
Received August 5, 2020, accepted August 13, 2020, date of publication August 18, 2020, date of current version September 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3017641

Automatic Modulation Classification
Scheme Based on LSTM With Random
Erasing and Attention Mechanism
YUFAN CHEN 1, WEI SHAO 1, JIN LIU 2, (Graduate Student Member, IEEE),
LU YU1, AND ZUPING QIAN 1, (Member, IEEE)
1College of Communications Engineering, Army Engineering University of PLA, Nanjing 210007, China
2School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

Corresponding author: Wei Shao (tytglpp@126.com)

This work was supported in part by the Jiangsu Provincial Natural Science Foundation of China under Grant BK20160080.

ABSTRACT Automatic modulation classification (AMC) is a key technology of cognitive radio used in
non-cooperative communication. Recently, deep learning has been applied to AMC tasks. In this paper,
an AMC scheme based on deep learning is proposed, which combines random erasing and attention
mechanism to achieve high classification accuracy. Firstly, we propose two data augmentation methods,
random erasing at sample level and random erasing at amplitude/phase (AP) channel level. The former
replaces training samples with noise information, while the latter replaces AP channel information of
training samples with noise information. Erased data segments are randomly stitched to enable training data
expansion. Training data of different qualities enables deep learning model to have stronger generalization
capability and higher robustness. Then, we propose a single-layer Long Short-TermMemory (LSTM) model
based on attention mechanism. In the first part of this model, we propose the signal embedding, which
enables the input to contain modulation information more comprehensively and accurately. Then hidden
state output by LSTM is input into the attention module, and weighting is applied to the hidden state to
help the LSTM model capture the temporal features of modulated signals. Compared to a model without
attention mechanism, this model has faster convergence speed and better classification performance. Lastly,
we propose a random erasing-based test time augmentation (RE-TTA) method. Test data is randomly erased
for multiple times and classification results are comprehensively evaluated, in order to further improve
classification accuracy. Experimental results on dataset RML2016.10a show that classification accuracy of
the proposed scheme is competitive compared with the state-of-the-art methods.

INDEX TERMS Automatic modulation classification, random erasing, long short-term memory, attention
mechanism.

I. INTRODUCTION
As wireless communication technology continues to evolve,
electromagnetic environment becomes increasingly complex
and volatile. The data amount of modulated signal increases
drastically, and the types of modulation mode become
increasingly complicated and diversified. Traditional modu-
lation classification algorithms focusing onmanual extraction
of expert features cannot be applied to the largely emerging
communication data, and their classification accuracy is not
as good as expected. Therefore, a high-precision data-driven
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modulation classification algorithm can play a critical role
in both civil and military communication. In recent years,
some researchers have started to address challenges in wire-
less communication with deep learning methods, and have
achieved certain results. Deep learning based automatic mod-
ulation classification (AMC) algorithm not only overcomes
the shortcoming that traditional methods cannot use a large
amount of communication data, but also enables commu-
nication systems to recognize complicated and diversified
modulation modes with higher accuracy [1], [2].

In the study of deep learning based AMC technology,
in-phase and quadrature phase (IQ) data of modulated signal
is used to train deep learning models, and certain results
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are achieved. West and O’shea [3] used pure IQ data
directly for simulation experiments, demonstrated the per-
formance of convolutional neural network (CNN), Residual
Network (ResNet) and other network structures in modu-
lation classification tasks, and put forth that classification
accuracy is not limited by network depth for the first time.
Using IQ data alone for modulation classification poses a
certain limitation to the improvement of classification accu-
racy. With the development of deep learning based AMC
technology, researchers have started to improve classification
performance in two aspects: data preprocessing and deep
learning model improving.

A. DATA PREPROCESSING
1) TRADITIONAL METHODS
Some researchers combine manual feature extraction in tra-
ditional methods with deep learning models, and extract
expert features from IQ data, hence to classify modulated
signals. Peng et al. [4] proposed to represent modulated sig-
nals with binary constellation diagrams, and optimize con-
stellation representation with gray image and three-channel
image. Wang et al. [5] used constellation diagrams to classify
modulation modes that are difficult to distinguish, such as
QAM16 and QAM64. They also proposed to capture data
distribution differences of these twomodulationmodes with a
density window. High-order cyclic spectra of modulated sig-
nal are also one of the common expert features. Wu et al. [6]
extracted constellation diagrams and cyclic spectra of mod-
ulated signal respectively, and built a two-branch CNN on
these two features. Rajendran et al. [7] proposed that a
good accuracy could be achieved by converting IQ data into
amplitude/phase (AP) information and using a simple Long
Short-Term Memory (LSTM) model. The model was able to
obtain temporal features of signals from training data without
requiring manual extraction of expert features.

2) DATA AUGMENTATION METHODS
In the field of deep learning, if model complexity is rela-
tively high and the amount of training data is not sufficient,
the risk of overfitting exists. Data augmentation methods
can be adopted to expand training data. In addition, data
augmentation technology also contributes to classifying data
that is easily confusing, and improves model generaliza-
tion capabilities. In image recognition, audio recognition
and other classification tasks, researchers proposed sev-
eral data augmentation methods, such as flipping [8], ran-
dom cropping [9], and dropout [10]. Zhong et al. [11]
proposed an attractive data augmentation method, random
erasing, which improved model robustness without intro-
ducing any extra learning parameters. Compared to random
cropping, random erasing does not impact data integrity.
In the field of AMC, Huang et al. [12] effectively expanded
training data by rotating constellation diagram and adding
noise to it. Chen et al. [13] used generative adversarial net-
work (GAN) [14] for data augmentation. They proposed an

auxiliary classification GAN (ACGAN) in combination with
an auxiliary weighting loss function to balance the impact
of generated data on classification model, and achieved a
classification accuracy of 94% on the open source dataset
RML2016.10a [15].

B. IMPROVEMENT OF DEEP LEARNING MODEL
Nie et al. [16] proposed a deep hierarchical network (DHN),
which combined shallow features with high-level features.
It could simultaneously have global receptive field and loca-
tion information through multi-level feature extraction with-
out any transformation of the raw data. They also innovatively
proposed a loss function using signal-to-noise ratio (SNR)
as a weight. Simulation experiments showed that the DHN
model had relatively high classification accuracy.

As an important concept in the field of deep learning,
attention mechanism (AM) was originally used in machine
translation [17], and is being widely adopted now in natu-
ral language processing (NLP), statistical learning, speech
recognition, computers and other fields. In [13], Chen et al.
proposed a novel attention cooperative framework, which
added a self-attention mechanism and a Squeeze-and-
Excitation (SE) block [18] to classifiers to obtain interde-
pendencies between input feature maps, and demonstrated
effectiveness of attention mechanism in AMC.

C. CONTRIBUTION OF THE PROPOSED AMC SCHEME
In this paper, we propose a deep learning basedAMC scheme.
As the first step, we extract AP information of IQ data,
and then expand training data with two random erasing
algorithms. Following that, we obtain classification results
through a single-layer LSTM model based on the attention
mechanism. Lastly, we further improve classification accu-
racy with a random erasing-based test time augmentation
(RE-TTA) method. The major contributions of our scheme
are as follows:

• Random erasing algorithms at sample level and AP
channel level for AMC are proposed. They are different
from the existing work in [11]. The proposed algorithms
enable the proposed scheme to adapt to the increasingly
complex environment. Because during the transmission
of radio signals, fading, multi-path, noise and other error
effects may appear due to irregular terrain and building
obstacle, thereby reducing the quality of data collected.
In case when all the training data are clearly visible,
i.e., no occlusion happens, the learned model may have
a good classification accuracy on the data without occlu-
sion, but due to the limited generalization ability of the
model, it may not be able to recognize data which are
partially occluded. Although we can manually collect
signal data in real electromagnetic environments, it is
expensive and the level of occlusion might be limited.
To summarize, the two random erasing algorithms pro-
posed in this paper have four advantages:
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FIGURE 1. System model.

a. The proposed algorithms are specifically designed for
AMC and are better suited for processing long sequence
signal data.
b. By generating training data of different qualities,
the proposed algorithms can significantly improve
robustness of deep learning model in front of various
error effects in real electromagnetic environments.
c. The proposed algorithms can generate signal data with
different occlusion level. Through the training of dif-
ferent quality data, our model has better generalization
ability than models trained with high-quality and clean
data.
d. The proposed algorithms do not require any extra
parameter learning. They can be conveniently embed-
ded into any deep learning model without changing the
structure of the model.

• Single-layer LSTM based on attention mechanism is
proposed. In deep learning based multi-classification
tasks, training of long-sequence data will result in reduc-
tion of model classification accuracy, and improper
input sequence of training data will also lead to low
computational efficiency. In response to such issues,
attention mechanism is added to enable deep learning
model to capture temporal features of long-sequence
data in a way faster than the convergence speed of
traditional single-layer LSTM, greatly saving time spent
on training. Then we propose signal embedding for
AMC. Embedding enables the input vector to include
the modulation information of signals more comprehen-
sively and accurately, so as to facilitate the extraction of
temporal features by LSTM.

• A RE-TTA method is proposed. In the testing phase,
we use random erasing algorithms to generate test
data of different qualities and make comprehensive
judgments on the corresponding classification results,

in order to obtain the final classification results. Classi-
fication accuracy is further improved with this method.

The paper is organized as follows: In Section II, the sys-
tem model is introduced. In Section III, the proposed AMC
scheme is described in detail. The simulation results and
analyses are shown in Section IV. Finally, some conclusions
are presented in Section V.

II. SYSTEM MODEL
In this paper, the system model consists of three parts,
as shown in Figure. 1. The first part is the AP information
extraction module, the second part is the data augmentation
module, and the third part is the classification module. The
first two parts are mainly for data preprocessing, and the third
part is for realization of modulation classification. As the first
part of system model, the AP information extraction module
extracts AP information of signals from the IQ data.

As the second part of system model, a data augmentation
module is constructed based on random erasing algorithm at
sample level or AP channel level. For each batch of input data,
a random number is firstly generated in the range of 0 to 1.
If the random number is greater than the erasing threshold,
the data will be randomly erased, otherwise the data remains
unprocessed. After that, data expansion is realized through
the random erasing algorithm. To prevent the same batch
of data from being repetitively input into the subsequent
deep learning model, we perform a Shuffle operation on the
expanded data to scramble the data, hence ensuring general-
ization capability of the model.

As the third part of system model, the classification mod-
ule is composed of the attention mechanism based LSTM
submodule and the RE-TTA submodule. Signal embedding
multiply original IQ data and a learnable matrix, so that the
data input into LSTM contain more comprehensive mod-
ulation information. LSTM is suitable for long-sequence
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data processing, and can extract temporal features in AP
information simultaneously. Among the hidden states output
by LSTM, some of the hidden states have extracted the
modulation information and are hence activated, while the
others remain deactivated. The addition of attention mech-
anism enables the activated hidden states to get high weight
through repeated training, hence getting more attention from
the deep learning model. The RE-TTA method is used after
the Softmax layer, which generates multiple versions of test
set through random erasing, and comprehensively evaluates
these classification results to obtain the final result, in order
to further improve classification accuracy.

III. THE PROPOSED AMC SCHEME
A. AP INFORMATION EXTRACTION
Assuming the length of a set of data samples is N, firstly,
we convert IQ signals into AP information, where amplitude
is:

Ai =
√
I2i + Q

2
i , (1)

where Ii and Qi represent the ith data in the sample and Ai the
amplitude of the ith data. Then, perform L2 normalization
to the data. L2 norm of the amplitude of the ith data can be
expressed as:

Anorm =
√
A21 + A

2
2 + · · ·A

2
N . (2)

Amplitude after L2 normalization is A′:

A′ = Ai/Anorm. (3)

Phase is expressed as:

ϕi = tan−1 (Qi/Ii) . (4)

The range of phases is -pi to pi, and after normalization of
L2 norm, the phase range is −1 to 1

B. RANDOM ERASING BASED DATA AUGMENTATION
The data in RML2016.10a have no occlusion. However, in the
actual signal acquisition process, the signal we get will be
partially occluded. There are many factors contributing to this
phenomenon, such as terrain and other electromagnetic signal
interference. Most of the existing classification models do
not consider this problem. But a strong classification model
should be able to recognize categories from the overall object
structure. In order to solve the problem of data occlusion
in the actual electromagnetic environment and improve the
generalization ability of our trained model, we propose two
novel random erasing algorithms, sample level erasing and
AP channel level erasing as shown in Figure. 2. These two
algorithms mainly simulate different environmental factors.
Sample level erasing simulates noise caused by irregular
terrain. Noise information is block noise, which is directly
generated to replace amplitude and phase information. The
AP channel level erasing simulates noise generated by the
electromagnetic environment. Random erasing is performed
at a certain probability, where the probability of data being

FIGURE 2. Random erasing ((a). at sample level (b). at AP channel level).

randomly erased is p, and the probability of data remaining
unchanged is 1 − p. Meanwhile, hyper-parameters r1, r2 are
defined to control the erasing region.

Algorithm 1 Sample Level Erasing for AMC
Input:

Input data D;
Data size W and H ;
Erasing rate P;
Erasing aspect ratio range r1 and r2.

Output:
Erased data D′.

1: Initialization: P0← Rand(0, 1);
2: if P0 ≥ P then
3: D′← D;
4: return D′;
5: else
6: Dmin = Min(D);
7: Dmax = Max(D);
8: while True do
9: Wr ← randint(0,W );
10: Hr ← randint(0,H );
11: re← randint(Hrr1 ,

Hr
r2
);

12: if Wr + re ≤ w then
13: Dr ← (Wr ,Hr ,Wr + re,Hr );
14: D(Dr )← Rand(Dmin,Dmax);
15: D′← D;
16: return D′;
17: end if
18: end while
19: end if

1) RANDOM ERASING AT SAMPLE LEVEL
As shown in Algorithm 1, for random erasing at sam-
ple level, only one set of noise points need to be gener-
ated in order to replace the AP information to be erased.
For a set of data input with a random erasing module,
we assume that the data length is n, then amplitude of the
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signal is A = {A0,A1, · · · · · · ,An−1,An} and phase is ϕ =
{ϕ0, ϕ1, · · · · · ·ϕn−1, ϕn}. The algorithm generates a set of
random noise points N =

{
N0,N1, · · · · · ·Nre−1,Nre

}
, which

are used as noise data to replace the AP information of the
raw signal: 

AWr , ϕWr = N0

AWr+1, ϕWr+1 = N1

· · · · · ·

AWr+re+1, ϕWr+re+1 = Nre−1
AWr+re , ϕWr+re+1 = Nre .

(5)

Algorithm 2 AP Channel Level Erasing for AMC
Input:

Input data D;
Data size W and H ;
Erasing rate P;
Erasing aspect ratio range r1 and r2.

Output:
Erased data D′.

1: Initialization: P0← Rand(0, 1);
2: if P0 ≥ P then
3: D′← D;
4: return D′;
5: else
6: Dmin = Min(D);
7: Dmax = Max(D);
8: while True do
9: Wr ← randint(0,W );
10: Hr ← randint(0,H );
11: re← randint(Hrr1 ,

Hr
r2
);

12: if Wr + re ≤ w then
13: Dr ← (Wr ,Hr ,Wr + re,Hr );
14: A(Dr )← Rand(Dmin,Dmax);
15: P(Dr )← Rand(Dmin,Dmax);
16: D′(A,P)← D(A(Dr ),P(Dr ));
17: return D′(A,P);
18: end if
19: end while
20: end if

2) RANDOM ERASING AT AP CHANNEL LEVEL
As shown in Algorithm 2, unlike random erasing at the sam-
ple level, random erasing at AP channel level does not directly
replace each sample, instead, it replaces the AP information
of each sample separately and gives a set of noise data N′ ={
N ′0,N

′

1, · · · · · · N ′re−1,N
′
re

}
. The specific random erasing

operation is as follows:

AWr = N0

AWr+1 = N1

· · · · · ·

AWr+re+1 = Nre−1
AWr+re = Nre ,

(6)



ϕWr = N ′0
ϕWr+1 = N ′1
· · · · · ·

ϕWr+re+1 = N ′re−1
ϕWr+re+1 = N ′re .

(7)

In our experiment, these noise points are all gaussian white
noise with mean of 0 and variance of 1.

3) RANDOM ERASING BASED DATA EXPANSION
In multi-classification tasks, data augmentation technology
plays a significant role in improving classification accuracy.
Effective data expansion not only increases the quantity of
training samples, but also diversifies training samples, effec-
tively minimizing the risk of overfitting. Data expansion
methods are designed according to the following principles:

• Improve classification accuracy of deep learning model.
Data expansion technology should be capable of
improving classification accuracy of deep learning
model to a certain level.

• Maintain a lower computational overhead. When train-
ing and deploying a deep learning model, we need
to consider not only the classification accuracy of the
model, but also the space required by training parameters
of the model, the memory space required for running the
model, the running speed of the model, and et al. Data
expansion methods should maintain a relatively low
computational overhead while improving classification
accuracy of the model.

The random erasing algorithms at both sample level and
AP channel level proposed in this paper can be used to
realize data expansion. Firstly, select the data segment to be
expanded, apply random erasing algorithm at sample level
or AP channel level to it, perform a Shuffle operation on
the expanded data, that is, randomly stitching multiple data
segments that have been expanded, and input stitched data as
training data for the deep learning model.

C. SINGLE-LAYER LSTM MODEL BASED
ON ATTENTION MECHANISM
LSTM is a special type of recurrent neural network (RNN).
An LSTM cell features three types of gates, among which
the forget gate conditionally decides to discard certain infor-
mation of the cell, the input gate conditionally decides to
update the value of memory state from the input, and the out-
put gate conditionally outputs. By adding these three gating
mechanisms, LSTM can effectively capture temporal features
of the training data. At the same time, LSTM also solves
the problem of vanishing gradient and exploding gradient
during the training of long sequences [19]. A single-layer
LSTM based on attention mechanism for AMC is proposed
as shown in Figure. 3. The first part is signal embedding
module. The data format in RML2016.10a is 2× 128, which
can be directly used as input to LSTM, so the existing work
such as [7], [12], [13] is to input IQ data directly into LSTM
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FIGURE 3. The proposed single-layer LSTM based on attention
mechanism for AMC.

for processing. If a set of data is viewed as a sentence, then
for the LSTM, the sentence is made up of 128 words, each of
which is a vector of length 2. Signal embedding is actually a
fully-connected operation, which is multiplies the data with
a learnable matrix. The reason to use signal embedding is
that the features of low-dimensional data are very general.
Consequently, we need to continuously increase the data
dimensions to enhance the recptive field of the model. The
change of data dimension is obtained through continuous
learning of the model, and the model will eventually find a
dimension that is most suitable for feature extraction. So after
embedding, the input matrix will contain more comprehen-
sive and accurate modulation information. The second part is
single- layer LSTM. Modulated signals are time series data,
and different modulation modes exhibit different amplitude
and phase information. LSTM canwell extract these temporal
features. The last part is the attention mechanism module.
For a modulation signal sequence, the amplitude and phase
information of part of the data can reflect the feature of
the modulation mode. Attention mechanism can pay more
attention to this part of data. Suppose we have a sequential
signal data which has T points as the input. The first step is
to represent the signal as a sequence of T signal embeddings:

X = {x1, x2, . . . , xt, . . . , xT} . (8)

where xt is a N dimensional valued vector, denoting the
embedding for the t th signal point in the input. Then the
signal data can be represented as a T-by-N matrix, which is
the concatenation of the signal embeddings in it. After that,
we feed the matrix X to the LSTM:

ht = LSTM (xt,ht−1) . (9)

Hence the output hidden state of LSTM is

H = {h1,h2,h3, · · · ,hT−1,hT } . (10)

Trainable parameter vector isW1 and bias is b, then vector
H is converted into vector K:

K =W1 ∗H + b. (11)

Vector of the normalized weight is αn:

αn = softmax
(
W2n ∗ (tanh(K))T

)
, (12)

where W2n is also a trainable parameter vector, αn is a vector
of length T , then αnt represents the weight of the t th hidden
state output by LSTM:

αnt =
exp (W2n · ht)∑T
t ′=1 exp (W2n · ht′)

. (13)

All weights add up to 1. After obtaining the weight vector αnt
through training, we apply the weights to the hidden states
output by LSTM, and the output vector cn is:

cn = αnH =
T∑
t=1

αnt · ht . (14)

In this paper, cross-entropy loss function is:

L = −
1
N

N∑
i=1

yi log ŷiout , (15)

where N represents the total amount of input data, yi repre-
sents the ground truth label of the ith data, ŷiout represents the
predicted label of the ith data provided by the model, and L
represents the loss function.

D. RE-TTA
It is assumed that m modulation modes exist in a dataset.
In the testing phase, classification results are obtained from
the output of the fully connected layer and the Softmax layer
in the deep learning model. To further improve classification
accuracy, we performN random erasing operations on the test
data and test them separately. The predicted results of the ith

data provided by the model are, respectively:

P1
=
{
p10, p

1
1, p

1
2 · · · p

1
m−1, p

1
m
}

P2
=
{
p20, p

2
1, p

2
2 · · · p

2
m−1, p

2
m
}

· · · · · ·

Pn
=
{
pn0, p

n
1, p

n
2 · · · p

n
m−1, p

n
m
}

· · · · · ·

PN
=
{
pN0 , p

N
1 , p

N
2 · · · p

N
m−1, p

N
m
}
.

(16)

The model makes the finally judgement of the ith data as:

ŷi = argmax
j∈{0,1··· ,m}

N∑
n=0

Pnj , (17)

where Pni represents the probability that the deep learning
model predicts the ith data to be a class-j data in the nth

prediction. Test time augmentation scheme utilizes a small
amount of test time computational overhead, which improves
prediction accuracy of the deep learning model.

IV. SIMULATION EXPERIMENTS AND ANALYSIS
A. DATA SOURCE
In order to verify the performance of the scheme proposed
in this paper, we have made simulation experiments using
the open source radio dataset RML2016.10a. The dataset
contains 11 modulation modes, namely 8PSK, AM-DSB,
AM-SSB, BPSK, CFPSK, GFSK, PAM4, QAM16, QAM64,
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QPSK, andWBFM. The signal data is sampled as IQ data, in a
total of 220,000 groups. SNR of the dataset lies in the range
from -20 dB to 18 dB, with an interval of 2 dB. For each group
of modulated signal, the data format is 2× 128. During data
acquisition, a number of error effects are added in channel
environment, such as center frequency offset, sample rate
offset, additive white Gaussian noise, and multipath fading.

B. SIMULATION EXPERIMENTS
During the experiments, we divide the dataset into a training
set and a test set at a ratio of 7:3. Learning rate in the process
of model training is set to 0.001, Adam is selected to be the
optimizer, training epoch is set to 70, and batch size is set
to 128. The specific parameters involved in each module are
given in the analysis below. All experiments are completed
with a GPU of RTX 2080Ti and a software environment
of python 3.6. The deep learning model is built on Keras
with TensorFlow as the backend. Simulation experiments
consist of four parts. The first part is simulation experiment
for the deep learning model proposed in this paper, that
is, the single-layer LSTM based on attention mechanism.
The second part is simulation experiment for the random
erasing based data augmentation method. The third part is
simulation experiment for the RE-TTA method. The fourth
part is simulation experiment for classification performance
comparison of the proposed AMC scheme with other existing
schemes. Meanwhile, we have made relevant analysis of the
experimental results.

FIGURE 4. Classification accuracy curves of different models.

1) EXPERIMENT OF THE DEEP LEARNING MODEL
As the first step, we convert data into AP information and
use it as training data to train the model. During the experi-
ment, performances of three models, namely the single-layer
LSTM, the single-layer LSTM based on attention mecha-
nism, and two-layer LSTM, are compared. To prevent overfit-
ting during the experiment, we add a dropout layer with the
dropout being set to 0.7. Figure. 4 shows the classification
accuracy curves of the three different models. It can be seen
that the overall classification accuracy of single-layer LSTM

TABLE 1. Computational complexity of different models.

is relatively low. When SNR = 4 dB, its accuracy is 83.96%,
while the two-layer LSTM achieves an accuracy of 91.25%
when SNR = 4 dB. The single-layer LSTM based on atten-
tion mechanism has the highest classification accuracy when
SNR= 4 dB, which is 92.08%. According to this, the addition
of attention mechanism helps improve classification accu-
racy of deep learning models. Under the same hardware
environment, we have conducted separate experiments on
the three deep learning models, and the training parameters,
total sample test time are given in Table 1. It can be seen
that the single-layer LSTM needs to train 68,491 parame-
ters, and the total testing time of it is 70.288 seconds. The
single-layer LSTM model with attention mechanism needs
to train 85,131 parameters. Although the addition of attention
mechanism increases parameters of the deep learning model,
time spent for testing is increased by 0.868 seconds. The
two-layer LSTM model needs to train 200,075 parameters,
and it takes up to 171.281 seconds to test all the test set,
which means that its computational complexity is high. Com-
bining Figure. 4 and Table 1, we find that the single-layer
LSTM based on attention mechanism has great advantages
in both classification accuracy and computational efficiency.
Because the classification accuracy of two-layer LSTM is
similar to that of attention based two-layer LSTM, and adding
attention mechanism will bring more learned parameters.
So we do not add the figure of attention based two-layer
LSTM.

FIGURE 5. Classification accuracy of data augmentation based on
random erasing at sample level at different erasing rates.

2) EXPERIMENT OF RANDOM ERASING BASED
DATA AUGMENTATION
Erasing rate is an important parameter of the random eras-
ing algorithm, and different erasing rates will have different
impact on the training result of deep learning model. Firstly,
we determine the value of the optimal erasing rate. Figure. 5
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shows classification accuracy curves of the random erasing
algorithm at sample level under different erasing rate p. It can
be seen that, when erasing rate p = 0.3, classification accu-
racy reaches up to 92.76%. When erasing rate p = 0.4, clas-
sification accuracy reaches the highest at an SNR of 16 dB,
which reaches up to 93.14%; when erasing rate is greater
than 0.4, classification accuracy of model declines, with the
maximum accuracy reaching up to 92.91%when p = 0.5 and
92.56% only when p = 0.6. Experiments show that too much
intervention on the data leads to a reduction in classification
accuracy. Therefore, erasing rate is defined to be p = 0.4,
and the remaining parameters are set to r1 = 4, r2 = 0.25.

FIGURE 6. Classification accuracy (at p = 0.4) of data augmentation
schemes based on random erasing at sample level and random erasing at
AP channel level.

We use two different random erasing algorithms, namely
random erasing at sample level and random erasing at AP
channel level to enable data expansion. Erasing rate p is set
to 0.4. Figure. 6 shows the classification accuracy comparison
of deep learning model using two random erasing algorithms.
It can be seen that when SNR < 2 dB, data augmentation
based on random erasing at sample level has a higher clas-
sification accuracy; when SNR ≥ 2 dB, data augmentation
scheme based on random erasing at AP channel level has a
better classification accuracy, with the average value in the
range from 2 dB to 18 dB reaching 93.17% and the highest
classification accuracy reaching 93.56%.

Figure. 7 (a) is the confusion matrix obtained by the deep
learningmodel before data is expanded. It can be seen that the
deep learning model has a lower classification accuracy for
AM-SSB, QAM16, QAM64,WBFM, and AM-DSBmodula-
tion modes, which also leads to a low overall recognition rate.
We use data expansion to improve classification accuracy of
these modulation modes.

Firstly, we use the random erasing algorithm to expand
the data of all modulation modes, and obtain a classification
confusion matrix as shown in Figure. 7 (b). It shows that
confusion between the two modulation modes (QAM16 and
QAM64) is well solved. However, even with an SNR of 8 dB,
a small part of data under the modulation mode of AM-SSB

FIGURE 7. Confusion matrixes(at SNR=8dB) ((a). without data expansion
(b). with data expansion).

will be mistakenly recognized as another modulation mode.
Constellation diagram intuitively reflects the distribution of
training data. As shown in Figure. 8, we have plotted a
constellation diagram for each modulation mode at different
SNRs. It can be seen that, data distribution of the various
modulation modes at low SNR is difficult to distinguish.
In order to further study and verify the above, we have made
a simulation and obtained the confusion matrix at low SNR,
as shown in Figure. 9. It can be seen that, at low SNR, there
is a high probability that the various modulation modes are
recognized as AM-SSB.

In the RML2016.10a dataset, modulated signal is gener-
ated from real audio stream, therefore, when voice signal is
idle, AM-DSB and WBFM tend to be confusing as they do
not include useful modulation information [20]. To this end,
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FIGURE 8. Constellation diagrams of eleven modulation modes at different SNRs.

FIGURE 9. Confusion matrixes ((a) SNR = −16 dB, (b) SNR = −18 dB, (c) SNR = −20 dB).

we expand data for AM-SSB, QAM16 and QAM64 in the
simulation experiments described below.

TABLE 2. Impact of hyper-parameter N value selection on classification
accuracy.

3) EXPERIMENT OF RE-TTA
RE-TTA performs N random erasing operations on the
test data to generate N versions of test data. We choose
hyper-parameter N through the analysis of experimental
results. Table 2 shows the impact of the proposed scheme on
classification accuracy when different value is taken for N .
When N = 2, the maximum classification accuracy of
the proposed scheme is 93.852%, which is 0.502% higher
than that without RE-TTA. When N = 4, the maximum
classification accuracy is 93.92%, which is 0.861% higher
than that without RE-TTA. When N = 3, the maximum
classification accuracy is 94.091%, which is 0.690% higher
than that without RE-TTA and is the optimal classification
accuracy.

FIGURE 10. Confusion matrix of the proposed AMC scheme at SNR =
18 dB.

4) EXPERIMENT OF THE PROPOSED AMC SCHEME
Figure. 10 shows the confusion matrix of the proposed
scheme at SNR = 18 dB. It can be seen that classification
accuracy of the proposed scheme reaches 94.091% at SNR=
18 dB. At the same time, it also effectively solves the problem
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of confusing QAM16 and QAM64, among which, recog-
nition accuracy is 97% for QAM16 and 94% for QAM64.
In addition, recognition accuracy of the proposed scheme
reaches 97% for AM-SSB, significantly solving the problem
of low classification accuracy for themodulationmode. How-
ever, confusion still exists with AM-DSB and WBFM.

TABLE 3. Methods used in this paper and their improvements.

a: ANALYSIS ON CLASSIFICATION PERFORMANCE OF THE
PROPOSED AMC SCHEME
Table 3 lists the contributions of various methods in the
proposed scheme in improving classification accuracy, which
include:
• Adding an attention mechanism to the single-layer
LSTM has the most significant improvement on classifi-
cation accuracy, reaching 5.943%, and the introduction
of attention mechanism makes the model converge more
quickly at lower computational complexity.

• Random erasing based data augmentation has brought a
classification accuracy improvement of 1.479%, and the
introduction of this scheme has well solved the problem
of recognizing confusing modulation modes.

• RE-TTA has brought an improvement of 0.531% on
model performance.

Due to the above contributions made by the various tech-
nologies, maximum classification accuracy achieved by the
AMC scheme proposed in this paper has reached 94.091%.

b: CLASSIFICATION PERFORMANCE COMPARISON OF THE
PROPOSED AMC SCHEME AND OTHER EXISTING SCHEMES
We have compared the proposed scheme to seven existing
schemes, namely CNN-IQ, CNN-AP, ResNet-IQ, LSTM-
AP, LSTM-IQ and CLDNN-IQ, CLDNN-AP. Among them,
CNN [21] and ResNet [22] can improve the affect of signal
frequency offset on classification accuracy; LSTM is suitable
for feature extraction of time series signals [19]; while Convo-
lutional, LSTM, Deep Neural Network (CLDNN) combines
the advantages of DNN, CNN and LSTM, and is proved to
have good performance in the classification of modulation
modes [23].

Figure. 11 compares classification accuracy of the pro-
posed scheme to that of other seven schemes: CNN-IQ,
CNN-AP, ResNet-IQ, LSTM-AP, LSTM-IQ andCLDNN-IQ,
CLDNN-AP. CNN-IQ has a relatively low classification
accuracy, its maximum accuracy is 81% only, which shows
that CNN is relatively low-performing in feature extraction
of time series signals. Even if the amplitude and phase
information of IQ signal is extracted as the training data
of CNN, no significant effect is achieved, with the highest
accuracy of CNN-AP only reaching 83.4%. ResNet-IQ has a

FIGURE 11. Classification performance comparison of the proposed
scheme vs. existing schemes.

slightly higher classification accuracy than CNN-IQ, and its
maximum accuracy is 83.5%. The CLDNN-IQ model has a
higher classification accuracy than other models at low SNR.
When SNR = 0 dB, its classification accuracy is 80.7%.
As SNR goes up, its maximum accuracy reaches 85.8%.
However, when the amplitude and phase information is used
as CLDNN input, the classification accuracy can only reach
85.2%.

As can be seen from Figure. 11, the classification accuracy
of IQ data as the input of LSTM is low. Because different
modulation schemes exhibit different amplitude and phase
characteristics, and that’s the IQ data does not show. When
SNR= 0 dB, classification accuracy is 87.13%; when 0dB≤
SNR ≤ 18 dB, average classification accuracy is 90.69%,
which is higher than that of the CNN-IQ scheme that uses
IQ data for training. The scheme proposed in this paper has
achieved an accuracy of 89.2% when SNR = 0 dB, an aver-
age classification accuracy of 92.87% when 0dB ≤ SNR ≤
18 dB, and a maximum classification accuracy of 94.091%.
Simulation results have proved that the proposed scheme is
an advanced one in terms of classification accuracy.

V. CONCLUSION
In this paper, a deep learning based AMC scheme is pro-
posed, which combines random erasing and attention mech-
anism to achieve high classification accuracy. By studying
the selection of LSTM layers, a single-layer LSTM model
based on attention mechanism is selected on top of the
trade-off between computational complexity and classifica-
tion accuracy. Signal embedding enables our input to contain
more accurate and comprehensive modulation information.
The addition of attention mechanism contributes greatly to
classification accuracy improvement of the deep learning
model, and experimental results also demonstrate this model
enjoys a significant advantage in temporal feature extraction.
To further improve generalization capability and robustness
of the model, we have proposed two random erasing based
data augmentation schemes. Finally, we have proposed the
RE-TTA scheme to further improve classification accuracy of
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modulation modes. Classification accuracy of the proposed
scheme is compared to that of multiple existing schemes
on the open source dataset RML2016.10a, and the proposed
scheme is proved to be an advanced and effective one.

REFERENCES
[1] T. J. O’Shea, T. Roy, and T. C. Clancy, ‘‘Over-the-Air deep learning based

radio signal classification,’’ IEEE J. Sel. Topics Signal Process., vol. 12,
no. 1, pp. 168–179, Feb. 2018.

[2] G. J. Mendis, J. Wei, and A. Madanayake, ‘‘Deep learning-based auto-
mated modulation classification for cognitive radio,’’ in Proc. IEEE Int.
Conf. Commun. Syst. (ICCS), Dec. 2016, pp. 1–6.

[3] N. E. West and T. O’Shea, ‘‘Deep architectures for modulation recog-
nition,’’ in Proc. IEEE Int. Symp. Dyn. Spectr. Access Netw. (DySPAN),
Mar. 2017, pp. 1–6.

[4] S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani, and
Y.-D. Yao, ‘‘Modulation classification based on signal constellation dia-
grams and deep learning,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30,
no. 3, pp. 718–727, Mar. 2019.

[5] Y. Wang, M. Liu, J. Yang, and G. Gui, ‘‘Data-driven deep learning for
automatic modulation recognition in cognitive radios,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 4, pp. 4074–4077, Apr. 2019.

[6] H. Wu, Y. Li, L. Zhou, and J. Meng, ‘‘Convolutional neural network and
multi-feature fusion for automatic modulation classification,’’ Electron.
Lett., vol. 55, no. 16, pp. 895–897, Aug. 2019.

[7] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, ‘‘Deep
learning models for wireless signal classification with distributed low-cost
spectrum sensors,’’ IEEE Trans. Cognit. Commun. Netw., vol. 4, no. 3,
pp. 433–445, Sep. 2018.

[8] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: http://arxiv.org/abs/1409.1556

[9] A. Krizhevsky, I. Sutskever, and G. Hinton, ‘‘ImageNet classification with
deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 25, 2012, p. 12.

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[11] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, ‘‘Random eras-
ing data augmentation,’’ 2017, arXiv:1708.04896. [Online]. Available:
http://arxiv.org/abs/1708.04896

[12] L. Huang, W. Pan, Y. Zhang, L. Qian, N. Gao, and Y. Wu, ‘‘Data aug-
mentation for deep learning-based radio modulation classification,’’ IEEE
Access, vol. 8, pp. 1498–1506, 2020.

[13] S. Chen, Y. Zhang, Z. He, J. Nie, and W. Zhang, ‘‘A novel attention coop-
erative framework for automatic modulation recognition,’’ IEEE Access,
vol. 8, pp. 15673–15686, 2020.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, and
S. Ozair, ‘‘Generative adversarial nets,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 2672–2680.

[15] T. J. O’Shea and N.West, ‘‘Radiomachine learning dataset generation with
gnu radio,’’ in Proc. GNU Radio Conf., 2016, vol. 1, no. 1, p. 12.

[16] J. Nie, Y. Zhang, Z. He, S. Chen, S. Gong, andW. Zhang, ‘‘Deep hierarchi-
cal network for automatic modulation classification,’’ IEEE Access, vol. 7,
pp. 94604–94613, 2019.

[17] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ in Proc. 3rd Int. Conf. Learn.
Representations, May 2015.

[18] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-Excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[19] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[20] T. O’Shea and J. Hoydis, ‘‘An introduction to deep learning for the physical
layer,’’ IEEE Trans. Cognit. Commun. Netw., vol. 3, no. 4, pp. 563–575,
Dec. 2017.

[21] Y. LeCun, K. Kavukcuoglu, and C. Farabet, ‘‘Convolutional networks and
applications in vision,’’ in Proc. IEEE Int. Symp. Circuits Syst., May 2010,
pp. 253–256.

[22] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning
for image recognition,’’ 2015, arXiv:1512.03385. [Online]. Available:
http://arxiv.org/abs/1512.03385

[23] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, ‘‘Convolutional, long
short-term memory, fully connected deep neural networks,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 4580–4584.

YUFAN CHEN received the B.S. degree, in 2018.
He is currently pursuing the M.Eng. degree with
the College of Communication Engineering, Army
Engineering University of PLA, Nanjing, China.
His current research interests include deep learn-
ing and automatic modulation classification.

WEI SHAO received the B.S., M.S., and Ph.D.
degrees from the College of Communications
Engineering, Army Engineering University of
PLA, Nanjing, China, in 2001, 2004, and 2007,
respectively. He is currently an Associate Profes-
sor with the Army Engineering University of PLA.
His current research interests include intelligent
spectrum management and communication signal
processing.

JIN LIU (Graduate Student Member, IEEE)
received the B.S. degree, in 2018. She is cur-
rently pursuing the M.S. degree with the School
of Remote Sensing and Information Engineering,
Wuhan University, Wuhan, China. Her current
research interests include photogrammetry and 3D
reconstruction in computer vision.

LU YU received the B.S. degree from the PLA
Institute of Communications Engineering, in 1996,
the M.S. degree from the PLA University of Sci-
ence and Technology, in 2000, and the Ph.D.
degree from Southeast University, in 2007. She
is currently with the Institute of Communica-
tions Engineering, Army Engineering University
of PLA. Her current research interests include
machine learning and image understanding.

ZUPING QIAN (Member, IEEE) was born in
Haimen, Jiangsu, China, in 1961. He received
the B.S. and M.S. degrees in applied mathe-
matics from Hunan University, Changsha, China,
in 1982 and 1985, respectively, and the Ph.D.
degree in microwave techniques from Southeast
University, Nanjing, China, in 2000. From 1985 to
1999, he was with the Institute of Communications
Engineering, Nanjing, as a Lecturer and later as
an Associate Professor. Since 2000, he has been

a Professor with the College of Communications Engineering, Army Engi-
neering University of PLA, Nanjing. He has authored several books, such as
Electromagnetic Compatibility, Antenna, and Propagation. He has authored
over 80 international and regional refereed journal articles. His research
interests include antenna, metamaterials, computational electromagnetics,
array signal processing, and EMI/EMC.

154300 VOLUME 8, 2020


