete. In addition, there was no deformation of these
images because of the fixed relative position of the camera
and the tracks. For video surveillance, the image sensors
were always fixed, and the acquired images were tempo-
rally continuous for a static scene. In the remote sensing
field, the images are large scale and have greatly varying
resolutions compared to our system. Furthermore, medical
images, such as MRI images, show some image deformation
due to some individual differences and body movements.
(2) The specific alignment algorithm. In our framework,
the alignment is a kind of image location method from image
series. However, for video surveillance, the Gaussian mixture
model was used for static scene recovery [21]. Meanwhile,
for remote sensing and medical images, to perform image
alignment, some elastic registration algorithms should be
used to deal with the deformed images [20], [22]

Our study is the first practical system for plug inspection,
and so there are hardly any images containing defective plugs
collected by us. Therefore, just at the present stage, the num-
ber of defective plugs is too scarce to train a classifier that
can classify defective plugs directly from large numbers of
inspection images. However, since the massive construction
of HSR urgently needs more efficient maintenance work,
the VIS with the change detection framework can be fur-
ther developed to satisfy the practical work. Considering the
safety of the system, we prefer some reliable and stable algo-
rithms, such as the HOG and LBP, which were used widely
before. In a similar way, the deep neural network we used
is concise because the computation speed and stability must
be considered in industrial application. Although some of the
latest networks are tested, such as Senet [35], the concise
network, the pCNN, is found to be the optimal structure with
respect to the system efficiency, maintainability and stability.

In addition, compared with other railway infrastructures,
such as fasteners [9], [11], the number of plugs is much less,
and thus the number of defective plugs is less. In practice,

there is often up to one or two defective plugs in one inspec-
tion. This means that the ratio (the number of abnormal plugs:
total plugs) is very imbalanced at over 1: 4500, and the data
are extremely skewed. Therefore, even if detective plugs were
collected for many years, the number of detective plugs might
not be enough to train the classifier mentioned above. It is the
open challenge named ‘Learning from Imbalanced Data’ in
themachine learning field [36].Moreover, because even a few
defective plugs may cause a potential safety hazard, a stable
and high-performance system is required. Thus, we propose
the change detection framework to bypass the problem and it
does work well in practice. In summary, to solve the problem
of imbalanced samples in practice, we establish the frame-
work of a visual inspection system for railway plug defects.
Using the idea of change detection, the framework includes
three algorithm modules, which are named the object loca-
tion, image alignment and similarity measurement modules.
In the view of application studies, it could be considered
as the most important ‘‘novelty’’ of the paper and it has
been used to solve the actual problems in railway inspections
reliably. The framework has passed field tests, and it is also
found in this paper that it conforms to the special section
subject of this journal. In addition, the change detection
framework also presents another approach for the inspection
of many railway infrastructures, such as balises, rail surface
defects, and catenary support devices. The limitations of this
technique are as follows: 1) building a ground-truth database
needs to consume lots of resources, including time, labor
costs and memory storage; and 2) if the IAS camera shooting
angle is changed in one inspection, although it may hardly
happen, the final results could be worse because the image
alignment module cannot work well in this case.

As far as we know, there are still no other study teams
that have published a paper on automatic inspection systems
for railway plug defects in influential journals or conference
proceedings. In this paper, we propose the change detection
framework used in our VIS for railway plug inspection for the
first time. The framework includes the ground-truth dataset
and three algorithm modules, which are the object detection,
image alignment and similarity measurement modules. The
results of the experiments showed that the system can detect
the defective plugs with high accuracy and that can improve
the efficiency of railway inspection. The VIS embedded
with the framework has already been authorized by the China
Railway Corporation and it will be equipped in many inspec-
tion trains belonging to many local railway corporations
in China.
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